
Solving Graph Isomorphism using
Parameterized Matching

Juan Mendivelso1, Sunghwan Kim2, Sameh Elnikety3, Yuxiong He3,
Seung-won Hwang2, and Yoan Pinzón1

1 Universidad Nacional de Colombia, Colombia
2 POSTECH, Republic of Korea

3 Microsoft Research, Redmond, WA, USA

Abstract. We propose a new approach to solve graph isomorphism us-
ing parameterized matching. To find isomorphism between two graphs,
one graph is linearized, i.e., represented as a graph walk that covers all
nodes and edges such that each element is represented by a parameter.
Next, we match the graph linearization on the second graph, searching
for a bijective function that maps each element of the first graph to an
element of the second graph. We develop an efficient linearization algo-
rithm that generates short linearization with an approximation guaran-
tee, and develop a graph matching algorithm. We evaluate our approach
experimentally on graphs of different types and sizes, and compare to
the performance of VF2, which is a prominent algorithm for graph iso-
morphism. Our empirical measurements show that graph linearization
finds a matching graph faster than VF2 in many cases because of better
pruning of the search space.

1 Introduction and Related Work

Graphs are widely used in many application domains, and graph isomorphism
is a fundamental problem that appears in graph processing techniques of many
applications including pattern analysis, pattern recognition and computer vision
as discussed in a recent survey [8]. Graph isomorphism is a challenging problem:
Given two graphs, we search for a bijective mapping from each element of the
first graph to an element of the second graph such that both data and structural
properties match. Data properties include node and edge attributes and types,
and structural properties maintain the adjacency relations.

A naive solution could search for all possible mappings, facing an exponen-
tial search space. Surprisingly, the exact complexity of graph isomorphism is not
determined yet [9], but likely to be NP-Complete. Notice however, graph sub-
isomorphism, which is a closely related but a different problem, is NP-Complete
[9]. Existing algorithms for graph isomorphism include Nauty Algorithm [19],
Ullmann Algorithm [22] and VF2, a more recent algorithm [9]. All these algo-
rithms have exponential worst case performance (since isomorphism is a hard
problem). Except for some easy cases, solving isomorphism generally takes much
longer time if there is no match, since all possible mappings are progressively

2 J. Mendivelso et al.

searched until shown not to lead to an isomorphism. Several heuristics, how-
ever, are employed to find likely mappings quickly. A good algorithm for graph
isomorphism should find isomorphic graphs quickly in many cases.

In this paper we apply parameterized matching to solve graph isomorphism.
Parameterized matching [4] was introduced to efficiently track down duplicate
code in large software systems. It determines if two strings have the same struc-
ture. Specifically, two equal-length strings parameterized-match if there exists
a bijective function f for which every text symbol in one string is equal to the
image under f of the corresponding symbol in the other string. Brenda Baker
[4] introduced this problem in 1993, and research work [1–3, 5–7, 10, 12–17, 20,
21] extends parameterized matching. A survey on parameterized matching is
presented in [18].

Our approach to solve graph isomorphism has two main steps, lineariza-
tion, and matching. First, in the linearization step, one of the graphs is repre-
sented as a graph walk that visits each node and edge, such that each element
is represented as a parameter. This linear sequence is used in the second step
for matching, which parameterized-matches the graph linearization against the
other graph, to search for mapping.

This approach allows us to incorporate optimizations for both linearization
and parameterized matching steps. Although we focus on presenting and evalu-
ating the fundamental approach, we point out several attractive features of this
approach. For example, this approach supports general graph models, such as at-
tributed multi-graphs (in which nodes and edges may have arbitrary attributes,
and several edges may connect two nodes). The graph statistics, such as node
degree distribution and histograms of attribute values can be easily integrated in
the linearization step to provide better linearization. The matching algorithm is
embarrassingly parallel, enabling efficient implementation on multi-core machine
and distributed frameworks.

We present the algorithms, correctness and complexity analysis of these two
steps and implement them for experimental evaluation using graph of several
types and sizes. We also compare to an optimized implementation of VF2, which
is one of most widely used algorithms for graph isomorphism. Our empirical re-
sults show that in many cases, the graph linearization approach provides shorter
response times, and the improvements increase with the graph size.

Our contributions are the following: (1) We propose a new approach to graph
isomorphism using parameterized matching (Section 3). (2) We develop an effi-
cient linearization algorithm to represent a graph as a parameterized walk, and
we establish a bound on the linearization length (Section 4). (3) We introduce
an algorithm to parameterized-match the linearization on graph (Section 5). (4)
We evaluate our approach experimentally (Section 6).

2 Preliminaries

This section defines the graph isomorphism problem and points out its similarity
to parameterized matching in strings. In this paper, we consider multigraphs.

Solving Graph Isomorphism using Parameterized Matching 3

A multigraph G(V,E) is comprised of a set of vertices V , n = |V |, and a
set of undirected edges E ⊆ V × V , m = |E|, where multiple edges between
two distinct vertices and self loops are permitted. We distinguish the edges that
have the same end vertices by the notation of the edge; for example, e = (u, v)
and e′ = (u, v). Let EG = V ∪ E denote the set of graph elements of G, i.e. the
set of vertices and edges in G. Also, let u.degree denote the number of adjacent
edges that vertex u ∈ V has. In this paper, we consider undirected multigraphs;
however our algorithms can be easily extended to support directed multigraphs.
Next we define the Graph Isomorphism problem.

Problem 1 (Graph Isomorphism). Let G1(V1, E1) and G2(V2, E2) be two multi-
graphs such that n = |V1| = |V2| and m = |E1| = |E2|. The graph isomor-
phism problem determines whether there exists a bijective mapping function
f : EG1 → EG2 , such that ∀u,v∈V1 , e = (u, v) ∈ E1 ⇐⇒ f(u), f(v) ∈ V2 ∧ f(e) =
(f(u), f(v)) ∈ E2.

V1 E1 A B C D E e1 e2 e3 e4 e5 e6

X Y Z W Sf1
e1 e2 e3 e4 e5 e6
' ' ' ' ' '

U

X Y Z W Sf2
e1 e2 e3 e5 e4 e6
' ' ' ' ' '

(c)

e1
e2

e3

e4 e5

e6

A

B C

D

E

V1G1 E1(,) V2G2 E2(,)

(a) (b)

X

Y Z

W

S

e1

e2'
'

e6
'

e5
'

e4
'

e3
'

Fig. 1. Isomorphism example: the multigraphs presented in (a) and (b) are isomorphic;
the functions that define the isomorphism are presented in (c). The difference between
f1 and f2 is that f1(e4) = e′4 and f1(e5) = e′5 while f2(e4) = e′5 and f2(e5) = e′4.

For example, the graphs in Figure 1(a,b) are isomorphic; furthermore there
are two possible mapping functions that define the isomorphism (see Figure 1(c)).
Notice that the graph isomorphism determines whether the topological struc-
tures of two multigraphs are the same. It is very similar to what parameterized
matching does with strings: checking whether two strings have the same struc-
ture. Next we define parameterized matching on strings:

Definition 1. Let X = X1...` and Y = Y1...` be two equal-length strings defined
over alphabet Σ. Each symbol in the alphabet is called a parameter. Strings X and
Y are said to parameterized-match iff there exists a bijective function f : Σ → Σ
such that f(Xi) = Yi, for all 1 ≤ i ≤ `.

4 J. Mendivelso et al.

For example, let X = abacab and Y = bcbabc be two strings defined over
Σ = {a, b, c}. They parameterized-match as X is equal to Y by means of f :
(a, b, c) → (b, c, a). In Section 3.1, we define parameterized matching for walks
to solve the graph isomorphism problem.

3 Graph Linearization

Our approach for solving graph isomorphism consists of two main steps: (i)
linearizingG1 into a walk p1...`; and (ii) exploring all the walks inG2 to determine
whether there is one that parameterized matches p1...`. In this section, we define
graph linearization and parameterized matching on graph walks (Section 3.1).
Then, we discuss characteristics and algorithms for linearization (Section 3.2).

3.1 Definition of Graph Linearization

Definition 2 (Linearization). Let G(V,E) be a connected undirected multi-
graph. A walk p = p1...` of vertices and edges is a linearization of G iff:

1. pi is a vertex v ∈ V if i is odd, 1 ≤ i ≤ `.
2. pi is an edge e ∈ E if i is even, 1 ≤ i ≤ `, such that e = (pi−1, pi+1).
3. Each vertex v ∈ V and each edge e ∈ E appears at least once in p.

Our motivation for defining graph linearization is to represent the topology of
a multigraph through a walk. Specifically, the linearization p of G is a walk that
represents all its adjacency relation, which we use to solve the graph isomorphism
problem by comparing walks instead of multigraphs. For this purpose, we define
parameterized matching on walks as follows:

Definition 3 (Parameterized Matching on Graph Walks). Let G1(V1, E1)
and G2(V2, E2) be two connected undirected multigraphs. Also, let V ′1 ⊆ V1 and
E′1 ⊆ E1 be subsets of vertices and edges in G1; similarly, V ′2 ⊆ V2 and E′2 ⊆ E2

are subsets of vertices and edges in G2. Consider the walk p1...k in G1 and the
walk q1...k in G2. The walk p1...k is said to parameterized-match the walk q1...k if
and only if there exists a bijective function f : EG1 → EG2 such that qi = f(pi)
for 1 ≤ i ≤ k.

The core idea of using parameterized matching to solve the graph isomor-
phism problem is as follows. Let p be a linearization of G1. Recall that, p repre-
sents the topology of G1. Thus, if a walk q in G2 parameterized-matches p, then
p and q have the same topology. Furthermore, as q represents G2, we conclude
that G1 and G2 are isomorphic. This is formally presented in the next theorem:

Theorem 1. Let G1(V1, E1) and G2(V2, E2) be two connected undirected multi-
graphs such that n = |V1| = |V2| and m = |E1| = |E2|. Also, let p1...` be the
linearization of G1. Then, G1 and G2 are isomorphic if and only if there exists
a walk q1...` in G2 such that p1...` parameterized-matches q1...`.

Solving Graph Isomorphism using Parameterized Matching 5

3.2 Characteristics and Algorithms for Graph Linearization

There may be many linearizations that represent the same graph. However, a
compact representation is preferable. For solving graph isomorphism, the length
of the linearization is an important measure on the matching time. This is be-
cause a shorter linearization often leads to a smaller cost at the matching stage.
Next, we define length-optimal linearization.

Definition 4 (Length-Optimal Linearization). The linearization p = p1...`
of a connected undirected multigraph is length-optimal if the length of p, i.e. `,
is minimum.

The Graph Linearization problem is very similar to the Chinese Postman
Problem (CPP). CPP finds a walk that visits all the edges (and all the vertices)
in the multigraph at least once; the only difference is that Graph Linearization
does not require the starting vertex to be the same final vertex. In [11], an
O(n3 +m2) algorithm for the CPP was proposed. We can adapt this algorithm
to calculate a length-optimal linearization. However, for large multigraphs, it
is desirable to have algorithms with lower time complexity even if they do not
produce length-optimal linearizations. As an attractive trade-off between length-
optimality and efficiency, we propose a greedy approximation algorithm with an
approximation guarantee.

4 Graph Linearization Algorithm - GLA

This section presents the GLA or Graph Linearization Algorithm. First, we
describe the key ideas of the algorithm in Section 4.1; then we go through the
details in Section 4.2. In Section 4.3 we present an upper bound for the length of
GLA linearizations. Finally, in Section 4.4, we present the complexity analysis.

4.1 Key Ideas

One of the challenges of linearization algorithms is visiting all the edges with
short linearization length. To address the challenge, we develop three heuristics:
(1) the traversal starts from the vertex with the lowest degree; (2) the unexplored
edges that lead to already explored vertices are visited before the ones that
lead to unexplored vertices; and (3) the edges that lead to unexplored vertices
are considered sorted, in ascending order, on the number of unexplored edges
they have. Heuristics (1) and (3) aim to put the vertices that are close to be
covered in the top levels of the DFS tree. Furthermore, heuristic (2) aims to
cover the vertices in the highest levels of the DFS tree at an early stage. The
three heuristics make the traversal explore one region of the multigraph before
visiting another one; then, the produced linearization is shorter.

The proposed linearization approach also allows us to incorporate optimiza-
tions for both linearization and parameterized matching steps. For instance, the
matching time will not only depend on the length of the linearization, but also

6 J. Mendivelso et al.

on the order of comparisons. Specifically, the graph statistics of the multigraphs
can be used to produce a linearization that prunes the search space during the
matching phase. For example, if the frequency of some vertices of a certain de-
gree (or a certain attribute in attributed graphs) is low, it would be appropriate
to start the linearization from such vertices. However, for clarity, in this paper,
we focus on the fundamental approach only.

4.2 Algorithm

The pseudocode of the Graph Linearization Algorithm (GLA) is listed in Fig-
ures 2 and 3. The linearization produced by GLA for the graph presented in
Figure 1(a) is Ae1Be3Ce4De5Ce5De2 Be2De6E; its length is 17.

Algorithm 1: GLA Algorithm

Input: G(V,E) Output: p

1. for every e ∈ E do e.Explored← false
2. for every v ∈ V do
3. v.Explored← false
4. S ← {(u, v) | v ∈ V ∧ (u, v) ∈ E}
5. v.NumUnexploredEdges← |S|
6. choose u ∈ VP with min(u.NumUnexploredEdges)
7. p← 〈〉, unexplGE ← |V |+ |E|
8. TraverseGraph(G, u, p, unexplGE)
9. return p

Fig. 2. GLA Algorithm.

4.3 Length of GLA Linearization

Theorem 2 shows that given the multigraph G = (V,E), the length of the walk
generated by GLA is at most 2 times the length of an optimal linearization.
Therefore, the length produced by GLA is asympotically optimal.

Theorem 2. GLA is 2-approximate with respect to the length of the length-
optimal linearization.

This theorem is based on the fact that each edge in the multigraph G appears
at most twice in the linearization p = p1...` generated by GLA. Then, ` is
compared to a lower bound that visits each edge only once to show worst-case
approximation ratio. However, even an optimal linearization may not achieve
the lower bound for many graph structures. Thus, for average cases in practice,
GLA linearization is much closer to the optimal.

Solving Graph Isomorphism using Parameterized Matching 7

Algorithm 2: TraverseGraph Procedure

Input: G(V,E), u, p, unexplGE

1. p.Add(u), u.Explored← true, unexplGE- -
2. for every e ∈ E such that e = (u, v) do
3. if !e.Explored ∧ v.Explored then
4. p.Add(e), e.Explored← true, unexplGE- -, p.Add(v)
5. u.NumUnexplEdges- -, v.NumUnexplEdges- -
6. if unexplGE > 0 do
7. p.Add(e), p.Add(u)
8. while there are unexplored edges e = (u, v)
9. choose e with min(v.NumUnexploredEdges)
10. p.Add(e), e.Explored← true, unexplGE- -
11. u.NumUnexplEdges- -, v.NumUnexplEdges- -
12. TraverseGraph(G, v, p, unexplGE)
13. if unexplGE = 0 then break
14. p.Add(e), p.Add(u)

Fig. 3. TraverseGraph Procedure.

4.4 Complexity Analysis

The complexity of GLA is dominated by the walk traversed (line 8, Figure 2)
which corresponds to the linearization. Notice that p has at most 2m edges
and 2m + 1 vertices. Each insertion takes constant time as it is always done at
the end of p. But when a vertex is inserted for the first time, it is necessary
to consider the unexplored adjacent edges e that lead to unexplored vertices v
sorted on v.NumUnexplEdges (lines 8 − 9, Figure 3). This sorting operation
takes O(d lg d), where d is the maximum degree of the vertices in G1; specifically
d = maxv∈V1

v.degree. Thus, the time complexity of GLA is O(2m + (2m +
1)(d lg d)) = O(dm lg d).

5 Matching a Linearized Graph

The Parameterized Matching on multi-Graphs (PMG) algorithm uses a lin-
earization of G1(V1, E1), denoted as p = p1...`, and matches it against G2(V2, E2)
to determine whether G1 and G2 are isomorphic by using Theorem 1.

5.1 Key Ideas

PMG considers all the possible injective functions f : EG1 → EG2 to determine
whether there is mapping with two properties: (i) f is bijective; and (ii) there
exists a walk q1...` in G2 for which qi = f(pi) (i.e. q parameterized-matches p).
These possible injective functions are explored by traversing p and G2 simul-
taneously; specifically, a graph element pi is compared to a graph element ge
in G2 to determine whether an injective mapping is possible. We progressively

8 J. Mendivelso et al.

extend a successful mapping by considering pi+1 and an adjacent graph element
of ge. The graph elements of G2 are traversed in a depth-first manner while p
is traversed from left to right. Let us consider the DFS tree that represents the
traversal of G2. Then, the idea of this traversal of G2 is considering the possible
injective mappings by attempting to set f(pi) = ge where ge ∈ EG2

is a graph
element at level i of the DFS tree. Notice that the walk from the root to a
leaf in the DFS tree parameterized-matches p1...` under f ; hence G1 and G2 are
isomorphic.

Next, we show our heuristics to prune the search space. At each step of the
process, a vertex u ∈ V2 and a vertex in pi are compared. Let us say that we
set f(pi) = u. In order to extend the match, we use vertex degrees and previous
assignments in f to prune the search space. Specifically, we consider two cases:

Case 1: Vertex pi+2 is unassigned. We consider all the possible assignments
f(pi+1) = e and f(pi+2) = v for edges e = (u, v) ∈ E2 such that: (i) both e and
v are unassigned; and (ii) v.degree = pi+2.degree. Condition (i) is to guarantee
that f is injective; condition (ii) is a pruning criterion based on that fact that, if
G1 and G2 are isomorphic, then analogous vertices must have the same degree.
Notice that if pi+2 is unassigned, pi+1 is unassigned as well; this is because the
assignment of an edge in p is done at the same time (or after) the assignment of
its end vertices. The process continues by considering pi+2 and each v.

Case 2: Vertex pi+2 is assigned to v ∈ V2. There are two sub-cases. (a) Edge
pi+1 is already assigned: it is not necessary to check adjacency as this was done
when the mapping was set. We continue by considering pi+2 and v. (b) Edge pi+1

is unassigned: the algorithm considers all the possible assignments f(pi+1) = e
for the unassigned edges e = (u, v). The process continues at pi+2 and v.

If the algorithm reaches a successful assignment for p`, then the algorithm
reports that the multigraphs are isomorphic.

5.2 Pseudocode

Figure 4 lists the pseudocode of PMG. The mapping function is represented as
the array f . On the other hand, boolean array g indicates if each graph element
in EG2 is already assigned to a graph element in EG1 (through function f). When
we run PMG for G2 and the linearization p = Ae1Be3Ce4De5Ce5De2Be2De6E
of G1, the match is returned when any of the following walks are traversed: q1 =
Xe′1Y e

′
3Ze

′
4We′5Ze

′
5We′2Y e

′
2We′6S or q2 = Xe′1Y e

′
3Ze

′
5We′4Ze

′
4We′2Y e

′
2We′6S.

Notice that both q1 and q2 parameterized-match p. The mapping functions of
these matches correspond to the functions f1 and f2 presented in Figure 1(c).

5.3 Complexity Analysis

The time complexity of PMG is given by the number of executions of the re-
cursive procedure ExtendMatch; each execution requires constant time. This
number is equal to the number of vertices and edges in the DFS search trees.
As the number of edges in a DFS tree is equivalent to the number of vertices —
each vertex, except the root, is associated to an edge that leads to its parent,

Solving Graph Isomorphism using Parameterized Matching 9

Algorithm 3: PMG Algorithm

Input: G1(V1, E1), G2(V2, E2) Output: true/false

1. p = GLA(G1)
2. for every ge ∈ (V1 ∪ E1) do f [ge]← undef
3. for every ge ∈ (V2 ∪ E2) do g[ge]← false
4. for every u ∈ V2 do
5. if u.degree = p1.degree
6. f ′ ← copyOf(f), f ′[p1]← u
7. g′ ← copyOf(g), g′[u]← true
8. if ExtendMatch(u, p, 1, f ′, g′, G2) = true
9. return true
10. return false

Fig. 4. PMG Algorithm.

Algorithm 4: ExtendMatch Algorithm

Input: u, p = p1...`, i, f, g,G2(V2, E2) Output: true/false

1. if i = ` then return true
2. if f [pi+2] = undef
3. for every e = (u, v) ∈ E2 do
4. if g[v] = false and g[e] = false and v.degree = pi+2.degree
5. f ′ ← copyOf(f), f ′[pi+1]← e, f ′[pi+2]← v
6. g′ ← copyOf(g), g′[e]← true, g′[v]← true
7. if ExtendMatch(v, p, i+ 2, f ′, g′, G2) = true
8. return true
9. else
10. v = f [pi+2]
11. if pi+1 = undef
12. for every e = (u, v) ∈ E2 such that g[e] = false
13. f ′ ← copyOf(f), f ′[pi+1]← e
14. g′ ← copyOf(g), g′[e]← true
15. if ExtendMatch(v, p, i+ 2, f ′, g′, G2) = true
16. return true
17. else
18. if ExtendMatch(v, p, i+ 2, f, g,G2) = true
19. return true
20. return false

Fig. 5. ExtendMatch Algorithm.

the asymptotic behavior of PMG depends on the number of vertices in the DFS
trees. Next theorem gives an upper bound for this number.

10 J. Mendivelso et al.

Theorem 3. Let p1...` be a linearization of G1. Also, let d be the maximum
degree of the vertices in G2; specifically d = maxv∈V1

v.degree. The DFS tree
that represents the traversal of G2 done by PMG has at most O(db`/2c) vertices.

This theorem is based on the following facts: (i) there are O(b`/2c) branching
vertices in the DFS search tree associated to the vertices in the linearization
p = p1...`; and (ii) the branching factor for each of such vertices in the search tree
is O(d). As a DFS tree starts at each vertex in G2, the total number of vertices
visited, and hence the time complexity of PMG, is O(ndb`/2c). Note that if G2

is complete, i.e., d = n− 1, the time complexity is O(n(n− 1)b`/2c) = O(nd`/2e).
However, it is important to remark that Theorem 3 gives an upper bound

for the worst-case complexity. It assumes that, at every level of vertices, all the
possible neighbors are explored. The average-case situations in practice are often
not that “bad” because (i) when a vertex pi has already been assigned, only such
assigned vertex is considered; and (ii) when the multigraph has varied vertex
degrees, the pruning criterion highly reduces the number of adjacent vertex to
be visited.

6 Experimental Evalution

We assess the performance of our proposed approach experimentally. We imple-
ment the linearization and the matching algorithms in C#. We employ a set of
synthetic graphs generated for benchmarking. We compare our approach to VF2,
using an optimized implementation from the networkX library 1. All evaluations
are performed on a server running under a Windows platform on a 3.40GHz
CPU with 16GB memory.

For graph generation, we deliberately avoid the “trivial cases”. For example,
consider a graph where vertex vi is connected to v1, . . . , vi−1. As the degree
of each node is unique, testing isomorphism can be done trivially by a simple
heuristic like sorting nodes by degree. In contrast, we consider cases where no
such simple heuristic wins. Graphs where every node has the identical degree
would much more challenging in that sense.

Meanwhile, we also avoid topologies that are always isomorphic, such as a
grid or a complete graph. For this reason, we generate random graph pairs of
identical-degree nodes. As the complexity of isomorphism testing algorithm is
reported to vary significantly over degree, from O(n2) to O(nn!) [9], we consider
both low- and high-degree cases to evaluate algorithms in a wide spectrum of
settings. The lower end of this spectrum is observed when the matching graphs
are found early in a sparse graph, while the opposite case of dense graphs often
leads to long running times. More specifically, we generate sparse and dense
identical-degree graphs as follow: 1-Sparse: We generate a random graph G
where every node has degree three, with 3N total edges for N nodes. We first
build a random binary tree with N − 1 edges. Then, the nodes with the degree

1 http://networkx.github.io

Solving Graph Isomorphism using Parameterized Matching 11

less than three connect to another such node chosen at random. 2-Dense: We
generate graph G′ by subtracting G from a complete graph. Every node of G
has the same degree of N − 4.

In each setting, we vary the number of nodes from 16 to 256, and evaluate
the response time of GLA (our proposed approach) and VF2 (baseline). For each
point in the figures, we randomly generate 45 graphs and report the median re-
sponse time. We choose median response time as our performance metric because
the running time on different graphs significantly varies over graph complexity
(as discussed above) while the optimization margin is narrow for easy cases and
hard extremes. Our target problems are thus neither of these, and using the
average or min/max as the main performance metric would bias the results to
represent either extreme. In contrast, median would filter out extreme results.

64 128 192 256
0

50

100

150

200

250

Number of Nodes

M
ed

ia
n

of
 R

es
po

ns
e

T
im

e(
m

s)

GLA
VF2

(a) Sparse median response time.

64 128 192 256
0

1000

2000

3000

4000

Number of Nodes

M
ed

ia
n

of
 R

es
po

ns
e

T
im

e(
m

s)

GLA
VF2

(b) Dense median response time.

Fig. 6. Response time of GLA and VF2 on sparse and dense graphs.

Figure 6(a) and (b) show the results for Sparse and Dense respectively. The
X-axis is the number of nodes (in log scale) and Y -axis is the median response
time in milliseconds. Note the two graphs have different scales, and number of
edges is linear with the number of nodes for sparse graphs and quadratic for
dense graphs. In Figure 6(a), the median running time of GLA remains more or
less constant to 10 milliseconds, despite the increase in graph size. As a result,
when v = 256, GLA outperforms VF2 by an order of magnitude. In Figure 6(b),
we observe a consistent trend, except that the performance gap is larger. In
particular, for N = 256, GLA is faster by two orders of magnitude. These figures
show that GLA has low response time, shorter than VF2, by effectively pruning
the notoriously large search space, guided by linearization rules leveraging node
degree and exploration history.

7 Conclusions

This paper presents a novel approach to solve graph isomorphism. The key idea
is to linearize one graph into a parameterized sequence — a walk that covers

12 J. Mendivelso et al.

every node and edge — and parameterized-match the linearization on the second
graph. We develop a fast linearization algorithm that produces a short lineariza-
tion, and a parameterized matching algorithm. We implement the algorithms and
evaluate them experimentally against VF2, and observe lower response times for
sparse and dense graphs with varying sizes.

References

1. Amir, A., Aumann, Y., Cole, R., Lewenstein, M., Porat, E.: Function matching:
Algorithms, applications, and a lower bound. In: Proc. 30th International Collo-
quium on Automata, Languages and Programming (2003)

2. Amir, A., Farach, M., Muthukrishnan, S.: Alphabet dependence in parameterized
matching. Information Processing Letters 49(3), 111–115 (1994)

3. Apostolico, A., Giancarlo, R.: Periodicity and repetitions in parameterized strings.
Discrete Applied Mathematics 156(9), 1389–1398 (2008)

4. Baker, B.: A theory of parameterized pattern matching: algorithms and applica-
tions. In: Proc. 25th Annual Symposium on Theory of Computing (1993)

5. Baker, B.: Parameterized pattern matching by Boyer-Moore-type algorithms. In:
Proceedings of the sixth annual ACM-SIAM symposium on Discrete algorithms.
p. 550. Society for Industrial and Applied Mathematics (1995)

6. Baker, B.: Parameterized pattern matching: algorithms and applications. J. Com-
put. Syst. Sci. 52(1), 28–42 (1996)

7. Baker, B.: Parameterized duplication in strings: algorithms and an application to
softwaremaintenance. SIAM Journal on Computing 26(5), 1343–1362 (1997)

8. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching
in pattern recognition. International journal of pattern recognition and artificial
intelligence 18(03), 265–298 (2004)

9. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub) graph isomorphism
algorithm for matching large graphs. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 26(10), 1367–1372 (2004)

10. Du Mouza, C., Rigaux, P., Scholl, M.: Parameterized pattern queries. Data &
Knowledge Engineering 63(2), 433–456 (2007)

11. Edmonds, J., Johnson, E.L.: Matching, euler tours and the chinese postman. Math-
ematical programming 5(1), 88–124 (1973)

12. Fredriksson, K., Mozgovoy, M.: Efficient parameterized string matching. Informa-
tion Processing Letters 100(3), 91–96 (2006)

13. Hazay, C.: Parameterized matching. Master’s thesis, Bar-Ilan University (2004)
14. Hazay, C., Lewenstein, M., Sokol, D.: Approximate parameterized matching. ACM

Transactions on Algorithms 3(3), 29 (2007)
15. Hazay, C., Lewenstein, M., Tsur, D.: Two dimensional parameterized matching.

In: CPM. pp. 266–279 (2005)
16. Kosaraju, S.: Faster algorithms for the construction of parameterized suffix trees.

In: Proceedings of the 36th Annual Symposium on Foundations of Computer Sci-
ence. IEEE Computer Society Washington, DC, USA (1995)

17. Lee, I., Mendivelso, J., Pinzón, Y.J.: δγ—parameterized matching. In: Proceed-
ings of the 15th International Symposium on String Processing and Information
Retrieval. pp. 236–248. Springer-Verlag (2008)

18. Lewenstein, M.: Parameterized matching. In: Encyclopedia of Algorithms. Springer
(2008)

19. McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45
(1981)

20. Mendivelso, J., Lee, I., Pinzón, Y.: Approximate function matching under δ-and
γ-distances. In: String Processing and Information Retrieval. pp. 348–359. Springer
(2012)

21. Salmela, L., Tarhio, J.: Sublinear algorithms for parameterized matching. In: Proc.
17th Annual Symposium on Combinatorial Pattern Matching (2006)

22. Ullmann, J.R.: An algorithm for subgraph isomorphism. Journal of the ACM
(JACM) 23(1), 31–42 (1976)

