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Abstract— Over the last few years, the network community
has started to make heavy use of novel concepts such as self-
similarity and Long-Range Dependence (LRD). Despite their
wide use, there is still much confusion regarding the identifi-
cation of such phenomena in real network traffic data. In this
paper, we show that estimating Long-Range Dependence is not
straightforward: there is no systematic or definitive methodol-
ogy. There exist several estimating methodologies, but they can
give misleading and conflicting estimates. More specifically, we
arrive at several conclusions that could provide guidelines for a
systematic approach to LRD. First, long-range dependence may
exist even, if the estimators have different estimates of the Hurst
exponent in the interval 0.5-1. Second, long-range dependence
is unlikely to exist, if there are several estimators that fail to es-
timate the Hurst exponent. Third, we show that periodicity can
obscure the analysis of a signal giving partial evidence of long-
range dependence. Fourth, the Whittle estimator is the most
accurate in finding the exact value when LRD exists, but it can
be fooled easily by periodicity. As a case-study, we analyze real
round-trip time data. We find and remove a periodic component
from the signal, before we can identify long-range dependence
in the remaining signal.

I. I NTRODUCTION

Self-similarity and long-range dependence (LRD) have be-
come key concepts in analyzing networking traffic data over
the past years. The community recognizes their overwhelm-
ing evidence in multiple facets such as traffic load and packet
arrival times. Simply put, most researchers expect to identify
and use LRD in their analysis. However, there are two im-
portant questions related to long-range dependence that have
not received as much attention: a) how can we calculate it
accurately, b) what does it really mean for network analysis
and modeling? In this paper, we focus on the first question,
since it is a necessary step to answer the second question.

Surprisingly, despite its ever-increasing use, there does not
exist a definitive systematic way to calculate long-range de-
pendence. The question is simple: given a time series does
it exhibit long-range dependence? The predominant way to
quantify long-range dependence is the value of theHurst ex-
ponent, which is a scalar. So, the question becomes how we
can calculate the Hurst exponent. It turns out that this is not
straightforward. For one, the Hurst exponent can not be cal-
culated in a definitive way, it can only be estimated. Second,
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there are several different methods to estimate the Hurst ex-
ponent, but they often produce conflicting estimates. It is not
clear which of the estimators provides the most accurate es-
timation. Limitations and pitfalls in long-range dependence
estimation have also been observed [1] [2]. As a result, there
is no common reference point that would make the use of
long range dependence reliable and reproducible. As a con-
sequence, studies can often arrive arbitrary and misleading
conclusions.

The goal of this paper is to shed some light in the estima-
tion of long-range dependence motivated by the absence of
such a systematic approach. We start with a “reverse engi-
neering” approach: we observe the results of the estimators
on a series of artificial and real signals. Our ambition is to
be able to “interpret” the profile of an unknown signal us-
ing our library of profiles. Through this work, we also de-
velop guidelines for a systematic approach to the estimation
of long-range dependence. More specifically, we test the es-
timators with three different types of data.

• Synthetic data with known LRD value (for accuracy).
We find that the values of the estimators can differ sig-
nificantly.

• Artificial non-LRD data (for sensitivity).We find that it
is easy to fool several of the estimators. Specifically, we
find that periodicity poses a serious threat to accurate
inference of LRD.

• Measured round-trip time from the Internet.We are in-
terested in the performance from an application point of
view. We find that the round-trip time is characterized
by a strong periodic component, and only after this is
removed, we can identify long-range dependence.

An additional contribution is the tool, SELFYS, that we
developed for the purpose of this analysis. It is a collection of
LRD estimators, generators, and time series analysis method-
ologies. SELFYS is a java-based, open-source, tool provided
as a service to the community.

The rest of this paper is organized as follows. Section II
provides background work and the mathematical definitions
of self-similarity and long-range dependence. Section III
shows the evaluation of long-range dependence estimators
and presents cases that can deceive the estimators. Section
IV is a study of long-range dependence in RTT delay in the
Internet. Section V concludes the paper.



II. D EFINITIONS - BACKGROUND

A stationary processXt has long-memory or is long-range
dependent [3], if there exists a real numberα ∈ (0, 1) and
a constantcp > 0 such thatlimk→∞ ρ(k)/[cpk

−α] = 1
whereρ(k) the sample correlations. The classical parameter
that characterizes long-range dependence is the Hurst expo-
nent (H), whereH = 1 − α/2. Long-memory occurs when
1
2 < H < 1. Intuitively, events that are far apart are corre-
lated, since the correlations decay very slowly to zero. On the
contrary, short-range dependence is characterized by quickly
decaying correlations (e.g. ARMA, MARKOV processes).

There are many estimators that are used to estimate the
value of the Hurst parameter. An overview of a large number
of the estimation methodologies can be found in [4], [3]. In
this paper we evaluate the following estimators:
• Absolute Value method, where an aggregated series

X(m) is defined, using different block sizes m. The
log-log plot of the aggregation level versus the absolute
first moment of the aggregated seriesX(m) should be a
straight line with slope of H-1, if the data are long-range
dependent.

• Variance method, where the log-log plot of the sample
variance versus the aggregation level must be a straight
line with slopeβ greater than -1. In this caseH = 1− β

2 .
• R/S method. A log-log plot of the R/S statistic versus

the number of points of the aggregated series should be
a straight line with the slope being an estimation of the
Hurst exponent.

• Periodogram method. This method plots the logarithm
of the spectral density of a time series versus the loga-
rithm of the frequencies. The slope provides an estimate
of H.

• Whittle estimator. The method is based on the mini-
mization of a likelihood function, which is applied to
the Periodogram of the time series.

• Variance of Residuals. A log-log plot of the aggregation
level versus the average of the variance of the residuals
of the series should be a straight line with slope of H/2.

• Abry-Veitch. Wavelets are used in order to estimate the
Hurst exponent.

The ability of self-similarity based modeling to better fit
Internet data than traditional methods, has been well docu-
mented over the past few years. Willinger and Paxson in [5]
present the failure of the Poisson process to capture Inter-
net traffic. Furthermore, different types of network traffic are
shown to be dominated by long-range dependence phenom-
ena [6], [7], [8], [9], [10]. In addition, the relevance of LRD
in network traffic is studied in [11].

III. E VALUATING THE ESTIMATORS

This section presents an evaluation of the methodologies
that are used to estimate the Hurst exponent. In the first
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Fig. 1. The performance of the estimators using Paxson’s generator.
The “Target” line shows an optimal estimation of the FGN data. The
Whittle and Periodogram estimators follow best the Target line.

part of the section, we use Fractional Gaussian Noise gen-
erators in order to generate long-range dependent series and
study the behavior of the estimators. In the second part, we
show that the estimators can be deceived to identify non long-
range dependent signals as long-range dependent. We reach
the following main conclusions: a) There is no ultimate es-
timator that can apply to every case and b) Periodicity, non-
stationarity and noise affect the outcome of the estimators.

A. Fractional Gaussian Noise

The evaluation of each estimator is achieved through three
different Fractional Gaussian Noise (FGN) generators. FGN
generators are often used to synthesize long-range depen-
dence series with a specific Hurst value. The first is devel-
oped by Paxson [12], while the second is described in [13].
The third is based in the Durbin-Levinson coefficients. Due
to space limitation, we only present results from the genera-
tor developed by Paxson. However, findings are similar for
the other two generators.

For each of the three generators we produce samples with
different levels of long-range dependence. That is we pro-
duce samples of length 65536 with Hurst exponent between
0.5 and 1. For each of these samples, we use the methodolo-
gies described in the previous section to estimate the Hurst
exponent.

Fig. 1 and Table I summarize our findings for the Paxson
generator. In fig. 1, the X axis presents the Hurst exponent
value of the FGN series and the Y axis shows the estima-
tion of the corresponding methodology. The “Target” line
presents what the optimal estimation of the FGN data for
each case would be. In table I, the first column shows the
Hurst exponent value of the generated series, while the rest
columns show the corresponding estimation for each estima-
tor. Since the Whittle estimator and the Abry-Veitch estima-
tor produce confidence intervals next to these columns we
present the confidence intervals for these two estimators.1

1Throughout this paper, the results presented correspond to correlation
coefficients of 97% and 95% confidence intervals.



Observing table I, one can conclude that Whittle is the
most robust estimator. The Periodogram also gives satisfying
estimations. These conclusions agree with the observations
in [4]. The Abry-Veitch estimator seems to overestimate H,
while the rest cannot provide sufficient estimations with the
exception of RSplot when H is less than 0.8.

B. Deceiving the estimators

We show that the estimators are quite sensitive and can
be deceived to report LRD. In particular we apply the esti-
mators in synthesized signals such as cosine functions with
noise or signals that show trend. The following cases are
considered.
• Cosine + White Gaussian Noise. The estimators are ap-

plied to periodic datasets to study their behavior in non-
LRD data. The series is synthesized by White Gaussian
Noise and the following cosine function :Acos(αx).
Table II presents results for different values of the am-
plitude (A) of the cos function. In this caseα = 0.005.
On the other hand, table III presents results ifA = 1 and
α varies. Periodicity can mislead the Whittle, the Pe-
riodogram, the R/S and the Abry-Veitch methods into
falsely reporting LRD. Especially, if the amplitude is
large and the period small, then Whittle always esti-
mates Hurst to be 0.99.

• FGN series + White Gaussian Noise. The effect of
noise in LRD data is studied. In this case the Whittle
and the Abry-Veitch estimators are the ones that are af-
fected the most by noise. Table IV presents the results of
the estimators when applied to FGN with White Gaus-
sian Noise series. The values in the parenthesis show
the estimation of the raw FGN data.

• FGN series + a cosine function. The effect of peri-
odicity in LRD data is considered. Our findings show
that periodicity affects all estimations. Table V presents
the results of the estimators when applied to FGN with
periodic components (cos(0.005x)). The values in the
parenthesis show the estimations if the amplitude of the
cosine function is multiplied by three.

• Trend. The definition of LRD assumes stationary sig-
nals. In this case, we intend to identify the impact of
non-stationarity on the estimators. Thus, we created
various signals with slow and fast decaying or increas-
ing trends. Such signals include combination of White
Gaussian Noise and cosine functions with trend. In
every case only Whittle gives an estimation for Hurst
which is always .99. Also the Periodogram estimates
Hurst to be greater than 1.

Summing up the section, our main observations are the fol-
lowing:

1) When the data are generated by FGN, Whittle and Pe-
riodogram seem to give the most accurate estimation
for the Hurst exponent.
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Fig. 2. UP: A sample RTT signal (RTT vs Time). Every value in
the X axis represents packets spaced 20msec apart. DOWN: Power
spectrum of the same RTT signal using Fourier Transform. Y axis
is the power while the X axis is the period (1/frequency). The spike
represents period of 5sec (index * 20msec).
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Fig. 3. UP: The Variance method and RSplot before the removal of
the dominating periodic components. The estimators do not agree
in the existence of long-range dependence. DOWN: The Variance
method and RSplot after the removal of the dominating periodic
components. Both methods show long-range dependence

2) There is no definite estimator that could be consistently
used in every case. Each estimator evaluates different
statistics of the signal to infer long-range dependence.
Thus, different processes (e.g. noise, periodicity) have
different effect on each estimator.

3) Even though the Whittle estimator is considered the
most robust, it is the most sensitive of the estimators.

IV. L ONG-RANGE DEPENDENCE INROUND TRIP TIME

This section presents a real case study of the Hurst expo-
nent estimators. We apply the estimators in real Internet RTT
traces. The set of data includes measurements for one route
within the United States, from UCR to CMU. For this route,
we measure the Round Trip Time for different packet sizes
and different sending rates. The measurements took place
from October 6 to October 9 (Saturday-Monday). The send-
ing rates range from 20msec to 1sec. The packets are sent
back-to-back according to the selected sending rate for six
minutes every 30 minutes. Hence, for every day there are 48
different six-minute datasets.

To extract the useful information from the raw RTT data,
we applied typical time series methodologies like, interpola-
tion to recover from loss (so that our signal would not have



discontinuities), removal of outliers and smoothing. Ap-
plying the estimators in the RTT signal, resulted in non-
consistent estimations, in the sense that some of the estima-
tors showed long-range dependence for some of our datasets.
However, further analysis of the signal showed that it is dom-
inated by periodic components. In particular, we observed a
period of 5sec in the signal. This was true for 85% of our
datasets for the various packet types or sending rates. How-
ever, it is interesting to note that we were able to trace a likely
cause of the periodicity to a system maintenance tool in our
network. This tool has an approximate period of 5 seconds
according to our system administrator. We consider this as
a verification of the integrity and effectiveness of our analy-
sis. Note that the end-to-end performance of an application
would be affected from such a phenomenon. Removing the
periodicity from the signal and applying the Hurst estimators
in the new signal reveals long-range dependent behavior. For
almost all of our datasets H is found to be between 0.55 and
0.68 by the majority of the estimators. Fig. 2 and 3 show a
RTT signal, the periodicity and two of the estimators before
and after the removal of the periodicity.

V. CONCLUSIONS

The goal of this paper is to provide the first steps towards
a systematic approach to long-range dependence analysis.
We find that this is an essential task, given the increasing
interest of the community for long-range dependence. We
show that identifying long-range dependence is not straight-
forward: the estimators have conflicting results. Our work
provides some general rules on interpreting these inconsis-
tent results. In addition, we provide a tool that integrates
most of the known required functionality for such analysis.

Our work leads to the following conclusions:
• There is no single estimator that can provide a defini-

tive answer. For example, Whittle is the most accurate
when LRD exists, but can be mislead in showing LRD
by periodic non-LRD data.

• Long-range dependence may exist, even if the estima-
tors have different estimates in value, provided that the
estimates show that0.5 < H < 1.

• Long-range dependence is unlikely to exist, if there are
several estimators that cannot produce sufficient estima-
tions of the Hurst exponent. (e.g. low confidence inter-
vals).

• Periodicity can obscure the analysis of a signal giving
partial evidence of long range dependence.

We also applied the estimators in real RTT data. RTT is
both periodic and long-range dependent. In particular, we
showed that RTT is dominated by a periodic component of
5sec. The long-range dependent characteristics of the RTT
signals are revealed only after the periodicity is removed.

Finally, we list a set of tips for practitioners, that we real-
ized during our study.

• A reporting of the Hurst exponent is meaningful, only if
it is accompanied by the method that was used, as well
as the confidence intervals or correlation coefficient.

• Researchers should not rely only on one estimator in
deciding the existence of long-range dependence (e.g.
[14]). As we saw, several of the estimators (Whittle, Pe-
riodogram) can be overly optimistic in identifying long-
range dependence.

• For efficient characterization, it may be necessary to
process and decompose the signal.

• A visual inspection of the signal can be very useful, pro-
viding a qualitative analysis and revealing many of its
features, like periodicity.2

Putting things in perspective, the overarching goal is to
analyze and model the network behavior. And thus, long-
range dependence is a powerful tool in this effort. Estimating
long-range dependence in a robust and definitive way is an
essential step, because only then, we can explore its ability
to model effectively real network behavior. We find that there
is still a lot of work that needs to be done both in estimating
and interpreting long-range dependence.

REFERENCES

[1] S.Molnar and T. D. Dang, “Pitfalls in Long Range Dependence Testing
and Estimation,” inGLOBECOM, 2000.

[2] M. Krunz, “On the limitations of the variance-time test for inference of
long-range dependence,” inIEEE INFOCOM, 2001, pp. 1254–1260.

[3] J. Beran,Statistics for Long-memory Processes, Chapman and Hall,
New York, 1994.

[4] M. S. Taqqu, and V. Teverovsky , “On Estimating the Intensity of
Long-Range Dependence in Finite and Infinite Variance Time Series,”
in A Practical Guide to Heavy Tails: Statistical Techniques and Appli-
cations, R. J. Alder, R. E. Feldman and M.S. Taqqu, Ed., pp. 177–217.
Birkhauser, Boston, 1998.

[5] W. Willinger, and V. Paxson, “Where Mathematics Meets the Internet,”
in Notices of the AMS, 1998.

[6] M. E. Crovella, and A. Bestavros, “Self-Similarity in World Wide Web
Traffic Evidence and Possible Causes,” inIEEE/ACM Transactions on
Networking, 1997.

[7] W. Willinger, V. Paxson, R. H. Riedi and M. S. Taqqu, “Long-range
Dependence and Data Network Traffic.,” inLong-Range Dependence:
Theory and Applications, 2001.

[8] R. H. Riedi and W. Willinger,Toward an Improved Understanding of
Network Traffic Dynamics, Self-similar Network Traffic and Perfor-
mance Evaluation eds. Park and Willinger, (Wiley 2000).

[9] A. Feldmann, A. C. Gilbert, W. Willinger, and T. G. Kurtz, “The
Changing Nature of Network Traffic: Scaling Phenomena,” inACM
Computer Communication Review, 1998, vol. 28, pp. 5–29.

[10] A. Veres, Z. Kenesi, S. Molnar and G. Vattay, “On the Propagation of
Long-range Dependency in the Internet,” inSIGCOMM, 2000.

[11] M. Grossglauser, and J. Bolot, “On the Relevance of Long-Range
Dependence in Network Traffic,” inIEEE/ACM Transactions on Net-
working, 1998.

[12] Vern Paxson, “Fast approximation of self similar network traffic,”
Tech. Rep. LBL-36750, 1995.

[13] Edgar E. Peters, Chaos and Order in the Capital Markets, p. 211,
John Wiley & Sons, New York, 1991.

[14] Q. Li,and D.L. Mills, “On the long-range dependence of packet round-
trip delays in Internet,” inIEEE International Conference on Commu-
nications, 1998, pp. 1185–1191.

2We recommend plotting the signal at several different scales, since each
scale can reveal different characteristics.



TABLE I
ESTIMATORS RESULTS USINGPAXSON’ S GENERATOR. WHITTLE AND THE PERIODOGRAM ESTIMATE MORE ACCURATELY THE

GENERATEDFGN SERIES

H ABS Variance Periodogram Residuals R/S Whittle C.I. Abry-Veitch C.I.
0.5 0.43 0.46 0.52 0.44 0.55 0.5 0.48-0.52 0.54 0.52-0.57
0.6 0.53 0.55 0.62 0.52 0.63 0.59 0.57-0.61 0.65 0.62-0.67
0.7 0.61 0.63 0.72 0.61 0.7 0.69 0.67-0.71 0.75 0.73-0.78
0.8 0.69 0.71 0.82 0.7 0.77 0.79 0.77-0.81 0.86 0.83-0.88
0.9 0.76 0.78 0.92 0.78 0.83 0.89 0.87-0.91 0.96 0.93-0.98
0.95 0.79 0.81 0.97 0.82 0.85 0.94 0.92-0.96 1 0.98-1
0.99 0.81 0.83 1 0.85 0.87 0.98 0.96-1 1 1-1

TABLE II
ESTIMATORS PREDICTIONS FOR THE SIGNALAcos(0.005x). INCREASING THE AMPLITUDE, INCREASES THE ESTIMATION FOR THEHURST

EXPONENT. THE DASHES REPRESENT INSUFFICIENT ESTIMATIONS DUE TO LOW CORRELATION COEFFICIENTS.

A ABS Variance Periodogram Residuals R/S Whittle C.I. Abry-Veitch C.I.
0.3 - - 0.6 - 0.72 0.55 0.54-0.56 0.55 0.53 - 0.58
1.3 - - 0.88 - 0.95 0.72 0.71-0.74 0.57 0.55 - 0.6
2.3 - - 1 - 0.98 0.8 0.79-0.82 0.56 0.53 - 0.58
3.3 - - 1.17 - 0.98 0.85 0.84-0.87 0.58 0.55 - 0.6
4.3 - - 1.2 - 0.96 0.89 0.88-0.91 0.59 0.58 - 0.62

TABLE III
ESTIMATORS PREDICTIONS FOR THE SIGNALcos(αx). INCREASING THE FREQUENCY, INCREASES THEHURST ESTIMATION IN WHITTLE

AND AV ESTIMATORS, WHILE DECREASES THE ESTIMATION INPERIODOGRAM AND R/S. THE DASHES REPRESENT INSUFFICIENT ESTIMATIONS

DUE TO LOW CORRELATION COEFFICIENTS.

α ABS Variance Periodogram Residuals R/S Whittle C.I. Abry-Veitch C.I.
0.01 - - 0.55 - 0.82 0.7 0.68-0.71 0.58 0.55-0.6
0.08 - - 0.59 - 0.56 0.72 0.71-0.74 0.71 0.69-0.74
0.09 - - 0.55 - 0.53 0.72 0.71-0.73 0.71 0.69-0.74
0.1 0.35 0.38 0.53 - 0.54 0.72 0.71-0.74 0.73 0.7-0.75
0.16 0.41 0.44 0.43 - 0.47 0.73 0.71-0.74 0.73 0.71-0.76

TABLE IV
ESTIMATIONS FOR GENERATEDFGN SERIES WITHWHITE GAUSSIAN NOISE. THE VALUES IN THE PARENTHESIS SHOW THE

ESTIMATION OF THE RAW FGN DATA . NOISE AFFECTS MOST THEWHITTLE AND THE ABRY-VEITCH ESTIMATORS.

Hurst ABS Variance Periodogram Residuals R/S Whittle Abry-Veitch
0.5 0.45 (0.41) 0.48 (0.43) 0.5 (0.48) 0.49 (0.44) 0.58 (0.56) 0.5 (0.5) 0.55 (0.54)
0.7 0.59 (0.6) 0.62 (0.61) 0.64 (0.68) 0.6 (0.62) 0.69 (0.72) 0.63 (0.7) 0.67 (0.75)
0.9 0.71 (0.74) 0.75 (0.76) 0.86 (0.88) 0.76 (0.78) 0.83 (0.85) 0.73 (0.9) 0.77 (0.96)

TABLE V
ESTIMATIONS FOR GENERATEDFGN SERIES WITH A COSINE FUNCTION(cos(0.05x)). THE VALUES IN THE PARENTHESIS SHOW

THE ESTIMATION IF THE AMPLITUDE OF THE COSINE FUNCTION IS MULTIPLIED BY THREE. ALL ESTIMATIONS ARE AFFECTED BY

THE PERIODICITY. THE DASHES REPRESENT INSUFFICIENT ESTIMATIONS DUE TO LOW CORRELATION COEFFICIENTS.

Hurst ABS Variance Periodogram Residuals R/S Whittle Abry-Veitch
0.7 0.5 ( - ) 0.54 ( - ) 0.7 (0.78) 0.63 (0.66) 0.69 (0.59) 0.82 (0.99) 0.85 (0.97)
0.9 0.68 (0.52) 0.72 (0.59) 0.9 (0.95) 0.78 (0.78) 0.8 (0.66) 0.98 (0.99) 1.03 (1.34)


