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ABSTRACT

Emerging wearable devices provide a new opportunity for
mobile context-aware applications to use continuous audio-
/video sensing data as primitive inputs. Due to the high-
datarate and compute-intensive nature of the inputs, it is
important to design frameworks and applications to be effi-
cient. We present the GlimpseData framework to collect and
analyze data for studying continuous high-datarate mobile
perception. As a case study, we show that we can use low-
powered sensors as a filter to avoid sensing and processing
video for face detection. Our relatively simple mechanism
avoids processing roughly 60% of video frames while missing
only 10% of frames with faces in them.
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1. INTRODUCTION

The past few years have seen the emergence of personal an-
alytics, also dubbed the quantified self movement [1], where
people use sensors to measure, analyze and share data about
their lives, as a significant business and societal trend. Al-
though the metric they quantify varies, products to date
have focused on low datarate sensors such as inertial sen-
sors, location, physiological sensors (e.g., weight and heart
rate), environmental sensors such as motion sensors and even
virtual feeds such as Twitter. Precisely because they manip-
ulate little data, such systems have the virtue of requiring
little power from sensors and wearable devices and of re-
ducing privacy costs to their users. Relative to systems
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based on high-datarate sensors such as vision and audio,
however, these systems sacrifice much potentially valuable
insight about their users. In this paper, we take an early
step toward analyzing video and audio streams in addition
on a continuous basis to derive personal analytics.

The notion that visual data from wearable devices can
provide a rich complement to other sensor streams is not
new. Work from at least the early nineties has demonstrated
the utility of vision to translate American Sign Language
[20], play indoor virtual-reality based games [19], recognize
the facial expression of wearers [15], and mine life patterns
at various scales [4]. Although these efforts have contributed
much to highlight the potential of wearable vision to under-
stand wearer context, their visual analysis components were
fairly brittle and restricted to small numbers of contexts. A
parallel line of research, in computer vision, has arrived at
a point where faces [2], objects [10, 16] and locations [9] in
video streams can be recognized with increasing accuracy
in very large numbers via the use of large-scale machine
learning techniques. Merging these lines of work, we see an
opportunity in wearable systems that, over the roughly 10
hours a day they are worn, continuously recognize, analyze
and act on every person, place, object and activity experi-
enced by their user.

Performing mobile vision-based analysis at scale in this
manner poses two major related systems challenges. First,
how should modern vision algorithms be complemented with
other sensors, accelerated using today’s heterogeneous pro-
cessing resources (such as GPUs, DSPs and FPGAs) and
constrained by use cases such that their recognition rates
in the wearable setting move from the “interesting” level to
“useful”? Second how can the lower datarate sensors be used
to minimize the use of the higher datarate sensors such that
the latter are only used when they are likely to provide in-
formation not available to the former? More broadly, given
that today’s computer vision algorithms applied to video
consume well over 100x the power budget of today’s phones
[6], is it possible to build a wearable device that performs
vision (or visual data handoffs) on a continuous basis on the
200mAh power budget realistic for a wearable device in the
foreseeable future?

In this paper, we take two early steps toward answering
these questions. First, we describe a data collection and
analysis framework we have implemented (and intend to
release publicly) on the popular Android platform to help
collect continuous sensor-augmented visual data from daily



life. The Android app and data visualizer can be found at:
https://github.com/UWNetworksLab/GlimpseData. Alth-
ough the architecture of the framework is similar to those
released for lower datarate sensors [11] (except that handling
video poses synchronization, power and storage challenges),
we hope that having a convenient platform will help kick-
start work in this area. Further, we note the severe privacy
challenges of this kind of data collection and hope to discuss
best practices and the development of a common, privacy-
vetted research dataset with workshop participants.

Our second contribution is a technical case study build-
ing on the data we capture from the system above. We
focus on the problem of predicting whether a given video
frame will contain faces of conversation partners in it using
only low-datarate sensors. We believe that filter stages of
this kind that have very high recall and modest precision in
recognition, while consuming relatively little power, will be
an important aspect of developing pipelines that have low
overall cost. We demonstrate that indeed, standard learn-
ing techniques can yield a filter that can discard 60% of all
frames using no visual analysis while preserving for further
analysis over 90% of frames that do have faces in them.

We consider these to be very early steps in addressing the
challenge of continuous vision-based perception in a mobile
setting. We therefore discuss possible future steps in this
direction.

2. DESIGN AND IMPLEMENTATION
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Figure 1: Overview of the workflow

In this section, we present the design and implementation
of the GlimpseData framework for collecting and analyz-
ing vision-augmented sensor streams on the phone. Fig-
ure 1 shows the overview of the workflow. It consists of a
data-collecting front-end as an Android application, data-
processing tools, and a visualization tool.

2.1 Data-Collecting Front-end

The very first step to study mobile perception is to collect all
the possible context information surrounding users. While
wearable video accessories are not yet widely available, we
can use smartphones as an proxy to collect data. Modern
smartphones allow applications to access a wide range of
contextual data. For example, applications can get video
stream from a camera, and retrieve real-time values from
low-datarate sensors like accelerometers. We build an An-
droid application so that researchers can use smartphones

[

o collect

Figure 2: A person wearing a smartphone
data.

as a front-end for data collection. As shown in Figure 1, the
recording application runs an Android service that registers
with Android components to get updates when a user initi-
ates recording. Running as a service allows it to run in the
background without a screen turned on and even during the
use of other applications. The data-collecting application
currently gathers the following data:

Video: It records video via a built-in camera. As shown
in Figure 2, a user may put a phone into his pocket while
collecting data, and use the rear-camera to capture frames.
While the angle taken by this setting is different from a
wearable device like Google Glass, it can provide a good ap-
proximation of it. A naive way to collect video frames is to
use MediaRecorder provided by Android, however, it is not
possible to get accurate timestamp of the recorded frames
with MediaRecorder due to inconsistent delay before record-
ing starts. Thus, we instead use preview frames (at roughly
5 fps) obtained from onPreviewFrame function.

Audio: As our application collects video frames by using
preview screen, audio data needs to be recorded separately.
Audio is recorded through MediaRecorder into .3gp for-
mat, which is later converted into .wav for analysis. Audio
recording with MediaRecorder incurs consistently small de-
lay (<100ms) before recording starts unlike video recording.

Sensor Data: Modern smartphones have various built-in
sensors to measure motions and environmental conditions.
The application registers to receive updates for every sensor
in the device, including the accelerometer, gyroscope, light,
proximity, compass, gravity and if available, pressure and
ambient temperature.

Location: It monitors GPS, and network-based location.
In addition, it logs SSID of WI-FI APs by periodic scan.

Thermal Camera: In addition to above data available
from any Android phones, we attach a custom-built thermal
camera close to the phone’s RGB camera (the small white
box shown in Figure 2). It continuously reports the average
temperature over the field of view (FOV) of each of its pixels
as a 16x4 float array over a 40x15° total FOV. The applica-
tion communicates with the thermal camera via bluetooth
and logs it with timestamp.

2.2 Visualizer

Visualization of collected data helps in a sanity check and
understanding it. Our data is a combined set of video frames
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Figure 3: A screenshot from the visualizer

with timestamp, time-series data of various sensor values,
and audio data with starting timestamp. We build a simple
data visualizer which allows users to navigate through time-
line. Tt is written in javascript based on D3.js'. After few
pre-processing steps to create a list of frames and to con-
vert audio files, users can access the data through any web
browser. Figure 3 shows a screen capture from the visualizer
showing an example collected through the data-collection
application.

The view of the visualizer comprises two large panes. One
area at the top of the screen presents a RGB frame, thermal
data, and a map pointing the location where the frame is
recorded. Thermal data is shown as a heatmap. For exam-
ple, the area where a hand is in the example figure is painted
as green, which has higher temperature than the surround-
ing blue/black areas. The bottom area is timeseries graphs
for audio and sensor values. Moving a cursor on the time-
series updates all data displayed appropriately.

3. DATASET
total duration 116 mins
days 7
video frames 33,769
video frames w/ detected faces | 1,664 (4.93%)
thermal camera frames 100,347
accelerometer readings 1,046,285
gyroscope readings 1,045,817

Table 1: Summary of the dataset

By using the Android application described in the previous
section, one of the authors collected a dataset on an LG
Nexus 4 running Android 4.4. Table 1 summarizes some
statistics of the dataset . The dataset is sampled from 7
days of daily life, such as walking in different places, rid-
ing a bus, driving a car, working on a desk, and talking to
others. Although this dataset is by no means comprehen-
sive, we believe it illustrates many essential characteristics
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Figure 4: Locations with and without faces. Circle
size is proportional to log of the number of frames
collected at the location. Nearby frames within 50m
are clustered into one circle.

of personal video footage aimed at personal analytics. We
use this data to drive the case study of the next section.

In what follows, we will focus on predicting, using sen-
sors other than video, whether faces appear in each dataset
frame. We used the HaarCascade face detector from OpenCV,
with manual verification of detected faces to avoid false posi-
tives, as baseline. Out of 33,769 frames in the dataset, 4.93%
frames contain at least a face. Figure 4 shows a part of a
map with locations where the faces are detected in red and
the remaining locations in blue.

4. CASE STUDY: FILTERING FOR FACE DE-
TECTION

Face detection and recognition can be used as important
primitives for various applications. For example, in speaker
identification [12], the application may use recognized faces,
in addition to audio data, to find out whom the user talked
to during a day

In conventional face detection with a wearable video de-
vice, it is every frame of the streamed video must be pro-
cessed to provide the context information to applications.
However, having a face in a frame is a rare event as shown
in our dataset from the previous section. The tasks of sens-
ing a RGB frame and running a face detection algorithm are
expensive in terms of battery consumption and are often un-
necessary.

In this study, we ask the following question: “by using
low-power sensors, can we determine if a frame is unlikely
to have a face before running a face detector over a RGB
frame?” Figure 6 illustrates how the system works. Intu-
itively, there are sensors that can be used for filtering the
non-face frames: if the frame is too dark, the face detec-
tor will not find a face; if the user is moving too quickly—
calculated by accelerometer and gyroscope—frames can be
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Figure 7: Fraction to process and recall curve when
applying thresholds on each sensor’s values. (Lower

Figure 5: Correlations between a sensor and appear-
ance of face in a frame shown by CDF's of the sensor
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Figure 6: Illustration of how filtering works

too blurred to detect faces. More notably, the thermal cam-
era can be a good indicator, because the temperature of a hu-
man body is typically higher than that of the surroundings.
These sensors consume relatively little power (accelerome-
ter and gyroscope: 10 mW, light sensor: 3 mW, thermal
camera: 9 mW, GPS: 140 mW at under low duty cycle),
compared to the RGB imager (over 200 mW for reading,
and over 600mW for analysis). These are representative
numbers for the phone we currently use; with state-of-the
art variants of sensors, we expect the relative gap between
video analysis and low-datarate sensors to be even higher.

For the filter to be efficient, it needs to filter out as many
frames as possible while not missing frames with faces. So
the evaluation metric here is the fraction of frames to pro-
cess compared to the potential number of frames without
any filtering, and recall for the frames with faces; ideal case
should be when the proportion of frames to process is close
to 0 and recall is close to 1.

First, we look into correlations between each sensor and
likelihood of having faces to check whether it would be ef-
fective to use the measurements from the low power sensors
as a filtering mechanism. Note that we could not use light
sensor data since a light sensor in the phone is located in
front of the phone and it faced into the pocket during the
collection time. Instead, we estimate brightness by calcu-
lating average luminance value of each frame from a YUV
colorspace and use it hereafter. Figure 5 shows the distri-
butions of the values from each sensor for frames with and

Table 2: Features used in the logistic regression

without faces. As expected, sensor values with faces and
without faces have distinct distributions, which means that
each sensor can indicate likelihood of faces at some extent.
However, as shown in the graphs, values for those classes
have a large overlap as well; simple thresholding for filtering
non-face frames with one sensor may not work. Figure 7 de-
picts the proportion of frames to process and recall of frames
with faces when applying thresholds on each sensor value.
While thermal camera and light value show better perfor-
mance in filtering out uninteresting frames than the other
two sensors, they miss many frames with faces as well. To
filter out more than 60% frames, it misses more than 25%
of frames having faces.

To consider all those possible factors into the calculation,
we build a logistic regressor. For each frame, it finds clos-
est sensor values and uses them as features in training and
testing phases. Table 2 describes which features are used in
the logistic regression. Instead of classifying a frame as with
face if probability from the regressor is higher than 0.5, we
vary the probability threshold. In fact, it worked well with
small probability threshold lower than 0.1. Figure 8 shows
the result of logistic regression. For each run, we used ran-
domly picked 90% of frames as a training set and the rest
as a testing set, and repeated 10 times. It filters out 70% of
frames while missing only 10% of frames with faces, which is
much better than applying a threshold to one sensor value.

The above is a best-case since, by selecting training and
test sets randomly we likely (over)fit to neighboring time
steps: given a face in a training frame, there will more likely
be a face in any adjacent test frame. To verify generaliza-

2We used linear accelerometer data which excludes gravity
from accelerometer data.
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tion at least across a few minutes, we segment the data into
1000-frame windows (about 3~4 minutes each), pick 90% of
clusters as a training set, and the rest as a testing set. Note
that there is little correlation in the presence of faces across
frames separated by minutes. To avoid imbalance of posi-
tive samples, we exclude folds where the randomly chosen
testing split has less than 5%, or more than 20%, of all face
frames. Figure 9 shows the result. While performance is
somewhat worse, the system still filters 60% of frames while
falsely rejecting 10% of frames with faces.

S. DISCUSSION

While building the data collection application, we noticed
a couple of issues that need to be addressed for improving the
quality of dataset. First of all, more accurate timestamping
is required, especially for real-time reasoning applications.
As it gathers data from multiple sources, synchronizing data
points is not trivial. We improved timestamp accuracy by
using preview frames instead of media recorder for video.
However, it still has a consistent delay of 2-3 frames. In ad-
dition, currently the number of frames per second is smaller
(5-6fps) than the target number (30fps). Improving this will
be helpful in gathering better dataset.

For the collected dataset to be widely useful, having a
framework to support sharing data with research commu-
nity. However, the dataset contains much private infor-
mation. Integrating privacy-preserving solutions as in Gi-
gaSight [18] can be helpful, while some applications may not
work after applying it. More broadly, it is important for the
research community to adopt a set of standards for data col-
lection, and given the delicateness of collection, collaborate
in the collection of a single high-quality corpus.

The case study we presented is a starting step toward
a system design for continuous mobile perception. There
is much more to be done. For example, filtering needs to
be generalized so that it works with multiple applications,
which requires the ability to specify requirements per appli-
cation and to coalesce filters. Further, it should be possible
to automatically and optimally pick sensors for individual
stages of a multi-stage filter. The theory of cost-sensitive
classifiers [22] is relevant. Once promising windows are de-
tected, classifying these windows over many classes (e.g.,
faces, places or objects) will likely need innovations in com-
pute elements, system design and classification algorithms.

6. RELATED WORK

We discussed related work in the wearable and vision com-
munities in the introduction. Here we restrict ourselves to
work in the systems community.

There have been a number of studies on continuous sens-
ing in mobile applications. SenseCam captures pictures ev-
ery 30 seconds along with other sensor data, which is de-
signed for retrospective memory aid [7]. The dataset and
visualization are similar to ours, but its low frame rate is not
suited to the real-time applications that we target. Audio
data is also widely used in detecting sound events [13] and
speaker identification [12]. Another application is indoor
localization where sensors like accelerometers and magne-
tometers are used to track continuously in indoor spaces [3,
21].

Prior research has also targeted energy efficiency of contin-
uous sensing. Jigsaw [14] uses pipelining and conditionally
triggers high-energy stages to reduce energy costs. Seemon [8]
optimizes for processing context monitoring queries by choos-
ing an essential sensor set for the queries. None of these
systems target video.

Moving to video data, GigaSight proposes a scalable method
to crowdsource mobile video content by decentralizing the
cloud architecture using VM-based cloudlets [18]. The focus
is data collection, not power-aware visual analysis. Finally,
recent work [5, 17] advocates migrating workload into the
cloud. These approaches are complementary to using sen-
sors to filter frames: filtering is likely essential for offloading
at a reasonable power budget.

7. CONCLUSION

We have presented GlimpseData, a framework to collect and
analyze data for studying continuous high-datarate mobile
perception. It includes an Android application that collects
data from multiple sources including video and sensors, and
a web-based visualizer that allows researchers to navigate
collected data easily. With data collected through the ap-
plication, we presented a case study of filtering unnecessary
frames for face detection with low-powered sensors. Our
early results are promising: we can filter out 60% of frames



without processing visual inputs while missing only 10%
frames of interests. Although clearly an enormous challenge,
we believe that adding vision to personal analytics could be
truly revolutionary.
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