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Abstract– We present DagPS, a scheduler that improves clus-
ter utilization and job completion times by packing tasks
with multi-resource requirements and inter-dependencies.
While the underlying scheduling problem is intractable in
general, DagPS is nearly optimal on the job DAGs that appear
in production clusters at a large enterprise. Our key insight
is that carefully handling the long-running tasks and those
with tough-to-pack resource requirements will lead to good
schedules for DAGs. However, which subset of tasks to treat
carefully is a priori unclear. DagPS oòers a novel search pro-
cedure that evaluates various possibilities and outputs a valid
schedule. An online component enforces the schedules de-
sired by the various jobs running on the cluster. In addition,
it packs tasks and, for any desired fairness scheme, guarantees
bounded unfairness. We evaluate DagPS on a 200 server clus-
ter using traces of over 20,000 DAGs collected from a large
production cluster. Relative to the state-of-the art schedulers,
DagPS speeds up half of the jobs by over 30%.

1. INTRODUCTION
DAGs (directed acyclic graphs) are a powerfully general

abstraction for scheduling problems. Scheduling network
transfers of a multi-way join or the work in a geo-distributed
analytics job and many others can be represented as DAGs.
However, scheduling even one DAG is known to be an NP-
hard problem [52, 53].
Consequently, existing work focuses on special cases of

the DAG scheduling problem using simplifying assumptions
such as: ignore dependencies, only consider chains, assume
only two types of resources or only one machine or that the
vertices have similar resource requirements [18, 20, 21, 35, 48,
60, 66]. However, the assumptions that underlie these ap-
proaches o�en do not hold in practical settings, motivating
us to take a fresh look at this problem.
We illustrate the challenges in the context of job DAGs in

data-analytics clusters. Here, each DAG vertex represents a
computational task and edges encode input-output depen-
dencies. Programmingmodels such as SparkSQL, Dryad and
Tez [3, 19, 42] lead to jobDAGs that violatemany of the above
assumptions. Traces from a large cluster reveal that (a) DAGs
have complex structures with the median job having a depth
of seven and a thousand tasks, (b) there is substantial vari-
ation in compute, memory, network and disk usages across
tasks (stdev./avg in requirements is nearly 1), (c) task run-
times range from sub-second to hundreds of seconds, and (d)
clusters suòer from resource fragmentation across machines.

_e net eòect of these challenges, based on our analysis, is
that the completion times of jobs in this production cluster
can be improved by 50% for half the DAGs.

_e problem is important because data-analytics clusters
run thousands of mission critical jobs each day in enter-
prises and in the cloud [1, 10]. Even modest improvements
in job throughput signiûcantly improves the ROI (return-
on-investment) of these clusters; and quicker job completion
reduces the lag between data collection and decisions (i.e.,
“time to insight”) which potentially increases revenue [61].

To identify a good schedule for one DAG, we observe
that the pathologically bad schedules in today’s approaches
mostly arise due to these reasons: (a) long-running tasks have
no other work to overlap with them and (b) the tasks that are
runnable do not pack well with each other. Our core idea,
in response, is rather simple: identify the potentially trou-
blesome tasks, such as those that run for a very long time or
are hard to pack, and place them ûrst on a virtual resource-
time space. _is space would have d + 1 dimensions when
tasks require d resources; the last dimension being time. Our
claim is that placing the troublesome tasks ûrst leads to a
good schedule since the remaining tasks can be placed into
resultant holes in this space.

Unfortunately, scheduling one DAG well does not suõce.
Production cluster schedulers have many concurrent jobs,
online arrivals and short-lived tasks [8, 38, 56, 62]. Together,
these impose a strict time-budget on scheduling. Also, shar-
ing criteria such as fairness have to be addressed during
scheduling. Hence, production clusters are forced to use sim-
ple, online heuristics.

We ask whether it is possible to eõciently schedule com-
plex DAGs while retaining the advantageous properties of
today’s production schedulers such as reacting in an online
manner, considering multiple objectives etc.

To this end, we design a new cluster scheduler DagPS. At
job submission time or soon therea�er, DagPS builds a pre-
ferred schedule for a single job DAG by placing the trou-
blesome tasks ûrst. DagPS solves two key challenges in re-
alizing this idea: (1) the best choice of troublesome tasks is
intractable to compute and (2) dead-ends may arise because
tasks are placed out-of-order (e.g., troublesome go ûrst) and
it is apriori unclear howmuch slack space should be set aside.
DagPS employs a performant search procedure to address the
ûrst challenge and has a placement procedure that provably
avoids dead-ends for the second challenge. Figure 1 shows an
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Figure 1: Shows steps taken byDagPS from aDAGon the le� to its sched-
ule on the right. Troublesome tasks T (in red) are placed ûrst. _e re-
maining tasks (parents P, children C and other O) are placed on top of T in
a careful order to ensure compactness and respect dependencies.

example.
_e schedules constructed for each DAG are passed on to

a second online component of DagPS which coordinates be-
tween the various DAGs running in the cluster and also rec-
onciles between their multiple, potentially discordant, objec-
tives. For example, a fairness scheme such as DRF may re-
quire a certain job to get resources next, but multi-resource
packing–which we use to reduce resource fragmentation–or
the preferred schedules above may indicate that some other
task should be picked next. Our reconciliation heuristic, col-
loquially, attempts to follow the majority; that is it can vio-
late an objective, say fairness, when multiple other objectives
counterweight it. However, to maintain predictable perfor-
mance, our reconciliation heuristic limits maximum unfair-
ness to an operator-conûgured threshold.
We have implemented the two components of DagPS in

Apache YARN and Tez and have experimented with jobs
fromTPC-DS, TPC-Hand other benchmarks on a 200 server
cluster. Further, we also evaluate DagPS in simulations on
20,000 DAGs from a production cluster.

To summarize, we make theoretical as well as practical
contributions in this work. Our key contributions are:

● A characterization of the DAGs seen in production at a
large enterprise and an analysis of the performance of
various DAG scheduling algorithms (§2).

● A novel DAG scheduler that combines multi-resource
packing and dependency awareness (§4).

● An online scheduler that mimics the preferred sched-
ules for all the jobs on the cluster while bounding un-
fairness (§5) for many models of fairness [7, 13, 33].

● A new lower bound on the completion time of a
DAG (§6). Using this we show that the schedules built
by DagPS’s oøine component are within 1.04 times OPT
for half of the production DAGs; three quarters are
within 1.13 times and the worst is 1.75 times OPT.

● An implementation that we intend to release as open
source (§7).

● Our experiments show that DagPS improves the com-
pletion time of half of the DAGs by 19 − 31%; the num-
ber varies across benchmarks. _e improvement for
production DAGs is at the high end of the range be-
cause these DAGs are more complex and have diverse
resource demands.

Lastly, while our work is presented in the context of cluster
scheduling, as noted above, similar DAG scheduling prob-
lems arise in other domains. We oòer early results in Sec-

Technique Execution Order Time Worst-case
OPT {t1 , t3} → {t0 , t2 , t4} → T −
CPSched t0 → t3 → t4 → t1 → t2 → 3T O(n) × OPT
Tetris t0 → t1 → t2 → t3 → t4 → 3T O(d) × OPT

Figure 2: An example DAG where Tetris [37] and Critical Path Schedul-
ing take 3× longer than the optimal algo OPT. Here, DagPS equals OPT.
Details are in §2.2. Assume ε → 0.

tion 9 fromapplyingDagPS to schedulingDAGs arising in dis-
tributed build systems [4, 34] and in request-response work-
�ows [45, 67].

2. PRIMER ON SCHEDULING JOB DAGS

2.1 Problem definition
Let each job be represented as a directed acyclic graph

G = {V , E}. Each node in V is a task with demands for vari-
ous resources. Edges in E encode precedence constraints be-
tween tasks. Many jobs can simultaneously run in a cluster.
_e cluster is a group of servers organized as per some net-
work topology.

DagPS considers task demands along four resource dimen-
sions (cores, memory, disk and network bandwidth). De-
pending on placement, tasks may need resources at more
than one machine (e.g., if input is remote) or along network
paths. _e network bottlenecks are near the edges (at the
source or destination servers and top-of-rack switches) in to-
day’s datacenter topologies [14, 16, 65, 59]. Some systems re-
quire users to specify the DAG G explicitly [2, 32, 74] whereas
others use a query optimizer to generate G [24]. Production
schedulers already allow users to specify task demands (e.g.,
[1 core, 1 GB] is the default for tasks in Hadoop 2.6). Note
that such annotation tends to be incomplete (network and
disk usage is not speciûable) and is in practice signiûcantly
overestimated since tasks that exceed their speciûed usage
will be killed. Similar to other reports [15, 23, 46], up to 40%
of the jobs in the examined cluster are recurring. For such
jobs, DagPS uses past job history to estimate task runtimes
and resource needs. For the remaining ad-hoc jobs, DagPS
uses proûles from similar jobs and adapts these proûles on-
line (see §7).

Given a set of concurrent jobs {G}, the cluster sched-
uler maps tasks on to machines while meeting resource ca-
pacity limits and dependencies between tasks. Improving
performance—measured in terms of the job throughput (or
makespan) and the average job completion time—is crucial,
while also maintaining fairness—measured in terms of how
resources are divided amongst groups of jobs per some re-
quirement (e.g., DRF or slot-fairness).

2.2 An illustrative example
We use the DAG shown in Figure 2 to illustrate the

scheduling issues. Each node represents one task: the node
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labels represent the task duration (top) and the demands for
two resources (bottom). Assume that the total resource avail-
able is 1 for both resources and let ε represent a small value.

Intuitively, a good schedule would overlap the long-
running tasks shown with a dark background. _e result-
ing optimal schedule (OPT) is shown in the table (see Fig-
ure 2). OPT overlaps the execution of all the long-running
tasks– t0 , t2 and t4– and ûnishes in T . However, such long-
running/resource intensive tasks can be present anywhere in
the DAG, and it is unlikely that greedy local schedulers can
overlap these tasks. To compare, the table also shows the
schedules generated by a typical DAG scheduler, and a state-
of-the-art packer which carefully packs tasks onto machines
to maximize resource utilization. We discuss them next.
DAG schedulers such as critical path schedul-

ing (CPSched) pick tasks along the critical path (CP)
in the DAG. _e CP for a task is the longest path from the
task to the job output. _e ûgure also shows the task execu-
tion order with CPSched.1 CPSched ignores the resources
needed by tasks and does not pack. Consequently, for this
example, CPSched performs poorly because it does not
schedule tasks that are not on the critical path ûrst (such as
t1 , t3) even though doing so reduces resource fragmentation
by overlapping the long-running tasks.

On the other hand, packers such as, Tetris [37], pack tasks
to machines by matching along multiple resource dimen-
sions. Tetris greedily picks the task with the highest value of
the dot product between task’s demand vector and the avail-
able resource vector. _e ûgure also shows the task execu-
tion order with Tetris.2 Tetris does not account for depen-
dencies. Its packing heuristic only considers the tasks that
are currently schedulable. In this example, Tetris performs
poorly because it will not choose locally inferior packing op-
tions (such as running t1 instead of t0) even when doing so
can lead to a better global packing.

DagPS achieves the optimal schedule for this example.
When searching for troublesome subsets, it will consider the
subset {t0 , t2 , t4} because these tasks run for much longer.
As shown in Figure 1, the troublesome tasks will be placed
ûrst. Since there are no dependencies among them, they will
run at the same time. _e parents ({t1 , t3}) and any children
are then placed on top; i.e., compactly before and a�er the
troublesome tasks.

2.3 Analyzing DAGs in Production
We examined the production jobs from a cluster of tens of

thousands of servers at a large enterprise. We also analyzed
jobs from a 200 server cluster that ranHive [68] jobs and jobs
from a high performance computing cluster [6].

To quantify potential gains, we compare the runtime of the
DAGs in production to three measures. _e ûrst measure,
CPLength is the duration of the DAG’s critical path. If the
1CPof t0 , t1 , t3 isT , T(1−3ε) andT(1−ε) respectively. _edemands
of these tasks ensure that they cannot run simultaneously.
2Tetris’ packing score for each task, in descending order, is
t0=t2=0.9, t1=0.85, t3=0.8 and t4=0.2.
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Gap = 1 - (Measure / DAG runtime)

Gap from NewLB
Gap from TWork
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Figure 3: CDF of gap between DAG runtime and several measures. Gap
is computed as 1 − measure

DAG runtime .

CPU Mem. Network Disk
Read Write Read Write

Enterprise:
Private Stack

0.76 1.01 1.69 7.08 1.39 1.94

Enterprise:
Hive

0.89 0.42 0.77 1.34 1.59 1.41

HPC: Con-
dor

0.53 0.80 N/A N/A 1.55 (R+W)

Table 1: Coeõcient-of-variation (= stdev./avg.) of tasks’ demands for var-
ious resource. Across three examined frameworks, tasks exhibit substan-
tial variability (CoV ∼ 1) for many resources.

available parallelism is inûnite, the DAG would ûnish within
CPLength. _e second measure, TWork, is the total work in
theDAGnormalized by the cluster share of thatDAG. If there
were no dependencies and perfect packing, aDAGwould ûn-
ish within TWork. In practice, both of these measures are
quite loose– the ûrst ignores all the work oò the critical path
and the second ignores dependencies. Hence, our third mea-
sure is a new improved lower bound NewLB that uses the spe-
ciûc structure of data-parallel DAGs. Further details are in §6
but intuitively NewLB leverages the fact that unlike random
DAGs, all the tasks in a job stage (e.g., amapor reduce or join)
have similar dependencies, durations and resource needs.
Figure 3 plots a CDF of the gap over all DAGs for these

three measures. Observe that half of the jobs have a gap of
over 70% for both CPLength and TWork. _e gap relative to
NewLB is smaller, indicating that the newer bound is tighter,
but the gap is still over 50% for half of the jobs. _at is, they
take over two times longer than they could.
A few issues are worth noting for this result. First, some

DAGs ûnish faster than their TWork and NewLB measures.
_is is because our production scheduler is work conserv-
ing and can give jobs more than their fair share. Second, we
know that jobs take longer in production because of runtime
artifacts such as task failures or stragglers [17, 50]. What frac-
tion of the gap is explained due to these reasons? When com-
puting the job completion times to use in this result, we at-
tempted to explicitly avoid these issues as follows. First, we
chose the fastest completion time from among groups of re-
lated recurring jobs. It is unlikely that every execution suf-
fers from failures. Second, we shorten the completion time
of a job by deducting all periods when the job has fewer than
10 tasks running concurrently. _is explicitly corrects for
stragglers–one or a few tasks holding up job progress. Hence,
we believe that the remaining gap is likely due to the sched-
uler’s inability to pack tasks with dependencies.

To understand the causes for the performance gap further,
we characterize the DAGs along the following dimensions:
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“Work” that is . . . Percentage of total work in the DAG
[0-20) [20-40) [40-60) [60-80) [80-100]

on CriticalPath 14.6% 13.2% 15.2% 15.3% 41.6%
“unconstrained” 15.6% 20.4% 14.2% 16.4% 33.3%
“unordered” 0 3.6% 11.8% 27.9% 56.6%

Table 2: Bucketed histogram of where the work lies in DAGs. Each entry
denotes the fraction of all DAGs that have the metric labeled on the row
in the range denoted by the column. For example, 14.6% of DAGs have
[0, 20)% of their total work on the critical path.

What do the DAGs look like? By depth, we refer to the
number of tasks on the critical path. A map-reduce job has
depth 2. We ûnd that the median DAG has depth 7. Fur-
ther, we ûnd that the median (75th percentile) task in-degree
and out-degree are 7 (48) and 1 (4) respectively. If DAGs are
chains of tasks, in- and out-degree’s will be 1. A more de-
tailed characterization of DAGs including tree widths and
path widths has been omitted for brevity. Our summary is
that the vast majority of DAGs have complex structures.

How diverse are the resource demands of tasks? Table 1
shows the coeõcient-of-variation (CoV) across tasks for var-
ious resources. We ûnd that the resource demands vary sub-
stantially. _e variability is possibly due to diòerences in
work at each task: some are compute heavy (e.g., user-deûned
code that processes videos) whereas other tasks are memory
heavy (e.g., in-memory sorts).
Where does the work lie in a DAG? We now focus on

the more important parts of each DAG– the tasks that do
more work (measured as the product of task duration and
resource needs). Let CPWork be the total work in the tasks
that lie on the critical path. From Table 2, 42% of DAGs
have CPWork above 80%. DAG-aware schedulers may do
well for such DAGs. Let UnconstrainedWork be the total
work in tasks with no parents (i.e., no dependencies). We
see that roughly 33% of theDAGs have UnconstrainedWork
above 80%. Such DAGs will beneût from packers. _e above
cases are notmutually exclusive and together account for 54%
of DAGs. For the other 46% of DAGs, neither packers nor
criticality-based schedulers may work well.

Let MaxUnorderedWork be the largest work in a set of
tasks that are neither parents nor children of each other.
Table 2 shows that 57% of DAGs have MaxUnorderedWork
above 80%. _at is, if ancestors of the unordered tasks were
scheduled appropriately, substantial gains can accrue from
packing the tasks in the maximal unordered subset.
From the above analysis, we observe that (1) production

jobs have large DAGs that are neither a bunch of unrelated
stages nor a chain of stages, and (2) a packing+dependency-
aware scheduler can oòer substantial improvements.

2.4 Analytical Results
We take a step back to oòer somemore general comments.

First, DAG schedulers have to be aware of dependencies. _at
is, considering just the runnable tasks does not suõce.

Lemma 1. Any scheduling algorithm, deterministic or ran-
domized, that does not account for the DAG structure is at
least Ω(d) times OPT where d is the number of resources.
For deterministic algorithms, the proof follows from de-

signing an adversarial DAG for any scheduler. We extend
to randomized algorithms by using Yao’s max-min princi-
ple (seeA). Lemma 1 applies to allmulti-resource packers [37,
57, 71, 72] since they ignore dependencies.

Second, and less formally, we note that schedulers have to
be aware of resource heterogeneity. Many known scheduling
algorithms have poor worst-case performance. In particular:

Lemma 2. Critical path scheduling can be Ω(n) times OPT
where n is the number of tasks in a DAG and Tetris can be
(2d − 2) times OPT.

_e proof is by designing adversarial DAGs for each sched-
uler (see B).

To place these results in context, note that d is about
4 (cores, memory, network, disk) and can be larger when
tasks require resources at other servers or on many network
links. Further, the median DAG has hundreds of tasks (n).
DagPS is close to OPT on all of the described examples. Fur-
thermore, DagPS is within 1.04 times optimal for half of the
production DAGs (estimated using our new lower bound).
Finally, we note the following:

Lemma 3. If there were no precedence constraints and tasks
were malleable, OPT is achievable by a greedy algorithm.

We say a task is malleable if assigning any (non-negative)
portion of its demand p will cause it to make progress at rate
p. In particular, tasks can be paused (p = 0) at any time
which is also referred to as tasks being preemptible. _eproof
follows by describing the simple greedy algorithm which we
omit here for brevity.

Our summary is that practical DAGs are hard to schedule
because of their complex structure as well as discretization is-
sues when tasks needmultiple resources (fragmentation, task
placement etc.)

3. NOVEL IDEAS IN DagPS
Cluster scheduling is the problem ofmatching tasks toma-

chines. Every practical scheduler today does so in an on-
line manner but has very tight timing constraints since clus-
ters have thousands of servers, many jobs each having many
pending tasks and tasks that ûnish in seconds or less [74, 8].
Given such stringent time budget, carefully considering large
DAGs seems hopeless.
As noted in §1, a key design decision in DagPS is to divide

this problem into two parts. An oøine component constructs
careful schedules for a singleDAG.We call these the preferred
schedules. A second online component enforces the preferred
schedules of the various jobs running in the cluster. We elab-
orate on each of these parts below. Figure 4 shows an exam-
ple of how the two parts may inter-operate in a YARN-style
architecture. Dividing a complex problem into parts and in-
dependently solving each part o�en leads to a sub-optimal
solution. Unfortunately, we have no guarantees for our par-
ticular division. However, it can scale to large clusters and
outperforms the state-of-art in experiments.
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Figure 4: DagPS builds schedules per DAG at job submission. _e run-
time component handles online aspects. AM and RM refer to the YARN’s
application and resource manager components.

To ûnd a compact schedule for a single DAG, our idea is to
place the troublesome tasks, i.e., those that can lead to a poor
schedule, ûrst onto a virtual space. Intuitively, thismaximizes
the likelihood that any holes, un-used parts of the resource-
time space, can be ûlled by other tasks. However, ûnding the
best choice of troublesome tasks is as hard as ûnding a good
schedule for the DAG.We use an eõcient search strategy that
mimics dynamic programming: it picks subsets that aremore
likely to be useful and avoids redundant exploration. Further,
placing troublesome tasks ûrst can lead to dead-ends. We de-
ûne dead-end to be an arrangement of a subset of the DAG
in the virtual space on which the remaining tasks cannot be
placed without violating dependencies. Our strategy is to di-
vide the DAG into subsets of tasks and place one subset at a
time. While intra-subset dependencies are trivially handled
by schedule construction, inter-subset dependencies are han-
dled by restricting the order in which the various subsets are
placed. We prove that the resultant placement has no dead-
ends.

_e online component has to co-ordinate between some
potentially discordant directives. Each job running in the
cluster oòers a preferred schedule for its tasks (constructed
as above). Fairness models such as DRF may dictate which
job (or queue) should be served next. _e set of tasks that is
advantageous for packing (e.g., maximal use of multiple re-
sources) can be diòerent from both the above choices. We of-
fer a simplemethod to reconcile these various directives. Our
idea is to compute a real-valued score for each pending task
that incorporates the above aspects so�ly. _at is, the score
trades-oò violations on some directives if the other directives
weigh strongly against it. For example, we can pick a task that
is less useful from a packing perspective if it appears much
earlier on the preferred schedule. Two key novel aspects are
judiciously overbooking resources and bounding the extent
of unfairness. Overbooking allows schedules that overload a
machine or a network link if the cost of doing so (slowing-
down of all tasks using that resource) is less than the bene-
ût (can ûnish more tasks).

_e oøine component of DagPS is described next; the on-
line component is described in Section 5.

4. SCHEDULING ONE DAG
DagPS builds the schedule for a DAG in three steps. Fig-

ure 1 illustrates these steps and Figure 5 has a simpliûed pseu-
docode. First, DagPS identiûes some troublesome tasks and
divides the DAG into four subsets (§4.1). Second, tasks in
a subset are packed greedily onto the virtual space while re-
specting dependencies (§4.2). _ird, DagPS carefully restricts

Deûnitions: In DAG G, t denotes a task and s denotes a stage, i.e., a
collection of similar tasks.
Let V denote all the stages (and hence the tasks) in G.
Let C(s,G), P(s,G),D(s,G),A(s,G), U(s,G) denote the children,
parents, descendants, ancestors and unordered neighbors of s in G.
For clarity, U(s,G) = V −A(s,G) −D(s,G) − {s}

1 Func: BuildSchedule:
2 Input: G: a DAG, m: number of machines
3 Output: An ordered list of tasks t ∈ G
4 Sbest ← ∅// best schedule for G thus far
5 foreach sets {T, O, P, C} ∈ CandidateTroublesomeTasks(G) do
6 Space S ← CreateSpace(m) //resource-time space
7 S ← PlaceTasks(T,S ,G)// trouble goes ûrst
8 S ← TrySubsetOrders({OCP, OPC, COP, POC},S ,G)
9 if S < Sbest then Sbest ← S //keep the best schedule;

10 return OrderTasks(G ,Sbest)

Figure 5: Pseudocode for constructing the schedule for a DAG. Helper
methods are in Figure 6.

the order in which diòerent subsets are placed such that the
troublesome tasks go ûrst and there are no dead-ends (§4.3).
DagPS picks the most compact schedule a�er iterating over
many choices for troublesome tasks. We discuss some en-
hancements in §4.4. _e resulting schedule is passed on to
the online component (§5).

4.1 Searching for troublesome tasks
To identify troublesome tasks, DagPS computes two scores

per task. _e ûrst, LongScore, divides the task duration by
themaximumvalue across all tasks. Tasks with a higher score
are more likely to be on the critical path and can beneût from
being placed ûrst because other work can overlap with them.
_e second, FragScore, re�ects the packability of tasks in a
stage (e.g., a map or a reduce). It is computed by dividing the
total work in a stage (TWork deûned in §2.2) by how long a
greedy packer will take to schedule that stage. Tasks that are
more diõcult to pack would have a lower FragScore. Given
thresholds l and f , DagPS picks tasks with LongScore ≥ l
or FragScore ≤ f . Intuitively, doing so biases towards se-
lecting tasks that are more likely to hurt the schedule because
they are too long or too diõcult to pack. DagPS iterates over
diòerent values for the l and f thresholds to ûnd a compact
schedule.

To speed up this search, (1) rather than choose the thresh-
old values arbitrarily, DagPS picks values that are discrimi-
native, i.e., those that allow diòerent subsets of tasks to be
considered as troublesome and (2) DagPS remembers the set
of troublesome tasks that were already explored (by previous
settings of the thresholds) so that it will construct a schedule
only once per unique troublesome set.
As shown in Figure 6, the set T is a closure over the cho-

sen troublesome tasks. _at is, T contains the troublesome
tasks and all tasks that lie on a path in the DAG between two
troublesome tasks. _e parent and child subsets P, C consist
of tasks that are not inT but have a descendant or ancestor in
T respectively. _e subset O consists of the remaining tasks.

4.2 Compactly placing tasks
Given a subset of tasks and a partially occupied space, how
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See Deûnitions atop Fig. 5.

1 Func: CandidateTroublesomeTasks:
2 Input: DAG G; Output: list L of sets T, O, P, C

// choose a candidate set of troublesome tasks; per choice, divide G
into four sets

3 L ← ∅
4 ∀v ∈ G , LongScore(v) ← v .duration/maxv′∈G v′ .duration
5 ∀v ∈ G , v in stage s, FragScore(v) ←
TWork(s)/ExecutionTime(s)

6 foreach l ∈ δ, 2δ, . . . 1 do
7 foreach f ∈ δ, 2δ, . . . 1 do
8 T← {v ∈ G∣LongScore(v) ≥ l or FragScore(v) ≤ f }
9 T← Closure(T)

10 if T ∈ L then continue // ignore duplicates;
11 P← ⋃v∈TA(v ,G); C← ⋃v∈TD(v ,G);
12 L ← L∪ {T,V − T − P − C, P, C}

Figure 6: Identifying various candidates for troublesome tasks and divid-
ing the DAG into four subsets.

best to pack the tasks while respecting dependencies? One
can choose to place the parents ûrst or the children ûrst. We
call these the forward and backward placements respectively.
More formally, the forward placement recursively picks a task
all of whose ancestors have already been placed on the space
and puts it at the earliest possible time a�er its latest ûnishing
ancestor. _e backward placement is analogously deûned.
Intuitively, both placements respect dependencies but can
lead to very diòerent schedules since greedy packing yields
diòerent results based on which tasks are placed ûrst. Fig-
ure 7:PlaceTasksF shows one way to do this. Traversing the
tasks in either placement has n log n complexity for a subset
of n tasks and if there are m machines, placing tasks greedily
has n log(mn) complexity.

4.3 Subset orders that guarantee feasibility
For each division of DAG into subsets T, O, P, C, DagPS con-

siders these four orders: TOCP, TOPC, TPOC or TCOP. _at is,
in the TOCP order, it ûrst places all tasks in T, then tasks in
O, then tasks in C and ûnally all tasks in P. Intuitively, this
helps because the troublesome subsetT is always placed ûrst.
Further, we will shortly prove that these are the only orders
beginning with T that will avoid dead-ends.
A subtle issue is worth discussing. Only one of the for-

wards or backwards placements (described above in §4.2) are
appropriate for some subsets of tasks. For example, tasks in
P cannot be placed forwards since some descendants of these
tasks may already have been placed (such as those in T). As
we saw above, the forwards placement places a task a�er its
last ûnishing ancestor but ignores descendants and can hence
violate dependencies if used for P. Analogously, tasks in C

cannot be placed backwards. Tasks in O can be placed in one
or both placements, depending on the inter-subset order. Fi-
nally, since the tasks in T are placed onto an empty space they
can be placed either forwards or backwards. Formally, this
logic is encoded in Figure 7:TrySubsetOrders. We prove
the following lemma.
Lemma 4. (Correctness) _emethod described in §4.1–§4.3
satisûes all dependencies and is free of dead-ends. (Com-
pleteness) Further, the method explores every order that

1 Func: PlaceTasksF: // forward placement
2 Inputs: V : subset of tasks to be placed, S : space (partially filled), G: a
DAG

3 Output: a new space with tasks in V placed atop S
4 S ← Clone(S)
5 finished placement set F ← {v ∈ G∣v already placed in S}
6 while true do
7 ready setR← {v ∈ V − F∣P(v ,G) already placed in S}
8 if R = ∅ then break // all done;
9 v′ ← task inR with longest runtime

10 t ← maxv∈P(v ,G) EndTime(v ,S)
11 // place v′ at earliest time ≥ t when its resource needs can be met
12 F ← F ∪ v′

13 Func: PlaceTasks(V ,S ,G):// inputs and output are same as PlaceTasksF
14 return min (PlaceTasksF(V ,S ,G), PlaceTasksB(V ,S ,G))

15 Func: PlaceTasksB: // only backwards, analogous to PlaceTasksF.

16 Func: TrySubsetOrders:
17 Input: G: a DAG, Sin: space with tasks in T already placed
18 Output: Most compact placement of all tasks.
19 S1 ,S2 ,S3 ,S4 ← Clone(Sin)
20 return min( // pick the most compact among all feasible orders
21 PlaceTasksF(C, PlaceTasksB(P, (PlaceTasks(O,S1 ,G)),G),G),// OPC
22 PlaceTasksB(P, PlaceTasksF(C, (PlaceTasks(O,S2 ,G)),G),G),// OCP
23 PlaceTasksB(P, PlaceTasksB(O, (PlaceTasksF(C,S3 ,G)),G),G),// COP
24 PlaceTasksF(C, PlaceTasksF(O, (PlaceTasksB(P,S4 ,G)),G),G)// POC
25 );

Figure 7: Pseudocode for the functions described in §4.2 and §4.3.

places troublesome tasks ûrst and is free of dead-ends.

We omit a detailed proof due to space constraints. Intu-
itively however, the proof follows from (1) all four subsets are
closed and hence intra-subset dependencies are respected by
both the placements in §4.2, (2) the inter-subset orders and
the corresponding restrictions to only use forwards and/or
backwards placements speciûed in §4.3 ensure dependencies
across subsets are respected and ûnally, (3) every other or-
der that begins with T either violates dependencies or leads
to a dead-end (e.g., in TPCO, placing tasks in O can dead-end
because some ancestors and descendants have already been
placed).

4.4 Enhancements
We note a few enhancements. First, due to barriers it is

possible to partition aDAG into parts that are totally ordered.
Hence, any schedule for the DAG is a concatenation of per-
partition schedules. _is lowers complexity because one exe-
cution of BuildSchedule will be replaced by several execu-
tions each having fewer tasks. 24% of the production DAGs
can be split into four or more parts. Second, and along simi-
lar lines, whenever possible we reduce complexity by reason-
ing over stages. Stages are collections of tasks and are 10 to
103 times fewer in number than tasks. Finally, we carefully
choose our data-structures (e.g., a time and resource indexed
hash map of free regions in space) so that the most frequent
operation, picking a region in resource-time space where a
task will ût as described in §4.2, can be executed eõciently.

5. SCHEDULING MANY DAGS
We describe our online algorithm that matches tasks to

machines while co-ordinating discordant objectives: fair-
ness, packing and enforcing the per-DAG schedules built
by §4. We oòer the pseudocode in Figure 8 for complete-
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1 Func: FindAppropriateTasksForMachine:
2 Input: m: vector of available resources at machine; J : set of jobs with task
details{tduration , tdemands , tpriScore}; deficit: counters for fairness;

3 Parameters: κ: unfairness bound; rp: remote penalty
4 Output: S , the set of tasks to be allocated on the machine
5 S ← ∅
6 while true do
7 foreach task t do
8 {pScoret , oScoret} ← {0, 0}
9 rPenaltyt ← t is locality sensitive ? rp : 1

10 if tdemands ≤ m // fits? then
11 pScoret ← (m ⋅ tdemands) rPenaltyt // dot product

12 else
13 compute oScoret // overbooking score omitted for brevity.

14 job j ∋ t , srpt j ← ∑pending u∈ j uduration ∗ ∣udemands ∣

15 perfScoret ← tpriScore {pScoret , oScoret} − ηsrpt j

16 tbest ← arg max{perfScoret ∣t}// task with highest perf score
17 if tbest = ∅ then break // no new task can be scheduled on this

machine;
18 g′ ← jobgroup with highest deficit counter

19 if deficitg′ ≥ κC then tbest ← arg max{perfScoret ∣t ∈ g′};

20 S ← S ∪ tbest
21 // detail: reduce available resources m.
22 deficitg ← deficitg+

f (tbestdemands) ∗ {
fairShareg − 1 t ∈ jobgroup g
fairShareg otherwise

Figure 8: Simpliûed pseudocode for the online component.

ness but focus only on (1) how the various objectives are co-
ordinated and (2) how unfairness is bounded.

_e pseudocode shows how various individual objectives
are estimated. Packing score per task pScoret is a dot prod-
uct between task demands and available resources [37]. Using
remote resources un-necessarily, for example by scheduling a
locality-sensitive task [51] at anothermachine, is penalized by
the value rPenaltyt . _e value srpt j estimates the remain-
ing work in a job and is used to prefer short jobs which low-
ers average job completion time. We claim no novelty thus
far. Suppose that tpriScore is the order over tasks required by
the schedule from §4; tpriScore is computed by ranking tasks
in increasing order of their begin time and then dividing the
rank by the number of tasks in the DAG so that the value is
between 1 (task that begins ûrst) and 0 (for the last task).
An initial combination of the above goals happens in the

computation of perfScoret . See the ûrst box in Figure 8. A
taskwill have non-zero pScoret only if its demands ût within
available resources. Else, it can have a non-zero oScoret
if it is worth overbooking. We use a lexicographic order-
ing between these two values. _at is, tasks with non-zero
pScore beat any value of oScore. Multiplying with tpriScore
steers the search towards tasks earlier in the constructed
schedule. Finally, η is a parameter that is automatically up-
dated based on the average srpt and pScore. Subtracting
η ⋅srpt j prefers shorter jobs. Intuitively, the combined value
perfScoret so�ly enforces the various objectives. For exam-
ple, if some task is preferred by all individual objectives (be-
longs to shortest job, is most packable, is next in the preferred
schedule), then it will have the highest perfScore. When
the objectives are discordant, colloquially, the task preferred

CPLenG = max
path p∈G

∑
task t∈p

tduration (1a)

TWorkG = maxresource r

1
Cr
∑
t∈G

tduration trdemands (1b)

ModCPG = max
p∈G

max
s∈p (max(TWorks , CPLens) + ∑

s′∈p−{s}
min
t∈s′

tdur.) (1c)

NewLBG = ∑
G′∈Partitions(G)

max(CPLenG′ , TWorkG′ , ModCPG′) (1d)

Figure 9: Lower bound formulas for DAGG; p, s, t denote a path through
the DAG, a stage and a task respectively. C , here, is the capacity available
for this job. We developed ModCP and NewLB.

by a majority of objectives will have the highest perfScore.
To bound unfairness, we use one additional step. We ex-

plicitly measure unfairness using deûcit counters [64]. When
the maximum unfairness (across jobgroups or queues) is
above the speciûed threshold κC, where C is the cluster ca-
pacity, DagPS picks only among tasks belonging to the most
unfairly treated jobgroup. _is is shown in the second box
in Figure 8. Otherwise DagPS picks the task with the high-
est perfScore. It is easy to see that this bounds unfairness
by κC. Further, we can support a variety of fairness schemes
by choosing how to change the deûcit counter. For example,
choosing f () = 1 mimics slot fairness (see third box in Fig-
ure 8), and f () = demand of the dominant resource mimics
DRF [33].

6. A NEW LOWER BOUND
We develop a new lower bound on the completion time

of a DAG of tasks. As we saw in §2.3, previously known
lower bounds are very loose. Since the optimal solution is in-
tractable to compute, without a good lower bound, it is hard
to assess the quality of a heuristic solution such as DagPS.
Equations 1a and 1b describe the known bounds: critical

path length CPLen and total work TWork. Equation 1d is (a
simpler form of) our new lower bound. At a high level, the
new lower bound uses some structural properties of these job
DAGs. Recall that DAGs can be split into parts that are to-
tally ordered (§4.4). _is lets us pick the best lower bound for
each part independently. For a DAG that splits into a chain of
tasks followed by a group of independent tasks, we could use
CPLen of the chain plus the TWork of the group. A second
idea is that on a path through the DAG, at least one stage has
to complete entirely. _at is, all of the tasks in some stage and
at least one task in each other stage on the path have to com-
plete entirely. _is leads us to the ModCPG formula in Equa-
tion 1c where one stage s along any path p is replaced with
the total work in that stage. A few other ideas are omitted for
brevity.

_e take-away is that the new lower bound NewLB is much
tighter and allows us to show that DagPS is close to OPT; since
by deûnition of a lower bound DagPS ≥ OPT ≥ NewLB.

7. DagPS SYSTEM
We have implemented the runtime component (§5) in the

ApacheYARN resourcemanager (RM) and the schedule con-
structor (§4) in theApacheTez applicationmaster (AM).Our
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schedule constructor implementation ûnishes in tens of sec-
onds on all of the DAGs used in experiments; this is in the
same ballpark as the time to compile and query-optimize
these DAGs. Further, recurring jobs use previously con-
structed schedules. Each DAG is managed by an instance
of the Tez AM which closely resembles other popular frame-
works such as FlumeJava [25] and Dryad [42]. _e per-job
AMs negotiate with the YARN RM for containers to run the
job’s tasks; each container is a ûxed amount of various re-
sources. As part of implementing DagPS, we expanded the
interface between the AM and RM to pass additional infor-
mation, such as the job’s pending work and tasks’ demands,
duration and preferred order. Due to anonymity considera-
tions, we are unable to share full details of our code release.
Here, we describe two key implementation challenges: (a)
constructing proûles of tasks’ resource demands and dura-
tion (§7.1), and (b) eõciently implementing the new online
task matching logic (§7.2).

7.1 Profiling Tasks’ Requirements
We estimate and update the tasks’ resource demands and

durations as follows. Recurring jobs are fairly common in
production clusters (up to 40% [15, 23, 46]), executing pe-
riodically on newly arriving data (e.g., updating metrics for
a dashboard). For these jobs, DagPS extracts statistics from
prior runs. In the absence of prior history, we rely on two as-
pects of data analytics computations that make it amenable
to learn proûles at runtime. (1) Tasks in a stage (e.g., map
or reduce) have similar proûles and (2) tasks o�en run in
multiple waves due to capacity limits. DagPS measures the
progress and resource usage of tasks at runtime. Using the
measurements from in-progress and completed tasks, DagPS
reûnes estimates for the remaining tasks. Our evaluation will
demonstrate the eòectiveness of this approach.

7.2 Efficient Online Matching: Bundling
We have redesigned the online scheduler in YARN

that matches machines to tasks. From conversations
with Hadoop committers, these code-changes help improve
matching eõciency and code readability.

Some background: _e matching logic is heartbeat based.
When amachine heartbeats to the RM, the allocator (1) picks
an appropriate task to allocate to that machine, (2) adjusts its
data structures (such as, resorting/rescoring) and (3) repeats
these steps until all resources on the node have been allocated
or all allocation requests have been satisûed.
As part of this work, we support bundling allocations. _at

is, rather than breaking the loop a�er ûnding the ûrst schedu-
lable task, we maintain a set of tasks that can all be poten-
tially scheduled on the machine. _is so-called bundle al-
lows us to schedule multiple tasks in one iteration, admit-
ting non-greedy choices over multiple tasks. For example, if
tasks t1 , t2 , t3 are discovered in that order, it may be better to
schedule t2 and t3 together rather than schedule t1 by itself.
We refactored the scheduler to support bundling; with con-
ûgurable choices for (1) which tasks to add to the bundle, (2)

when to terminate bundling (e.g. the bundle has a good set
of tasks) and (3) which tasks to pick from the bundle.

8. EVALUATION
Here, we report results from experiments on a 200 server

cluster and extensive simulations using 20, 000 DAGs from
production clusters. Our key ûndings are:
(1) In experiments on a large server cluster, relative to Tez

jobs running on YARN, DagPS improves completion time of
half of the jobs by 19% to 31% across various benchmarks. A
quarter of the jobs improve by 30% to 49%.
(2) On the DAGs from production clusters, schedules con-
structed by DagPS are faster by 25% for half of the DAGs. A
quarter of the DAGs improve by 57%. Further, by comparing
with our new lower bound, these schedules are optimal for
40% of the jobs and within 13% of optimal for 75% of the jobs.
As part of the evaluation, we oòer detailed comparisons

with many alternative schedulers and sensitivity analysis to
cluster load and parameter choices. We also provide early re-
sults on applying DagPS to DAGs from other domains (§9).

8.1 Setup
Our experimental cluster has 200 servers with two quad-
core Intel E2550 processors (hyperthreading enabled), 128GB
RAM, 10 drives, and a 10Gbps network interface. _e net-
work has a congestion-free core [14].
Workload: Our workload mix consists of jobs from public
benchmarks—TPC-H [12], TPC-DS [11], BigBench [5], and
jobs from a production cluster that runs Hive jobs (E-Hive).
We also use 20K DAGs from a private production system in
our simulations. In each experimental run, jobs arrival is
modeled via a Poisson process with average inter-arrival time
of 25s for 50 minutes. Each job is picked at random from
the corresponding benchmark. We built representative in-
puts and varied input size from GBs to tens of TBs such that
the average query completes in a fewminutes and the longest
ûnishes in under 10 minutes on the idle cluster. A typical ex-
periment run thus has about 200 jobs and lasts until the last
job ûnishes. _e results presented are the median over three
runs.
Compared Schemes: We experimentally compare DagPS
against the following baselines: (1) Tez ∶ breadth-ûrst order
of tasks in theDAG running atopYARN’s Capacity Scheduler
(CS), (2) Tez + CP ∶ critical path length based order of tasks in
the DAG atop CS and (3) Tez + Tetris ∶ breadth-ûrst order
of tasks in the DAG atop Tetris [37].

Using simulations, we compareDagPS against the following
schemes: (4) BFS ∶ breadth ûrst order, (5) CP ∶ critical path or-
der, (6) Random order, (7) StripPart [20], (8) Tetris [37],
and (9) Coffman − Graham [30].
All of the above schemes except (7) are work-conserving.

(4)–(6) and (8) pick greedily from among the runnable tasks
but vary in the speciûc heuristic. (7) and (9) require more
complex schedule construction, as we will discuss later.
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(a) CDF of gains for jobs on TPC-DS workload
50th percentile 75th percentile

Workload D T+C T+T D T+C T+T
TPC-DS 27.8 4.1 6.5 45.7 8.9 16.6
TPC-H 30.5 3.8 8.9 48.3 7.7 15.0
BigBench 25.0 6.4 6.2 33.3 21.7 18.5
E-Hive 19.0 1.0 5.8 29.7 4.5 14.2

D stands for DagPS. T+C and T+T denote Tez + CP and Tez + Tetris re-
spectively (see §8.1). _e improvements are relative to Tez.

(b) Improvements in job completion time across all the workloads

Figure 10: Comparing completion time improvements of various
schemes relative to Tez.
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(c) Tez + Tetris
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(d) Tez + CP

Figure 11: For a cluster run with 200 jobs, a time lapse of howmany tasks
are running (le�most) and how many resources are allocated by each
scheme. N/R represents the amount of network read, D/R the disk read
and D/W the corresponding disk write.

Metrics: Improvement in job completion time is our key
metric. Between two schemes, we measure the normalized
gap in job completion time. _at is, the diòerence in the
runtime achieved for the same job divided by the runtime
of the job with some scheme; the normalization lets us com-
pare across jobs with very diòerent runtimes. Other metrics
of interest are makespan, i.e., the time to ûnish a given set of
jobs, and Jain’s fairness index [44] to measure how close the
cluster scheduler comes to the desired allocations.

8.2 How does DagPS do in experiments?

8.2.1 Job Completion Time
Relative to Tez, Figure 10 shows that DagPS improves half

of the DAGs by 19–31% across various benchmarks. One
quarter of the DAGs improve by 30–49%. We see occasional

Workload Tez+CP Tez+Tetris DagPS
TPC-DS +2.1% +8.2% +30.9%
TPC-H +4.3% +9.6% +27.5%

Table 3: Makespan, gap from Tez.

Workload Scheme 2Q vs. 1Q Jain’s fairness index
Perf. Gap 10s 60s 240s

TPC-DS
Tez −13% 0.82 0.86 0.88

Tez+DRF −12% 0.85 0.89 0.90
Tez+Tetris −10% 0.77 0.81 0.92
DagPS +2% 0.72 0.83 0.89

Table 4: Fairness: Shows the performance gap and Jain’s fairness index
when used with 2 queues (even share) versus 1 queue. Here, a fairness
score of 1 indicates perfect fairness.

regressions. Up to 5% of the jobs slow down with DagPS; the
maximum slowdown is 16%. We found this to be due to two
reasons. (a) Noise from runtime artifacts such as stragglers
and task failures and (b) Imprecise proûles: in all of our ex-
periments, we use a single proûle (the average) for all tasks in
a stage but due to reasons such as data-skew, tasks in a stage
can have diòerent resource needs and durations. _e table in
Fig. 10 shows results for other benchmarks; we see that DAGs
from E-Hive see the smallest improvement (19% at median)
because the DAGs here are mostly two stage map-reduce
jobs. _e other benchmarks have more complex DAGs and
hence receive sizable gains.

Relative to the alternatives, Figure 10 shows that DagPS is
15% to 34% better. Tez + CP achieves only marginal gains
over Tez, hinting that critical path scheduling does not suf-
ûce. _e exception is the BigBench dataset where about
half the queries are dominated by work on the critical path.
Tez + Tetris comes closest to DagPS because Tetris’ pack-
ing logic reduces fragmentation. But, the gap is still substan-
tial, since Tetris ignores dependencies. In fact, we see that
Tez + Tetrisdoes not consistently beatTez + CP. Our take-
away is that considering both dependencies and packing can
substantially improve DAG completion time.

Where do the gains come from? Figure 11 oòers more de-
tail on an example experimental run. DagPS keeps more tasks
running on the cluster and hence ûnishes faster (Fig. 11a).
_e other schemes take over 20% longer. To run more tasks,
DagPS gains by reducing fragmentation and by overbooking
fungible resources. Comparing Fig. 11b with Figs. 11c–11d,
the average allocation of all resources is higher with DagPS.
Occasionally, DagPS allocates over 100% of the network and
disk. Tez + Tetris, the closest alternative, has fewer tasks
running at all times because (a) it does not overbook (all re-
source usages are below 100% in Fig. 11c) and (b) it ignores
dependencies and packs greedily leading to a worse packing
of the entire DAG. Tez + CP is impacted negatively by two ef-
fects: (a) ignoring disk and network usage leads to arbitrary
over-allocation (the “total” resource usage is higher because,
due to saturation, tasks hold on to allocations for longer) and
(b) due to fragmentation, many fewer tasks run on average.
Together these lead to low task throughput and job delays.

8.2.2 Makespan
To evaluate makespan, wemake one change to experiment

setup– all jobs arrive within the ûrst fewminutes. Everything
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Figure 12: Comparing DagPS with other schemes. We removed the lines
from CG and StripPart because they hug x = 0; see Table 5.

else remains the same. Table 3 shows the gap inmakespan for
diòerent cases. Due to careful packing, DagPS sustains high
cluster resource utilization, which in turn enables individual
jobs to ûnish quickly: makespan improves 31% relative to Tez
and over 20% relative to alternatives.

8.2.3 Fairness
Can we improve performance while also being fair? Intu-

itively, fairness may hurt performance since the task schedul-
ing order needed for high performance (e.g., packability or
dependencies) diòers from the order that ensures fairness. To
evaluate fairness, we make one change to the experiment set
up. _e jobs are evenly and randomly distributed among two
queues and the scheduler has to divide resources evenly.

Table 4 reports the gap in performance (median job com-
pletion time) for each scheme when run with two queues vs.
one queue. We see that Tez, Tez + DRF and Tez + Tetris
lose over 10% in performance relative to their one queue
counterparts. _e table shows that with two queues, DagPS
has a small gain (perhaps due to experimental noise). Hence,
relatively, DagPS performs even better than the alternatives if
given more queues (30% gap at one queue in Fig. 10a trans-
lates to a 40%gap at two queues). Butwhy? Table 4 also shows
Jain’s fairness index computed over 10s, 60s and 240s time
windows. We see that DagPS is less fair at short timescales
but is indistinguishable at larger time windows. _is is be-
causeDagPS is able to bound unfairness (§5); it leverages some
short-term slack from precise fairness to make scheduling
choices that improve performance.

8.3 Comparing with alternatives
We use simulations to compare a much wider set of best-

of-breed algorithms (§8.1) on the much larger DAGs that ran
in the production clusters. We mimic the actual dependen-
cies, task durations and resource needs from the cluster.
Figure 12 compares the schedules constructed by DagPS

with that from other algorithms. Table 5 reads out the gaps
at various percentiles. We observe that DagPS’s gains at the
end of schedule construction are about the same as those ob-
tained at runtime (Figure 10). _is is interesting because the
runtime component only so�ly enforces the desired sched-
ules from all the jobs running simultaneously in the cluster.
It appears that any loss in performance from not adhering to
the desired schedule are made up by the gains from better
packing and trading oò some short-term unfairness.

Second, DagPS’s gains are considerable compared to the al-

25th 50th 75th 90th

DagPS 7 25 57 74
Random −2 0 1 4

Crit.Path Fit cpu/mem −2 0 2 1
Fit all 1 4 13 16

Tetris Fit all 0 7 29 42
Strip Part. Fit all 0 1 12 27

Coòman-Graham. Fit all 0 1 12 26
Fit cpu/mem −2 0 0 2

Table 5: Reading out the gaps from Figure 12; comparing DagPS vs. Al-
ternatives. Each entry is the improvement relative to BFS.
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Figure 13: Comparing DagPS with lower bounds.

ternatives. CP and Tetris are the closest. _e reason is that
DagPS looks at the entire DAG and places the troublesome
tasks ûrst, leading to a more compact schedule overall.

_ird, when tasks have unit durations and nicely shaped
demands, CG (Coòman-Graham [30]) is at most 2 times opti-
mal. However, it does not perform well on production DAGs
that have diverse demands for resources and varying dura-
tions. Some recent extensions to CG handle heterogeneity
but ignore fragmentation issues when resources are divided
across many machines [47].
Fourth, StripPart [20] is the best known algorithm that

combines resource packing and task dependencies. It yields
an O(log n)-approx ratio on a DAG with n tasks [20]. _e
key idea is to partition tasks into levels such that all dependen-
cies go across levels. _e primary drawback with StripPart
is that it prevents overlapping independent tasks that hap-
pen to be in diòerent levels. A secondary drawback is that
the recommended packers (e.g., [60]) do not support mul-
tiple resources and vector packing. We see that in practice
StripPart under-performs the simpler heuristics.

8.4 How close is DagPS to Optimal?
Figure 13 compares DagPS with NewLB and the best previ-

ous lower boundmax(CPLen, TWork) (see §6). Since the op-
timal schedule is no shorter than the lower bound, the ûg-
ure shows that DagPS is optimal for about 40% of DAGs. For
half (three quarters) of the DAGs, DagPS is within 4% (13%) of
the new lower bound. A gap still remains: for the worst 10%
of DAGs, DagPS takes 25% longer. Manually examining these
DAGs shows that NewLB is loose for most of them. However,
the ûgure also shows that the NewLB improves upon previous
lower bounds by almost 30% for most of the DAGs. We con-
clude that while more work remains towards a good lower
bound, NewLB suõces to argue that DagPS is close to optimal
for most of the production DAGs.

8.5 Sensitivity Analysis
We evaluate DagPS’s sensitivity to parameter choices.
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Figure 14: DagPS - sensitivity analysis.
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Figure 15: DagPS’s gains increase with cluster load.

Packing vs. Shortest Remaining Processing Time (srpt):
Recall that we combine packing score and srpt using a
weighted sum with η (ûrst box in Figure 5). Let η be m
times the average over the two expressions that it combines.
Here, we evaluate the sensitivity of the choice ofm. Figure 14
shows the reduction in average job completion time (on le�)
and makespan (on right) for diòerent values of m. Values of
m ∈ [0.1, 0.3] have themost gains. Lower values lead toworse
average job completion time because the eòect of srpt re-
duces. On the other hand, larger values lead to moderately
worse makespan. Hence, we recommend m = 0.2.
Remote Penalty: DagPS uses a remote penalty rp to prefer lo-
cal placement. Our analysis shows that both job completion
time and makespan improve the most when rp is between
15% and 30% (Fig. 14). Since rp is a multiplicative penalty,
lower values of rp cause the scheduler to miss (non-local)
scheduling opportunities whereas higher rp can over-use re-
mote resources on the origin servers. We use rp = 0.8.
Cluster Load: We vary cluster load by reducing the number
of available servers without changing the workload. Figure 15
shows the job completion times and makespan for a query
set derived from TPC-DS. We see that both DagPS and the
alternatives oòer more gains at higher loads. _is is to be
expected since the need for careful scheduling and packing
increases when resources are scarce. Gains due to DagPS in-
crease by +10% at 2× load and by +15% at 6× load. However,
the gap between DagPS and the alternatives remains similar
across load levels.

9. APPLYING DagPS TO OTHER DOMAINS
We evaluate DagPS’s eòectiveness in scheduling the DAGs

that arise in distributed compilation systems [4, 34] and
request-response work�ows for Internet services [45].
Distributed build systems speed up the compilation of

large code bases [4, 34]. Each build is a DAG with depen-
dencies between the various tasks (compilation, linking, test,
code analysis). _e tasks have diòerent runtimes and have
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Figure 16: Comparing DagPS (D) with Tetris (T) and Critical path
scheduling (CP) on DAGs from two other domains.

diòerent resource proûles. Figure 16a shows thatDagPS is 20%
faster than Tetris and 30% faster than CP when scheduling
the build DAGs from a production distributed build system.
Each bar shows the median gain for DAGs of a certain size
and the error bars are quartiles. _e gains hold across DAG
sizes/ types.

We also examine the DAGs that arise in datacenter-side
request-response work�ows for Internet-services [45]. For
instance, a search query translates into a work�ow of depen-
dent RPCs at the datacenter (e.g., spell check before index
lookup, video and image lookup in parallel). _e RPCs use
diòerent resources, have diòerent runtimes and o�en execute
on the same server pool [45]. Over several work�ows from
a production service, Figure 16b shows that DagPS improves
upon alternatives by about 24%.

_ese early results, though preliminary, are encouraging
and demonstrate the generality of our work.

10. RELATED WORK
To structure the discussion, we ask four questions: (Q1)

does a scheme consider both packing anddependencies, (Q2)
does it make realistic assumptions, (Q3) is it practical to im-
plement in cluster schedulers and, (Q4) does it considermul-
tiple objectives such as fairness? To the best of our knowl-
edge, DagPS is unique in positively answering these four ques-
tions.
Q1 ∶ NO. Substantial prior work ignores dependencies but
packs tasks with varying demands for multiple resources [26,
66, 37, 60, 73]. _e best results are when the demand vec-
tors are small [21]. Other work considers dependencies but
assumes homogeneous demands [36, 30]. A recent multi-
resource packing scheme, Tetris [37], succeeds on the three
other questions but does not handle dependencies. Hence,
we saw in §8 that it performs poorly when scheduling DAGs.
Further, Tetris has poor worse-case performance (up to 2d
times oò, see Figure 19) and can be arbitrarily unfair.
Q1 ∶ YES, Q2 ∶ NO. _e packing+dependencies problem has
been considered at length under the keyword job-shop
scheduling [48, 31, 35, 63]. Most results assume that jobs are
known apriori (i.e., the oøine case). See [47] for a survey. For
the online case (the version considered here), no algorithms
with bounded competitive ratios are known [52, 53]. Some
other notable work assumes only two resources [22], applies
only for a chain but not a general DAG [18] or assumes one

11



Figure 17: A counter-example DAG that shows any scheduler not consid-
ering DAG structure will be Ω(d) times OPT.

cluster-wide resource pool [49].
Q3 ∶ NO. All of the schemes listed above consider oneDAGat a
time and are not easily adaptable to the online casewhenmul-
tiple DAGs share a cluster. Work on related problems such
as VM allocation [29] also considers multi-resource packing.
However, cluster schedulers have to support roughly two to
three orders of magnitude higher rate of allocation (tasks are
more numerous than VMs).
Q3 ∶ YES, Q1 ∶ NO. Several notable works in cluster schedul-
ing exist such as Quincy [43], Omega [62], Borg [69], Kuber-
netes [9] and Autopilot [41]. None of these combine multi-
resource packingwithDAG-awareness. Many do neither. Job
managers such asTez [3] andDryad [42] use simple heuristics
such as breadth-ûrst scheduling which perform quite poorly
in our experiments.
Q4 ∶ NO. _ere has been much recent work on novel fair-
ness schemes to incorporate multiple resources [33] and be
work-conserving [27]. Several applications arise especially
in scheduling co�ows [28, 54]. We note that these fairness
schemes neither pack nor are DAG-aware. DagPS can incor-
porate these fairness methods as one of the multiple objec-
tives and trades oò bounded unfairness for performance.

11. CONCLUDING REMARKS
DAGs are indeed a common scheduling abstraction. How-

ever, we found that existing algorithms make several key as-
sumptions that do not hold in practical settings. Our solu-
tion, DagPS is an eõcient online solution that scales to large
clusters. We experimentally validated that it substantially im-
proves the scheduling of DAGs in both synthetic and em-
ulated production traces. _e core contributions are three-
fold: (1) constructing a good schedule by placing tasks out-
of-order on to a virtual resource-time space, (2) an online
heuristic that so�ly enforces the desired schedules and helps
with other concerns such as packing and fairness, and (3)
an improved lower bound that lets us show that our heuris-
tics are close to optimal. Much of these innovations use the
fact that job DAGs consist of groups of tasks (in each stage)
that have similar durations, resource needs and dependen-
cies. We intend to contribute our DagPS implementation to
Apache YARN/Tez projects. As future work, we are consider-
ing applying these DAG scheduling ideas to related domains,
most notably scheduling the co�ows with dependencies that
arise in geo-distributed analytics [39, 58, 70, 40].

A. VALUE OF DAG AWARENESS
Proof of Lemma 1: Figure 17 shows an adversarial DAG
for which any scheduler that ignores dependencies will take

Figure 18: An example DAGwhere critical path scheduling is O(n) times
OPT where n is the number of nodes in the DAG.

Figure 19: An example DAG where Tetris [37] is 2d − 2 times OPT when
tasks use d kinds of resources.

Ω(d) times OPT. Assume cluster capacity is 1r for each of
the d resources. _e DAG has d groups, each having a task
ûlled with red dashes that is the parent of all the tasks in the
next group. _is information is unavailable (and unused) by
schedulers that do not consider the DAG structure. Hence,
regardless of which order the scheduler picks tasks, an ad-
versary can choose the last task in a group to be the red
one. Hence, such schedulers will take kdt time. OPT only re-
quires (k + d − 1)t since it can schedule the red tasks ûrst (in
(d − 1)t) and a�erwards one task from each group can run
simultaneously (kt more steps). We use Yao’s max-min prin-
ciple [55] (the lower bound on any randomized algorithm is
the same as lower bound on deterministic algorithms with
randomized input) to extend the counter-example. If we ran-
domize the choice of the red task, the expected time at which
the red task will ûnish is kt/2 and hence the expected sched-
ule time is k(d + 1)t/2 which is still Ω(d) times OPT.

B. WORST-CASE DAG EXAMPLES
Proof of Lemma 2: Figure 18 shows an example DAG where
CPSched takes n times worse than OPT for a DAG with 2n
tasks. _e critical path lengths of the various tasks are such
that CPSched alternates between one long task and one wide
task le� to right. However, it is possible to overlap all of
the long running tasks. _is DAG completes at ∼nt and ∼1t
with CPSched and OPT respectively. Fig. 19 shows an exam-
ple where Tetris [37] is 2d − 2 times OPT. As in the above
example, all long tasks can run together, hence OPT ûnishes
in 1t. Tetris greedily schedules the task with the highest
dot-product between task demands and available resources.
_e DAG is constructed such that whenever a long task is
runnable, it will have a higher score than any wide task. Fur-
ther, for every long task that is not yet scheduled, there ex-
ists at least one wide parent that cannot overlap any long task
that may be scheduled earlier. Hence, Tetris takes (2d − 2)t
which is (2d−2) times OPT. Combining these two principles,
we conjecture that it is possible to ûnd similar examples for
any scheduler that ignores dependencies or is not resource-
aware.
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