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Abstract

A method is presented for computing the radiometric re-
sponse function of a camera from a single grayscale image.
While most previous techniques require a set of registered
images with different exposures to obtain response data, our
approach capitalizes on a statistical feature of graylevel
histograms at edge regions to gain information for radio-
metric calibration. Appropriate edge regions are automat-
ically determined by our technique, and a prior model of
radiometric response functions is employed to deal with in-
complete data. With this single-image method, radiometric
calibration becomes possible to perform in many instances
where the camera is unknown.

1 Introduction

In most cameras, there exists a nonlinear relationship be-
tween the image intensities output from the camera and the
scene radiance that enters the imaging system. This non-
linearity is intentionally designed into digital cameras to
compress the dynamic range of scenes and to account for
nonlinearities in display systems. While this feature may be
beneficial for viewing purposes, it impairs many computer
vision methods which assume that image intensities are lin-
early related to scene radiance.

A broad range of vision algorithms require this linearity
because they need precise measurements of scene radiance
for accurate processing. In photometric methods such as
shape from shading, color constancy and illumination esti-
mation, physical information is derived from scene radiance
for analyzing a scene. Image intensities are also implic-
itly presumed to convey scene radiance in many other vi-
sion methods such as object recognition and multi-camera
stereo, so that images captured from different cameras or
at different brightness levels can be properly compared. To
obtain scene radiance information from images, the map-
ping from scene radiance to image intensity, called the ra-
diometric response function, must be determined to undo its
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nonlinear effects on image intensities.

1.1 Background

In the imaging process, radiance from a scene first is
recorded at the imaging array of a camera as image irra-
diance. These irradiance valuesI are then transformed ac-
cording to the camera’s radiometric responsef into mea-
sured intensitiesM that are output from the camera:

M = f(I).

For vision algorithms that require irradiance values as input,
an inverse response functiong = f−1 should be recovered
to map image intensities into irradiance values, in a process
known as radiometric calibration. Since sensor output in-
creases monotonically with respect toI, response functions
f are invertible.

A mappingg can be determined by fitting a function to
corresponding values of intensity and irradiance. For inten-
sity values in measured images, however, their correspond-
ing irradiance values are generally unknown. Radiometric
calibration methods traditionally deal with this problem by
varying the camera exposure in a set of images, which ef-
fectively modulates the irradiance captured at the imaging
array. For a pair of images, the ratio of captured radiance at
corresponding pixels is equal to the exposure ratio between
the two images, as expressed in the following relationship:

g(mA) = kg(mB) (1)

wheremA denotes measured image intensities in imageA,
mB represents intensities of corresponding points in image
B, andk denotes the exposure ratio betweenA andB. From
a set of corresponding points in the image pair, an inverse
response functiong can be solved using Eq. (1), with the as-
sumption that the sensor response does not change over the
image grid, such as from vignetting or fixed pattern noise.

1.2 Previous work

Most previous works require that the image sequence
with varying exposure be captured by a fixed camera. For



instances where the ratios of the exposure values are known,
Mann and Picard [9] compute a parametric response func-
tion in the form of a gamma curve, and Debevec and Ma-
lik [1] employ a smoothness constraint to obtain a non-
parametric response function. The need for precise expo-
sure ratios is avoided in the method by Mitsunaga and Na-
yar [10], which iteratively solves for a polynomial response
function beginning with just a rough estimate of exposure
ratios. Iterative methods have also been proposed by Tsin
et al. [14], which estimates non-parametric responses using
a statistical model of the CCD imaging process, and by Pal
et al. [12], which utilizes probabilistic imaging models and
prior models of response functions to compute radiometric
response functions that can differ among the images in the
sequence.

Less restrictive on the input image sequence, a few pre-
vious methods permit some camera movement or scene mo-
tion, with changes in exposure level. Mann [8] presents an
iterative method for response function estimation from se-
quences captured by a rotating and zooming camera. Kim
and Pollefeys [6] propose a technique that computes point
correspondences to allow free movement of the camera and
some motion in the scene. The need for spatial correspon-
dences is circumvented by Grossberg and Nayar [4], who
relate histogrammed intensity values between two images
of different exposure.

In many scenarios such as web image analysis, the im-
age capture device is not accessible, so multiple images of
different exposure cannot be obtained for radiometric cali-
bration. In such cases, single-image approaches are needed
to estimate the response function. Nayar and Mitsunaga
[11] introduce a method for increasing the dynamic range
of digital cameras by placing upon the imaging array an op-
tical filter with spatially varying transmittance. For images
captured with this filter, the response function can be com-
puted from neighboring pixels of different exposure and
constant scene brightness. Farid [2] presents a technique for
estimating the gamma correction of an image from certain
frequency-domain correlations that it introduces. However,
this approach makes assumptions on the statistics of scene
radiance, and the radiometric responses of many cameras
differ significantly from a gamma function.

A more general single-image method is proposed by Lin
et al. [7], which obtains information about the radiometric
response from color distributions of local edge regions. Due
to blending of distinct region colors, irradiance colors from
edge regions should form linear distributions in color space.
But because of nonlinear radiometric response functions,
measured edge colors actually compose nonlinear distribu-
tions that are directly related to the response function. With
a prior model of response functions compiled by Grossberg
and Nayar [5], the inverse radiometric response is computed
as the function that maps the nonlinear distributions of mea-

sured edge colors into linear distributions.
This color-based approach, however, cannot be applied

to grayscale images, which are popular in artistic photog-
raphy and are commonly used in vision applications such
as face recognition and tracking in surveillance video. Un-
like color which is commonly measured as a vector of three
spectral elements, grayscale intensities are scalar quantities
for which properties such as linearity and nonlinearity do
not apply. To address the problem of radiometric calibration
from a single grayscale image, we propose in this paper a
1D analogue of the 3D color method in [7].

In this work, we similarly consider the formation of edge
irradiance distributions from region blending. But since a
nonlinear response function does not transfigure the locus of
1D grayscale values as it does for 3D colors, we propose to
use higher-order distribution features along image edges to
extract radiometric response information. For an edge pixel
that views two scene regions as shown in Fig. 1(a), the ratio
of the two region areas that it observes can be considered
a uniform random variable, and consequently the grayscale
histogram of edge irradiance values should statistically be
uniform between the graylevels of the two bounding re-
gions, as displayed in Fig. 1(b). In contrast, the edge pixel
intensities in a measured image form a skewed histogram
distribution, as illustrated in Fig. 1(d), that is directly related
to the nonlinearity of the radiometric response function, dis-
played in Fig. 1(c). From this property, we show that the
radiometric response can be computed as the function that
transforms the non-uniform histograms of edge regions into
uniformly distributed histograms. Our experimentation has
shown this technique to obtain accurate response functions
from single grayscale images.

2 Histogram Analysis

Our proposed method derives the radiometric response
function from histograms of measured intensities at edge
regions. In this section, we describe how region blending
at edges leads to statistical uniformity of irradiance his-
tograms, and how sensor nonlinearities map these irradi-
ance distributions into non-uniform histograms of measured
intensities output by the camera. From these measured in-
tensity histograms, the inverse response function can be de-
termined as the transformation that unskews their distribu-
tions.

2.1 Histograms of Image Irradiance

To explain the uniformity of irradiance histograms, we
first review the image sensing process. Images are formed
on a CCD sensor array that records radiance from the scene.
Because the array is limited in spatial resolution, each array
elementx images a solid angle of the scene, and we denote
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Figure 1. Transformation of scene radiance to measured intensities in local edge regions. (a) An edge bounded by regions with
scene radianceR1 andR2. A pixel that straddles the edge receives radiance from both regions in proportion to areasS1 andS2 that it
images of each region. (b) Each imaging element records a single grayscale value as image irradiance. Since the proportion between
S1 andS2 in an edge pixel is a uniform random variable, a histogram of irradiance values is uniform (not including irradiance
values of bounding regions). (c) A camera responsef nonlinearly maps irradiance values to measured intensities. (d) Because of
the nonlinear mapping, the histogram of measured intensity values has a non-uniform distribution.

the set of image plane points within an array element as
S(x).

The image irradianceI at x depends on the sensitivity
q of the array element with respect to wavelengthλ and
the incoming scene radiancesR incident upon image plane
pointsp in S(x):

I(x) =
∫

λ

∫

p∈S(x)

R(p, λ)q(λ) dp dλ. (2)

For an edge that separates two scene regions of distinct
but uniform colors, an edge pixel element generally views
portions of both bounding regions, as illustrated in Fig. 1(a).
For an edge pixelx divided into regionsS1(x) andS2(x)
with respective scene radiancesR1(λ) andR2(λ), the over-
all radiance incident onx can be expressed as

∫

p∈S(x)

R(p, λ)dp =
∫

p∈S1(x)

R1(λ)dp +
∫

p∈S2(x)

R2(λ)dp

= αR1(λ) + (1− α)R2(λ) (3)

whereα =
∫

p∈S1(x)
dp andS(x) is of unit area.

Substituting Eq. (3) into Eq. (2), we can relate the im-
age irradiance ofx to the irradiance values of the bounding
regions:

I(x) = α

∫

λ

R1(λ)q(λ)dλ + (1−α)
∫

λ

R2(λ)q(λ)dλ

= αI1(x) + (1− α)I2(x)

An edge window typically contains numerous edge pix-
els composed of varying proportions (α, 1 − α) of the two
bounding regions. Since these proportions are determined

by chance according to edge paths,α can be considered a
uniform random variable in the range(0, 1). With this prop-
erty, a histogram of image irradiance values should be sta-
tistically uniform in an interval between the irradiances of
the bounding regions, as shown in Fig. 1(b). Since a win-
dow will also contain many non-edge pixels withα equal
to zero or one, this histogram uniformity is valid in practice
over a contracted interval that excludes the graylevels of the
bounding regions and their image noise.

2.2 Histograms of Measured Intensities

From the imaging array to the output image, the ir-
radiance values undergo transformations represented by
the camera’s radiometric response function. This map-
ping from irradiance to measured intensity is illustrated
in Fig. 1(c). Because of the nonlinearity of the response
function, the irradiances are converted into intensity val-
ues that form a non-uniform histogram, as exemplified in
Fig. 1(d). Our method takes advantage of these histogram
non-uniformities to determine response functions.

This edge characteristic exploited for radiometric cali-
bration differs from that used in the color-based method
of [7]. The color method takes advantage of how region
blending constrains thevalues of irradianceto form linear
distributions inRGB space and how a response function
transforms these values into a nonlinear configuration. This
sort of nonlinear shape deformation cannot occur for scalar
grayscale values, which are confined to a 1D line. To obtain
information on the response function, our technique capi-
talizes on a statistical feature of thefrequency of irradiance
valuesthat arises from region blending.
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Figure 2. The inverse response functiong should transform a non-uniform histogram of measured intensities at an edge region
into a uniform histogram of calibrated intensities.
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Figure 3. Composition of inverse response functiong and
response functionf in Fig. 2 gives a linear relationship be-
tween calibrated intensity values and image irradiance.

2.3 Histogram Transformations

To determine the inverse response function from mea-
sured intensities in edge regions, our method computes the
function that maps non-uniform histograms of measured in-
tensities into uniform distributions of calibrated intensities,
as illustrated in Fig. 2. As shown in Fig. 3, the composition
of the inverse response functiong with the response func-
tion f yields calibrated intensity valuesg(f(I)) that are lin-
early related to irradiance. To deal with the scale difference
between irradiance and calibrated intensity, we normalize
both the domain and co-domain of the functiong so that it
satisfiesg(0) = 0 andg(1) = 1, as done in [5].

To evaluate the uniformity of a histogramH, we utilize
a distance function that is an approximate measure of his-
togram non-uniformity:

N(H) =
1
b

Imax∑

k=Imin

[
|H(k)| − |H|

b

]2

+
β

3

3∑
n=1

[
|Hn| − |H|

3

]2

where|Hn| =
Imin+ nb

3 −1∑

i=Imin+
(n−1)b

3

|H(i)| (4)

where|H| represents the number of pixels recorded inH,
|H(k)| denotes the number of pixels of intensityk, |Hn|
stands for the number of pixels in intensity rangen, Imin

is the minimum intensity inH, Imax is the maximum in-
tensity inH, b = Imax − Imin + 1 denotes the number
of graylevels inH, andβ is an empirically fixed coeffi-
cient. Imin andImax are set to exclude the graylevels and
noise of the bounding regions, and their range is restricted
to be a multiple of3, so that the three histogram ranges
Hn are equal. Transforming a histogram by an inverse re-
sponse function leads to real-valued graylevelsp.q, where
p denotes the integer component andq the fractional com-
ponent. These graylevels are distributed between two his-
togram bins such that|H(p)| is incremented by(1− q) and
|H(p + 1)| by q.

This measure combines the variance of two components:
the number of elements in each graylevel, and the number
of elements in each of three grayscale bins that each cover a
third of the histogram range. While the first term quantifies
unevenness among individual graylevels, the second term is
a measure of unbalance among different sections of the dis-
tribution. We note that entropy measures do not specifically
evaluate distribution balance, which is important for our al-
gorithm. The Earth Movers Distance [13] computed with
respect to an even distribution of a given number of sam-
ples in a given number of bins could alternatively be used
as a more precise metric of histogram non-uniformity, but
at a greater computational cost.

With this measure, the inverse response functiong is
computed from the histograms of all the edge regions ob-
tained from an image, as illustrated in Fig. 4. The benefits of
using a larger number of edge regions are to cover a broader
range of image intensity values and to reduce the influence
of noise. For a given image, the intensity histograms of the
edge regions are gathered into an observation setΩ, and the
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Figure 4. Estimation of inverse response functiong as
the function that transforms the non-uniform histograms of
edge regions into uniform histograms.

total distance of a solutiong is given as

D(g; Ω) =
∑

H∈Ω

wHN(g(H)), (5)

where wH = |H|/b is a coefficient that gives greater
weight to more densely populated histograms that should
have more statistically accurate distributions. The desired
inverse response functiong should yield the smallest total
distance.

3 Selection of Edge Regions

The edge histograms inΩ are tabulated from image re-
gions that exhibit intensity blending between two areas of
uniform graylevels. To form these edge regions, our method
first identifies non-overlapping, fixed-size(15× 15) image
windows that have the blending characteristics required by
our approach. Valid windows are centered on a Canny-
detected edge whose path divides the window into exactly
two regions. The edge path is dilated by three pixels, and
the intensity variances of the two partitioned non-edge re-
gions are computed. If the variances of both regions lie
below a specified threshold, then the regions are considered
uniform. Additionally, the edge intensities must lie between
the graylevels of the two bounding regions, because of the
monotonicity of response functions. This requirement helps
to exclude some edges that exhibit artifacts such as JPEG
ringing and chromatic aberration.

Figure 5. Formation of edge regions, shown in a zoomed
image area. (a) Valid windows; (b) Aggregation of valid
windows into two edge regions. Two windows containing
vertical edges were excluded because of anomalous inten-
sity histograms. The compression artifacts are due to pdf.

For greater robustness of the statistical non-uniformity
measure, valid edge windows are aggregated into larger
edge regions to increase the number of pixel samples in a
histogram. This is performed by fusing adjacent or approx-
imately adjacent windows that have corresponding region
intensities, as exemplified in Fig. 5.

There exist some cases, such as perfectly vertical or hor-
izontal edges with respect to the CCD array, where an edge
region may have an irradiance distribution that is not uni-
form. Undesirable edge regions caused by chromatic aber-
ration may also be inadvertantly included in the observa-
tion set, since the presence of this artifact is sometimes
not apparent in a grayscale image. To reduce the number
of such unfavorable histograms in the observation set, our
method rejects edge regions whose intensity histograms do
not exhibit a skew that is characteristic of most response
functions. Since practically all common response functions
skew uniform irradiance histograms towards brighter inten-
sities, we detect outlier intensity histograms as those that do
not generally display this form, which is roughly expressed
as|H1| ≤ |H2| ≤ |H3| where|Hn| is defined in Eq. (4).

4 Response Function Estimation

The accuracy of an inverse response function estimated
from the distance function of Eq. (5) is limited by the
amount of information present inΩ, whose histograms may
not fully span the range of possible intensity values. To
deal with missing data, physical characteristics of response
functions such as smoothness and monotonicity could po-
tentially be used to constrain the solution. In this work,
we instead employ more focused information from the
DoRF database of real-world response functions compiled
by Grossberg and Nayar [5].

The principal components of the DoRF database are used
to represent inverse response functionsg, as described in
[5]:

g = g0 + H c (6)

whereg0 is the mean inverse response, andH is a matrix



whose columns are composed of the firstN = 5 eigenvec-
tors. c is anN -dimensional coefficient vector that repre-
sents an inverse response functiong.

Our algorithm further employs this prior data to regulate
the distance function of Eq. (5) in a MAP estimation frame-
work. A prior modelp(g) of inverse response functions
is formed from the DoRF database as a Gaussian mixture
model:

p(g) =
K∑

i=1

αiN (g; µi, Σi). (7)

In our implementation, we empirically use nine kernels
(K = 9) obtained using the EM algorithm.

The inverse response functiong should yield a low total
distance as expressed in Eq. (5), so we model a likelihood
functionp(Ω|g) by incorporating this distance measure into
an exponential distribution:

p(Ω|g) =
1
Z

exp(−λD(g; Ω))

whereλ is set empirically to104 andZ is a normalization
constant.

For the observation setΩ of a given image, the MAP
estimate of the response functiong∗ can then be expressed
in terms of the priorp(g) and the likelihoodp(Ω|g):

g∗ = arg max p(g|Ω) = arg max p(Ω|g)p(g).

By taking thelog of p(g|Ω), g∗ also can be written as

g∗ = arg min E(g) = arg minλD(g; Ω)− log p(g),

whereg∗ is the optimal solution of the objective function
E(g).

The optimization is computed by the Levenberg-
Marquardt method using nine initial values ofg that cor-
respond to the Gaussian centersµi of the GMM. Sinceg
is represented by principal components in Eq. (6), the first
and second derivatives ofg(c) are approximated by the first
and second differences with a smallδc. After the optimiza-
tion algorithm converges, the result is refined sequentially
in each dimension using a greedy local search.

5 Results

To evaluate our technique, it was applied on sets of
single-image input from a grayscale video camera (Ikegata
IK-110) and a color SLR camera (Canon EOS-1Ds) whose
RGB readings were converted to grayscale byI = 0.30R+
0.59G + 0.11B [3]. In the case of grayscale values con-
verted from color images, it is assumed that RGB demo-
saicking does not introduce any bias to edge intensity dis-
tributions. None of these cameras are included in the DoRF
database used to form the prior model.

Camera RMSE Disparity
CANON EOS-1Ds 0.0117 0.0216

Ikegata IK-110 0.0194 0.0490

Table 1. RMSE and Disparity of Estimated Inverse Re-
sponse Functions

For each camera, experiments were performed on 20 in-
dividual images of various scenes, and representative results
are displayed in Fig. 6 and Fig. 7. For the edge regions
of an image, the ranges of its histograms can be plotted to
give an indication of the completeness of the data. The re-
sponse charts include the estimated inverse response func-
tion of the given image, the most inaccurate response func-
tion estimated from among the 20-image set, the inverse re-
sponse function recovered using all 20 images together, and
measurements from a Macbeth ColorChecker chart. For the
Canon EOS-1Ds, an additional response function is com-
puted using the multiple-exposure method in [10]. This
comparison is not included for the Ikegata camera, since
its exposure level cannot be adjusted.

A quantitative comparison of our method to the other
techniques is tabulated in Table 1 over the image sets. The
RMS error is computed in terms of normalized irradiance,
and the disparity represents the average value among the
images of the maximum difference between our function
and the comparison curve. For the Canon EOS-1Ds, the
comparison is made to the average response function using
the method in [10] and the Macbeth ColorChecker, whose
measurements are interpolated using a fifth degree polyno-
mial. For the grayscale camera, the ColorChecker alone is
used for comparison. The low RMSE and disparity values
demonstrate an agreement between our calibration method
and others that utilize greater information. The difference
in performance between the images of the two cameras can
primarily be attributed to the lower resolution of the Ikegata
IK-110, which resulted in less calibration data.

6 Discussion

With more complete amounts of edge data, there is less
reliance on the prior model to determine a most likely re-
sponse function for the given data. In contrast to the color-
based method of [7] in which the completeness of data is
related to its coverage of the 3D RGB space, our grayscale
method needs data that extends over a 1D grayscale range.
Greater quantities of data in the range, however, are needed
for more statistical robustness.

For a single grayscale image, a potential method for ob-
taining a broader range and greater quantity of histogram
data is to more aggressively acquire edge regions, such as
by allowing variation in window sizes and less restrictive
selection thresholds. This is a direction we plan to investi-
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Figure 6. Results for a representative test image from a Canon EOS-1Ds camera with output converted to grayscale. (a) Test
image; (b) Detected edge patches; (c) Grayscale ranges of edge regions; (d) Inverse response functions.

gate in future work. The amount of histogram data can also
be increased by collecting edge regions from additional im-
ages captured by the same camera, even if the images are
not registered or otherwise corresponded.

When the histograms of an image collectively span only
a narrow range of intensities, the estimated inverse response
function may have significant inaccuracies for graylevels
outside this range. Within this range, calibrated intensi-
ties should nevertheless be linearly related to irradiance,
since processed edges have uniform histograms. Because
the valid range is known, we can determine to which image
areas this partial calibration can be applied. In some cases,
the complete image or entire object of interest could consist
of intensities within the valid range, resulting in sufficient
calibration.

Besides the appearance of two regions in a pixel area,
defocus and motion blur are other possible causes of irra-
diance blending at edges. For a given edge region, as long
as the point spread function of such blur encompasses at
most two different scene regions of uniform intensity, the
blending will remain a linear combination of irradiances as
assumed in our technique. The acceptance or rejection of
a window with blur is resolved by the selection criteria de-
scribed in Section 3.

Some cameras may employ certain postprocessing oper-
ations, such as sharpening, which could alter the intensity
distributions at edges. Since our edge selection technique
attempts to exclude anomalous histograms, our method ide-
ally will not locate any valid edge regions and consequently
not calibrate such images. To better ensure the rejection of
invalid edge regions, our technique for identifying incon-
gruous histograms could be enhanced by more precise re-
jection criteria, such as using the DoRF database to bound
the space of valid intensity histograms. Another potential
cue for discerning an outlier histogram is that its shape may
not transform in concordance with other histograms that
overlap it in grayscale range. This remains an area for future
investigation.

With the proposed statistical histogram measure for eval-
uating inverse response functions, radiometric calibration of
grayscale images has been made possible in numerous in-
stances where the camera is unknown. Although the method
for single color images [7] is not applicable to grayscale im-
ages, our histogram approach may conversely be used in in-
dividual RGB channels of color images. Determining how
histogram information may enhance color-based radiomet-
ric calibration is another interesting direction that we plan
to examine.
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Figure 7. Results for a representative test image from an Ikegata IK-110 grayscale video camera. (a) Test image; (b) Detected
edge patches; (c) Grayscale ranges of edge regions; (d) Inverse response functions.
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