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Abstract—In some distributed and mobile communication models, a message disappears in one place and miraculously appears in

another. In reality, of course, there are no miracles. A message goes from one network to another; it can be lost or corrupted in the

process. Here, we present a realistic but high-level communication model where abstract communicators represent various nets and

subnets. The model was originally developed in the process of specifying a particular network architecture, namely, the Universal Plug

and Play architecture. But, it is general. Our contention is that every message-based distributed system, properly abstracted, gives rise

to a specialization of our abstract communication model. The purpose of the abstract communication model is not to design a new kind

of network; rather, it is to discover the common part of all message-based communication networks. The generality of the model has

been confirmed by its successful reuse for very different distributed architectures. The model is based on distributed abstract state

machines. It is implemented in the specification language AsmL and is used for testing distributed systems.

Index Terms—Abstract state machines, communication protocols, computer networks, distributed systems, requirement specification,

system modeling, testing of distributed systems.
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1 INTRODUCTION

A couple of years ago, the group on Foundations of
Software Engineering at Microsoft Research (FSE) and,

in particular, the authors of the present paper worked on a
high-level model of the Universal Plug and Play (UPnP)
architecture [39], [20]. It occurred to us that the UPnP
communication model is a specialization of an abstract
communication model (ACM) that is so general that every
distributed system that involves a communication network
gives rise to a specialization of ACM. The simple examples
that we could think of confirmed our thesis. Various
projects that FSE worked on after that provided additional
and more convincing confirmation. One example is an
XML-based formal language called XLANG for defining the
data and network protocols of automated business pro-
cesses [44]. XLANG is quite involved and quite different
from UPnP and from any previous project that we have
been involved with. Nevertheless, the appropriate high-
level XLANG communication model was obviously a
specialization of the ACM. The largest project that FSE
has been involved with is Indigo [13], a unified program-
ming model and communications infrastructure for dis-
tributed service-oriented design. Again, Indigo is quite
different from (and quite larger than) any prior project that
we have been involved with. And, again, the appropriate
high-level Indigo communication model was a specializa-
tion of the ACM. This experience convinced us that the

ACM is sufficiently important to be presented in its own
right. That is exactly what we do in this paper.

The ACM is written in a high-level executable specifica-
tion language AsmL [4] developed by FSE and based on the
concept of abstract state machine or ASM [25]. AsmL is
integrated with Microsoft’s software development, docu-
mentation, and runtime environments. It compiles to the
.NET intermediate language and has full .NET interoper-
ability. AsmL is a practical instrument for systems design
(and reverse engineering). Furthermore, FSE is developing a
host of testing and validation tools on the AsmL platform.

During the recent years, model-based design, specifica-
tion, analysis, and testing have been getting increasing
attention in the context of industrial software development.
Part of the reason for this is the shift from monolithic
applications designed to run on a single machine to
programming platforms designed to run in a distributed
service-oriented environment which have to conform to
specific usage protocols. In particular, the upcoming
version of Windows will contain the Indigo system. In this
vein, we apply the AsmL-based tools to concrete ACM
specializations in concrete modeling contexts. This is
illustrated below.

Abstract state machines simulate arbitrary algorithms in
the step-for-step manner. There is a substantial experi-
mental confirmation [3], [18] as well as theoretical con-
firmation [26], [11] of that thesis. ASMs have been used to
specify various architectures, protocols and languages, in
particular, C, Java, SDL, and VHDL [3], [12]. The Interna-
tional Telecommunication Union adopted a comprehensive
ASM-based formal definition of SDL [23] as an integral part
of the current SDL standard; in the meantime, that
definition has been rendered in AsmL [34].

Let us make a few comments on high-level rigorous
specifications. Some features of such specifications are well
recognized in the academic community as advantageous.
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While informal documentation is often ambiguous, incom-
plete, and even inconsistent, properly constructed formal
specifications are consistent, avoid unintended ambiguity,
and are complete in the appropriate sense that allows for
intended ambiguity (nondeterminism). Let us emphasize
though that, in practice, formal specifications build on given
informal descriptions. You fix loose ends, resolve unin-
tended ambiguities and inconsistencies, separate concerns,
etc. Gradually, the given informal description gives rise to a
mathematical model or to a hierarchy of such models.

Some other features of high-level rigorous specifications
are more controversial. We advocate AsmL specifications
that are executable and written in the style of literate
programming so that they are easy to comprehend; see
examples in [4]. AsmL is used to explore and validate the
requirements and the design, and to test the conformance of
the implementation to the specification. Executable specifi-
cations can be used for test-case generation [24], runtime
verification [5], and scenario-basedmodeling and testing [7].

And, there are features of high-level rigorous specifica-
tions, at least of ASM specifications, that have not been
given sufficient attention by the academic community. An
ASM model is a closed world with well delineated
interfaces to the outside world. The need to make that
world closed provokes one to fill various gaps in a given
informal spec. That is what happened when we worked on
the Universal Plug and Play (UPnP) architecture [20]. While
the informal documentation [39] described UPnP devices
and the UPnP protocol, it did not provide a conceptual
model of the network. We had to construct such a model. It
turned out to be quite general and could be further
generalized by abstracting from particular protocols. That
is how we arrived to the ACM.

We tried to make this paper self-contained. In Section 2,
we provide the ASM semantics of a portion of AsmL
sufficient for our purposes in this paper. The abstract
communication model ACM is described in Section 3. The
ACM is illustrated in Section 4, where we describe the
relevant part of the UPnP model and, in Section 5, where
we describe the relevant part of the XLANG model. In
Section 6, we illustrate the use of the abstract communica-
tion model for test case generation. In Section 7, we discuss
related work.

2 ABSTRACT STATE MACHINES AND ASML

Our method rests on the ASM theory. To deploy ASMs in
an industrial environment, we need an industrial-strength
language. One such language has been (and is being)
developed in Microsoft Research. It is called AsmL (ASM
Language). Here, we focus on those aspects of AsmL that
are most important for the general understanding and that
are actually used in this paper. The description given here is
incomplete in many respects. For an in-depth introduction
to AsmL, we recommend the reader to consult [4]. The
interested reader may also want to consult [25], [26], [11] for
ASM theory, but we do not presume that the reader is
familiar with the ASM theory. We do presume that the
reader has some familiarity with the object oriented
paradigm.

First, we explain how the fundamental concepts of ASM
states and updates are reflected in AsmL and we explain the
semantics of the core programming constructs of AsmL in
self-explanatory ASM terms; for a more comprehensive
treatment see [29]. Then, we introduce additional function-
ality into the modeling framework that enables us to
faithfully simulate distributed ASM agents; such simulation
is needed because the current version of AsmL lacks
runtime support for true concurrency.

2.1 States

The state of an AsmL model is given by the values (or
interpretations) of the state vocabulary symbols that occur
in the model program.1 The vocabulary symbols are
function symbols; each function symbol has a fixed arity.
Every vocabulary symbol is a constant or a variable (i.e., a
dynamic function). Variables are marked by the keyword
var and their values are allowed to change from state to
state, whereas all constants keep their initial values. (Note
that a state of say a C program is not given like that; it has
implicit parts, namely, the stack and the program counter.)

All vocabulary symbols are strongly typed. AsmL has
a rich type system containing type constructs for
sequences, sets, maps, bags, etc. As far as this paper is
concerned, all dynamic functions symbols are either
nullary or unary. In the latter case, they are either
instance fields of classes or dynamic universes. Formally, a
dynamic universe C is a Boolean-valued unary function;
we say that o is in C if CðoÞ ¼ true.

In the following AsmL program, there is a fixed
enumerated type Airport whose elements are the airports
ARN, CPH, and SEA. In ASM terms, Airport is a static
universe where each element is a static nullary function.
Airline is a class; semantically it is a dynamic universe that
consists, in a given state, of the airline objects created so far;
initially the universe is empty. The (constant) field name

associates with every airline a string; name is a unary
function from airlines to strings. The variable field flights

associates with every airline a set of airport pairs (a flight
table); flights is a dynamic unary function from airlines to
flight tables. NationalAirline is a subclass of Airline;
the dynamic universe of NationalAirline is a subset of
that of Airline. The global variable airlines is a set of
airlines that is initially empty; airlines is a dynamic
nullary function. The global variable myAirline is either of
type Airline or has the special null value (indicated by the
question mark) that is also its initial value.

enum Airport

ARN

CPH

SEA

type Flights = Set of(Airport,Airport)

class Airline

name as String

var flights as Flights
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class NationalAriline extends Airline

var airlines as Set of Airline = {}

var myAirline as Airline? = null

2.2 Updates

We view a state as a kind of memory. A location of a state is
either a nullary variable f or a pair ðf; oÞ consisting of a
unary dynamic function f and an object o of the right type.
We say that a location f or ðf; oÞ is variable if f is dynamic.
The content or value of a location f or ðf; oÞ in a given state A
is the value of f or fðoÞ in A, denoted by fA or fAðoÞ,
respectively. An update is a pair l ! a, where l is a variable
location and a is a value of the type appropriate for l. To fire
this update in a state, replace the current content of l with a.

The updates explained above are called total. In addition,
AsmL supports partial updates. In the most common case,
partial updates are used to allow simultaneous pointwise
modifications of sets and maps. We explain partial updates
of a variable location l of a type set of T . A partial update of
l is a request to add or remove an element a of type T ,
denoted here by l !þ a or l !� a, respectively. Firing a
partial update has the obvious meaning.2 The theory of
partial updates is developed in [27], [28]. By an update set,
we mean a set of total and partial updates. An update set U
is consistent if, for each location l in U , there is either a single
total update to l, or all updates to l are partial and there are
no two partial updates l !þ a and l !� b where a ¼ b. To
fire a consistent update set U in a state A, fire all the updates
in U simultaneously.

2.3 Programs

We formally define here the semantics of the main AsmL
program constructs including those used in this paper. We
omit numerous details.3 The basic building blocks of
programs are statements and expressions. A statement or an
expression is evaluated in a given state. In the usual
programming languages, the state may change during an
evaluation. This is not the case with AsmL. The state does
not change during the evaluation of the program. The
whole program describes one step.

The value semantics of an expression E in a state A is the
value of E in A, denoted by EA. The semantics of
expressions is given by a straightforward induction on the
structure of expressions and is presented only partially
here. (Some expression evaluations produce side effects in
the form of updates.) The most important case is that of
import expressions:

. To evaluate an expression new CðE1; . . . ; EkÞ of class
C with k uninitialized fields f1; . . . ; fk, produce a
new object o of type C such that each fA

i ðoÞ ¼ EA
i .

This evaluation has a side effect of expanding the
dynamic universe of C, and any dynamic universe it
is a subset of, with o.

The update semantics of a statement R in a state A is the set of
all updates produced by evaluating R in A (including the
side effects of expression evaluations). We proceed by case
analysis over statements. We use o; a for elements of the
universe, x; y; v for variables, C for class identifiers, D;E for
expressions, and S;R for statements. All expressions and
statements are assumed to be type correct.

2.3.1 Basic Programs

. To evaluate the statement skip do nothing. In other
words, no updates are produced.

. To evaluate an assignment v :¼E, produce the total
update v ! EA. To evaluate an assignment D:v :¼E,
produce the total update ðv; DAÞ ! EA.

. To evaluate a statement add E to v, produce the
partial update v !þ EA. To evaluate a statement
remove E from v, produce the partial update v!�EA.
The cases of add E to D:v and remove E from D:v are
similar.

. To evaluate a statement if E then S else R, exam-
ine the value EA. If it is true, evaluate S, otherwise
evaluate R. The else part is optional and if omitted
corresponds to elseskip.

. To evaluate a do-in-parallel block of statements

R1

R2

. . .
R3

evaluate all the statements Ri simultaneously.

As an example, let A be the initial state for the sample state
declaration above and let P1 be the following program:

myAirline := new Airline(”SAS”,{})

if myAirline = null then skip else...

This is a do-in-parallel block of two statements. The import
expression returns a new airline object o such that
nameAðoÞ ¼ }SAS} and flightsAðoÞ is the empty set and
produces the side effect ðAirline; oÞ ! true. The assignment
produces myAirline ! o and ðAirline; oÞ ! true, which
are also the only updates produced by P1 because
myAirlinesA ¼ null.

. To evaluate a statement

let x ¼ E

RðxÞ

evaluate RðEAÞ.
To illustrate the use of a let-statement consider the
following program P2:

let x = new Airline(”SAS”,{})

myAirline := x

x.flights := {(CPH,SEA),(SEA,CPH)}

As in P1, an airline object o with name }SAS} and no flights
is created. The evaluation of P2 produces the total updates

myAirline ! o; ðflights; oÞ ! fðCPH; SEAÞ; ðSEA; CPHÞg

and ðAirline; oÞ ! true.
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ASMs given by basic programs are sequential algo-

rithms; in particular, they are nondistributed algorithms

with uniformly bounded parallelism. The latter means that

the number of actions performed in parallel is bounded

independently of the state or the input. The notion of

sequential algorithms is formalized in [26] where it is

proven that, for every sequential algorithm, there is a basic

ASM that simulates the algorithm step for step.

2.3.2 Parallel Programs

The AsmL type system includes the background library of

collection types such as sets, maps, bags (multisets), and

sequences and allows one to construct collections dynami-

cally by comprehension. For example, the comprehension

expression fx j x in ½1::10� where x mod 2 ¼ 0g produces the

set of even integers between 1 and 10. The library also

includes all the standard operations for the respective

collection types. In theory, the set background alone is

sufficient [11].
The construct that distinguishes parallel programs from

basic programs is the forall construct.

. To evaluate

forall x in E

RðxÞ
in a given state A, evaluate RðaÞ in A simultaneously

for every element a in the collection EA.

In most common cases, the forall-statement is used in

combination with partial updates. Consider the program P3:

let x = new Airline(”SAS”,{})

myAirLine := x

forall a in {ARN,SEA}

add (CPH,a) to x.flights

P3 produces total updates ðAirline; oÞ ! true and

myAirline ! o, where o is a new object as in P1. In

addition, it produces the partial updates ðflights; oÞ !þ

ðCPH; ARNÞ and ðflights; oÞ !þ ðCPH; SEAÞ.
The appropriate notion of parallel algorithms is for-

malized in [11] where it is proved that, for every parallel

algorithm, there is a parallel ASM that simulates the given

algorithm step for step.

2.3.3 Nondeterministic Programs

A modeling language should allow us to abstract from

irrelevant details of the system behavior. One of the most

common abstractions is to allow multiple possible beha-

viors in the model. To this end, AsmL has a choose construct

for expressing explicit nondeterminism.

. To evaluate

choose x in E where DðxÞ
RðxÞ

ifnone R0

choose nondeterministically an element a from the

collection EA such that DAðaÞ ¼ true and evaluate

RðaÞ. If no such element exists, evaluate R0. The

where part is optional and if omitted corresponds to

where true. Also, the ifnone part is optional and if
omitted corresponds to infnone skip.

The meaning of a nondeterministic program P is the set of

all possible evaluations of P which is finite since all
collections in AsmL are finite.

For example, let A be a state where

flightsðmyAirlineÞA ¼ fðCPH; ARNÞ; ðCPH; SEAÞ; ðSEA; CPHÞg

and imagine that you want to remove one of the flights,
never mind which, departing from CPH. The following

program P4 does that.

choose x in myAirline.flights where

First(x) = CPH

remove x from myAirline.flights

This program has two possible evaluations, one that

produces the partial update l !� ðCPH; ARNÞ and the other
that produces the partial update l !� ðCPH; SEAÞ, where

l ¼ ðflights; myAirlineAÞ. When you run this AsmL pro-
gram, only one of the evaluations is fired. However, there is

an advanced AsmL construct explore E (not used in this
paper) that goes through all the possible evaluations of a

given expression and collects various data. This construct is
particularly important in the context of developing tools

such as the model explorer mentioned in Section 6.

2.3.4 Methods

As usual, AsmL has methods in addition to fields.

Parameters to methods are passed by value.

. To evaluate mðE1; . . . ; EkÞ in A where m is a method
name and the definition (body) of m is a statement
Sðv1; . . . ; vkÞ, evaluate SðEA

1 ; . . . ; E
A
k Þ in A. The eva-

luation of an instance method call D:mðE1; . . . ; EkÞ is
similar, where DA is substituted for the keyword me

in the body of m.

A method call may return a value. This motivates the return

statement construct.

. To evaluate

S

return E

evaluate S and return the value of EA. This
presumes some syntactic restrictions on S. In

particular, S cannot contain a return statement. If S
is skip, S can be omitted.

By firing a method mðE1; . . . ; EkÞ in a state A, we mean first
evaluating mðE1; . . . ; EkÞ in A and then firing the resulting

updates in A.
In the following example, the method FlipCoin takes

no arguments and returns (nondeterministically) either

”heads” or ”tails”. The method ChooseSubset takes
a set of elements and returns a random subset of this set.

FlipCoin() as String

choose x in {”heads”,”tails”}

return x

ChooseSubset(elems as Set of Object)
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as Set of Object

return

{e | e in elems where FlipCoin() = ”heads”}

Thus, expression evaluation (and not only statement
evaluation) may be nondeterministic. For example, there
are 21;000 possible evaluations of the program

x := ChooseSubset({1..1000})

2.4 Distributed ASMs and Simulation of
Agents in AsmL

Until now, we dealt with one-agent ASMs. A distributed
ASM(DASM) involves a collection of agents that perform
their computation steps concurrently. From the global point
of view, agents are elements of a dynamic universe Agent
that may grow and shrink over a DASM run. Ideally, one
would like to have a distributed runtime environment for
executing distributed ASMs. The current distribution of
AsmL does not yet have runtime support for true
concurrency; this is a work in progress. For the time being,
we simulate concurrent behavior by means of interleaving
as explained below. The reader interested in the semantics
of distributed ASMs is referred to [25].

Agents are viewed as objects of a class Agent. The
program of an agent a is a method of the class Agent. The
state of a (given by all fields of a) evolves in sequential steps
with each invocation of its program.

In this paper, every agent a has a field mailbox and a
method InsertMessage that is used by other agents to
send messages to a. The agent a also has a method
IsActive that determines whether the agent is active in
the current state that is true by default. (In general, ASM
agents are not required to have mailboxes.)

type MESSAGE

class Agent

abstract Program()

virtual IsActive() as Boolean

return true

var mailbox as Set of MESSAGE = {}

InsertMessage(m as MESSAGE)

add m to me.mailbox

Several agents may simultaneously insert messages into the
mailbox of a. This will not cause a conflict in updating the
mailbox because these updates are partial.

Recall the method ChooseSubset introduced above.
For simulation purposes, a distributed program has a global
method RunAgents. By firing RunAgents, we perform a
single step of the top-level system. Thus, at each global step
of the system, some, none, or all of the active agents in the
system may perform a step.

RunAgents()

forall a in ChooseSubset({a | a in Agent where

a.IsActive()})

a.Program()

Remark. A perceptive reader may notice a problem with
this method. If there is a shared memory, then two active
agents may do contradictory things, for example, one of
them may write 7 and another one may write 11 into a

shared location. In such a case, an exception will be
raised. Alternatively, ChooseSubset can be rewritten to
avoid possible contradictions.

3 ABSTRACT COMMUNICATION MODEL

One may wonder how to deal with networks in a
sufficiently abstract and general way. Often, one wants to
clearly separate the behavior of the network from the
behavior of an application running over this network. This
problem came up in a number of our projects, initially in the
UPnP project. To solve this problem, we introduced a
special category of agents which we call communicators.
Each communicator abstractly represents a multitude of
routers in a TCP/IP network [15]. Intuitively, different
communicators represent disjoint subnets (see Fig. 1) and,
typically, this is indeed the case. But, we do not impose this
restriction. The communicators transfer messages between
applications. We emphasize that, even though the model
was obtained by abstraction from TCP/IP networks, it is
independent from TCP/IP and is used to deal with very
different networks.

class COMMUNICATOR extends Agent

The communicators transfer messages between applications
running on hosts connected to the network. Thus, one can
think of communicators as an abstract kind of “router” of
messages. However, the term “router” used in this sense is
much more general than the corresponding TCP/IP term.

class APPLICATION extends Agent

Assuming an open system view, a system consisting of
applications and communicators is affected in various ways
by the operational environment into which it is embedded.
For instance, external actions and events may change the
system configuration, affect the communication load of the
network, or otherwise have an impact on message delays.
Those external actions and events are basically unpredict-
able as far as the system is concerned. In other words,
nondeterministic behavior plays an important role.

Communicators are nondeterministic in two ways. There
is an internal nondeterminism that reflects abstraction of
various details of routing. In addition, there is environment-
induced nondeterminism that may cause, e.g., that some
messages get lost. For example, in the case of UPnP, one
uses the TCP protocol, which is reliable, and the UDP
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protocol, which is not reliable. It is the responsibility of an
application to tolerate the nonreliable behavior of the
network.

In the following sections, we first discuss the various
aspects of the communicator’s operation and then present
the main program that integrates these aspects.

3.1 Message Transformation

Not all messages have a single recipient. Some messages are
intended to be sent to a group of recipients. Though,
multicasting is just one example of a general class of
transformation operations for message processing. Other
transformations, for instance, include incrementing a hop
count for time-to-live calculations, corruption and encryp-
tion of messages.

The ResolveMessage method transforms a message
(an inbound message of the communicator) into a set of
messages (outbound messages of the communicator). For
example, the transformation may involve adding or remov-
ing header information or converting a multicast message
into an equivalent set of unicast messages. The model
places no restriction on the kind of transformation
performed in this step. It is even possible that a transforma-
tion may discard a message completely, by returning an
empty set. By default, the message is left untransformed.

class COMMUNICATOR

virtual ResolveMessage(m as MESSAGE) as

Set of MESSAGE

return {m}

In the TCP/IP world, addressing mechanisms classify as
unicasting, broadcasting, or multicasting, where multicasting
can be viewed as the most general one [15]. In our model, a
multicast can involve any set of applications that are
reachable over the network; in principle, every such set of
applications may have an address. The receiver addresses
of a multicast message can themselves be multicast
addresses. An address table of a communicator is a (possibly
dynamic) mapping whose domain consists of the addresses
a of some multicast groups that the communicator can deal
with. If a is the address of a multicast group g, then
addressTableðaÞ is a set that consists of the addresses of
some multicast subgroups of g which could be singleton
groups. The union of all the subgroups is g itself.

type ADDRESS

class COMMUNICATOR

var addressTable as Map of ADDRESS to

Set of ADDRESS

The address table is used in the process of resolving an
inbound message into a set of transformed outbound
messages.

class COMMUNICATOR

abstract Destination(m as MESSAGE) as ADDRESS

virtual Transform(m as MESSAGE, dest as

ADDRESS) as MESSAGE

return m

ResolveMessage(m as MESSAGE) as Set of MESSAGE

return{me.Transform(m,a) | a in

me.addressTable(me.Destination(m))}

3.2 Message Routing

Communicators determine the recipient of a message.

Presumably, this is done by examining addressing informa-

tion in the headers and reconciling that information with

the communicator’s knowledge of network topology.

The Recipient method of a communicator identifies

which agent ought to receive an outbound message. The

recipient may be an application running on a local host, one

that is connected directly to the communicator, or another

communicator that will forward the message further. The

message may also have no recipient in which case the

return value of the method is null; this possibility forces us

to use the type Agent? consisting of agents and the null

value.

class COMMUNICATOR

abstract Recipient(m as MESSAGE) as Agent?

A generic way to encode global network topology, as far as

this information is required in an abstract communication

model (choosing a degree of detail and precision as

needed), is through a (possibly dynamic) mapping called

routingTable. The routing table of a communicator is

supposed to map addresses to neighboring agents (com-

municators or applications) as required for routing mes-

sages through a network.

class COMMUNICATOR

var routingTable as Map of ADDRESS to Agent

The recipient of an outbound message is determined by
looking up the destination address of the message in the
routing table.

class COMMUNICATOR

Recipient(m as MESSAGE) as Agent?

let addr = me.Destination(m)

if addr in me.routingTable then

return me.routingTable(addr)

else return null

3.3 Delivery Conditions

In real-world distributed systems, there are complex

conditions that govern when (or if) a message is forwarded

by a communicator. These might include network latency,

security parameters, and resource limitations of the under-

lying physical network. Since we abstract here from lower-

level network layers, the decision whether a set of messages

are ready to be delivered in a given state of the network is

abstractly stated through a function ReadyToDeliver

effectively serving as an oracle.4

class COMMUNICATOR

abstract ReadyToDeliver(messages as Set

of as MESSAGE) as Set of MESSAGE

Note that messages that are never ready to deliver are in
effect “lost,” even though they persist in the communicator’s
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mailbox. For example, some UDP message m may never be
ready to be delivered.5

3.4 Message Delivery

We are now ready to present an algorithm for how
communicators route messages through a network. A
communicator’s control program forwards messages found
in its mailbox by inserting them into the mailboxes of the
respective recipients of the message. Notice that a commu-
nicator program is nondeterministic if ReadyToDeliver

is so.

class COMMUNICATOR

override Program()

forall msg in me.ReadyToDeliver(me.mailbox)

remove msg from me.mailbox

//delete the message

forall m in me.ResolveMessage(msg)

//consider all resolved messages

let a = me.Recipient(m)

if a 6¼ null then

// if recipient found

a.InsertMessage(m)

// forward the message

First, the communicator determines the subset of unpro-
cessed messages that are ready to be delivered. Note that
some, all, or none of the messages in the mailbox may be
selected for processing. Next, the communicator transforms
each selected message, as described above. This may result
in the unfolding of a single message into many messages,
each of which will be posted to a single recipient (for
instance, in the case of multicasting). Note that a recipient
may be another communicator. Finally, the communicator
calculates the recipient of each resolved message and inserts
the (transformed) message to the mailbox of the recipient.

4 UNIVERSAL PLUG AND PLAY

The Universal Plug and Play Architecture (UPnP) [39] is an
industrial standard for dynamic peer-to-peer networking
defined by the UPnP Forum [40]:

Universal Plug and Play is a distributed, open networking
architecture that leverages TCP/IP and the Web technolo-
gies to enable seamless proximity networking in addition to
control and data transfer among networked devices in the
home, office, and public spaces.

We have developed a high-level executable DASM
model of the UPnP architecture [20], [21], [22] based on
the informal requirements specification [39]. The construc-
tion of a DASM allows us to combine both synchronous
execution models and asynchronous execution models with-
in one uniform model of computation. Thus, we model an
ensemble of devices and control points and the commu-
nication network in between them through the composition
of two separate DASMs, one for the communication
endpoints and one for the network. We preserve the
synchronous nature of devices and control points by

mapping them onto DASM agents where each individual
agent on its own realizes a synchronous execution model.
Here, we give an overview of our UPnP model focusing on
interoperability aspects (rather than on the internal beha-
vior of UPnP components) related to the abstract commu-
nication model.

4.1 The UPnP Protocol

We briefly summarize here the basic characteristics of the
UPnP protocol. Technically, it is a layered protocol built on
top of TCP/IP by combining various standard protocols
including DHCP, SSDP, SOAP, and GENA. It supports
dynamic configuration of any number of devices offering
various kinds of services requested by control points. To
perform control tasks, a control point needs to know what
devices are available (i.e., reachable over the network), what
are the services advertised by devices, and when those
advertisements expire. The services of a device interact with
the external (physical) world through the actuators and
sensors of the device.

The UPnP protocol defines six basic steps or phases.
Initially, these steps are invoked one after the other in the
order given below, but may arbitrarily overlap afterward.

0. Addressing is needed for obtaining an IP address
when a new device is added to a network.

1. Discovery informs control points about the avail-
ability of devices and their services.

2. Description allows control points to retrieve detailed
information about a device and its capabilities.

3. Control provides mechanisms for control points to
access and control devices through well-defined
interfaces.

4. Eventing allows control points to receive information
about changes in the state of a service at runtime.

5. Presentation enables users to retrieve additional
device vendor specific information.

Control points and devices interact through exchange of
messages over a TCP/IP network where network charac-
teristics, like bandwidth, dimension, and reliability, are left
unspecified. In general, the following restrictions apply.
Communication is considered to be neither predictable nor
reliable; that is, message transfer is subject to arbitrary and
varying delays, and some messages may never arrive.
Devices may appear and disappear at any time with or
without prior notice. Consequently, there is no guarantee
that a requested service is available in a given state or will
become available in future. In particular, an available
service may not remain available until a certain control
task using this service has been completed.

4.2 UPnP Abstract Machine

The individual communication endpoints, or applications,
in UPnP are devices and control points.

class CONTROLPOINT extends APPLICATION

class DEVICE extends APPLICATION

In addition to communicators and applications, the full
model employs some additional agents that reflect well
identified parts of the external world, e.g., DHCP server
agents, but here we ignore them. With each agent type, we

GLÄSSER ET AL.: ABSTRACT COMMUNICATION MODEL FOR DISTRIBUTED SYSTEMS 7

5. This behavior reflects the fact that UDP’s best-effort packet delivery
mechanism sometimes fails to deliver a message depending on conditions
and events that remain invisible for the user.



associate one or more interfaces for interaction with other
agents in our model or with the environment that is the
external world. The environment affects the system
behavior in various ways. For example, it changes the
system configuration, e.g., by creating and removing agents.
It also affects the communication load of the network which
affects message delays. Those external environmental
actions and events are unpredictable.

Our model is integrated with a graphical user interface
(GUI) implemented in Visual Basic (VB). This GUI serves
for user-controlled interaction and visualization of simula-
tion runs. The overall organization of the model is
illustrated in Fig. 2.

4.2.1 Device Model

The purpose of the device model specification is to describe
how a device behaves in UPnP-compliant way. In a given
system state, a UPnP device may or may not be connected
to a network. The network connectivity of a device is
affected by actions and events in the external world and
may therefore change any time with or without prior notice.
The device model specification is a synchronous parallel
composition of a number of rules operating in parallel;
different rules describe different protocol phases.

class DEVICE

abstract IsConnected() as Boolean

Program()

if me.IsConnected() then

me.RunAddressing()

me.RunDiscovery()

me.RunDescription()

me.RunControl()

me.RunEventing()

me.RunPresentation()

Here, we focus only on one of those phases, the control phase
given by RunControl, that involves direct interaction with
communicators. Every device offers a set of services which
can be called by one or more control points by means of
messages. Each service call produces a response message
sent back to the caller; the response message tells the caller
whether the call succeeded or not and may include some
return value.

The communication between the devices and the control
points is enabled by communicators. Every device is
associated with one communicator. A device sends mes-
sages by inserting them into the mailbox of that commu-
nicator. Typically, a device receives messages from that
same communicator (but this is not required: the commu-
nicator may represent only a part of the relevant subnet
behavior). Notice that who can deliver messages to whom
depends on the actual address tables and routing tables
used by communicators.

type SERVICE

class DEVICE

services as Set of SERVICE

var communicator as COMMUNICATOR

abstract Call(s as SERVICE, msg as MESSAGE)

as MESSAGE

The control phase of the protocol is executed only if the
device has a valid address. Initially, the address is null but it
is eventually updated by the addressing phase of the
protocol. When active, the control phase handles service
requests one at a time and runs the services.

class DEVICE

abstract IsServiceRequest(m as MESSAGE, s as

SERVICE) as Boolean

abstract RunServices()

var address as ADDRESS? = null

RunControl()

if address 6¼ null then

me.RunServices()

choose msg in me.mailbox

remove msg from me.mailbox

choose s in me.services

where me.IsServiceRequest(msg,s)

let reply = me.Call(s,msg)

communicator.InsertMessage(reply)

Note that RunServices() is executed in parallel to the
handling of service requests. After a service call to the
device is taken care of, the service may continue to run.
Whether only some or all of the services are allowed to
run simultaneously depends on the definition of the
RunServices method of the particular device.

5 MODELING AUTOMATED BUSINESS PROCESSES

In this section, we summarize a real-life application of
distributed abstract state machines to model automated
business processes [43]. The main purpose of the summary
is to illustrate the effective reuse of the abstract commu-
nication model. This very same model is also used in
another related application to modeling automated business
processes [17], [16].

A business process is a protocol for commercial transac-
tions that occur between two or more parties. Transactions
are exchanges of goods, services, or information. A typical
example of a business process is the series of interactions
required to settle a securities trade. Many business
processes are designed to span organizational boundaries.
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For example, a process for corporate purchasing may
include roles for a “buyer,” a “seller,” and a “shipping
agent, ” where each of the parties is a separate enterprise.

An automated business process is executed without manual
steps. For example, banks in the United States use an
automated clearinghouse to settle accounts for checks they
honor on each other’s behalf. A protocol for an automated
business process specifies data formats for messages, some
constraints on the behavior of the electronic communica-
tions network itself, and a description of the possible
patterns of messages that constitute a transaction.

5.1 XLANG

XLANG is an XML-based formal language that can be used
to define the data and networking protocols of automated
business processes [44]. XLANG builds on the existing
standards for the Internet and World Wide Web. The
building block standard that XLANG is most dependent on
is WSDL, the Web Service Description Language [42].
XLANG has a two-fold relationship with WSDL. Syntacti-
cally, an XLANG service description is a WSDL service
description with an extension that describes the behavior of
the service as a part of a business process. Operationally, an
XLANG service behavior may rely on simple WSDL
services to provide basic functionality for the implementa-
tion of the business process.

The goal of XLANG is to make it possible to formally
specify business processes as stateful long-running interac-
tions. As a rule, business processes involve more than one
participant. The full description of a process, called a
contract, must constraint not only the behavior of each
participant, but also the way these behaviors match to
comply with the overall process.

5.2 XLANG Abstract Machine

The definition of an abstract operational semantics for
XLANG comes in the form of an XLANG abstract machine
model formalizing the dynamic properties of the language
in terms of machine runs.

An XLANG contract contains two parts:

. a collection of individual so-called XLANG service
behaviors (that is service behavior specifications) and

. a port map defining the interconnection topology of
those services.

The port map determines the routing information that is
used by the network abstract machine to interconnect the
services.

The full XLANG abstract machine is a DASM that has
two main components, each of which is again a DASM:

1. Service Abstract Machine: A service abstract machine is
parameterized with a sequence of XAM instructions.

2. Network Abstract Machine: Here, the port map of the
contract determines the necessary interconnection
topology of the services.

In the remainder of this section, we first outline the overall
structure of the service abstract machine. We omit the
details regarding the behaviors of the individual XAM
instructions. We then describe the interaction of the service
abstract machine with the network abstract machine.

5.2.1 Service Abstract Machine

The Service Abstract Machine models an individual service.

It consists of two different types of ASM agents: 1) a

uniquely identified service manager that represents the

behavior of the infrastructure on top of which the service

runs; 2) some, possibly empty, collection of concurrently

operating processes (or process agents) that represent the

XLANG processes associated with that service. Each

process represents either a service instance created directly

by the manager or a subprocess spawned by a previously

created process.
During its lifetime, a service instance may spawn several

subprocesses. The behavior of that agent group, consisting

of the service instance and all its descendants, plays an

important role. Each process belongs to some manager.

There are four modes that indicate whether

1. a process has exited by having run all of the XAM
instructions,

2. a process has been interrupted by an exception,
3. a process has been halted by external intervention, or
4. a process is currently executing instructions.

type Service

type Label

type ServiceProgram

class Manager extends Agent

service as Service

pgm as ServiceProgram

class Process extends Agent

manager as Manager

enum Mode

exited

raised

halted

running

var pc as Label

var mode as Mode

var subProcesses as Set of Process

class ServiceInstance extends Process

The program of a process is to execute the next XAM

instruction in the running mode, and to do nothing (skip) in

any other mode. Some instructions may be executed

without incrementing the program counter; others cause

the program counter to jump to a new position in the

program.

type Instruction

//returns the instruction identified by the

//given label in the given program

Instr(pgm as ServiceProgram, label as Label)

as Instruction

class Process

Execute(instr as Instruction)

Program()

GLÄSSER ET AL.: ABSTRACT COMMUNICATION MODEL FOR DISTRIBUTED SYSTEMS 9



if me.mode = running then

me.Execute(Instr(manager.pgm, me.pc))

A manager has two independent jobs. One is to activate
new service instances when so called activating messages
are received. For example, a buyer may send a purchase
request to a seller that will trigger the creation of a new
instance of the seller service to handle that request. The
seller may of course receive several requests from different
buyers and create several independent service instances to
handle those requests. The other job of the manager is to
handle message traffic.

class Manager

Program()

me.ActivateServiceInstance()

me.HandleMessageTraffic()

HandleMessageTraffic()

me.ReceiveIncomingMessages()

me.ForwardOutgoingMessages()

5.2.2 Interaction with the Network Abstract Machine

The network abstract machine part of the XLANG model is
a specialization of the abstract communication model with
appropriate routing tables and address tables that enable
communication between services whose ports are inter-
connected according to the port map of the contract.

A service manager has a set of communication ports.
Each port is associated with an inbox and an outbox of
message instances. The inbox of a port contains all the
message instances that have been sent to that port and the
outbox contains all the outbound message instances from
that port. (The message instance terminology is due to
WSDL.)

type MessageInst

class Port

var inbox as Set of MessageInst

var outbox as Set of MessageInst

class Manager

ports as Set of Port

A message instance is transformed into some concrete
network message format when it is transmitted over the net.
The network message contains the original message
instance and a destination port. Here, we identify the
MESSAGE type introduced above with network messages.

type MESSAGE = NetworkMessage

class NetworkMessage

port as PortName

msg as MessageInst

Each port is associated with a communicator and may be
owned by a manager (the manager, if any, who has the port
among its ports). No port can be owned by more than one
manager (this is enforced by the XLANG language
definition [44]).

class Port

communicator as COMMUNICATOR

A manager uses the port map of the contract to create
network messages from outbound message instances and

forwards them to the communicators of the corresponding
ports.

class Manager

portMap as Map of Port to Port

class Manager

ForwardOutgoingMessages()

forall p in me.ports

choose m in p.outbox

remove m from p.outbox

let msg = new

NetworkMessage(me.portMap(p),m)

p.communicator.InsertMessage(msg)

When a network message has arrived, the original message
instance is extracted from it and inserted into the inbox of
the destination port.

class Manager

ReceiveIncomingMessages()

choose m in me.mailbox

remove m from me.mailbox

let p = m.port

add m.msg to p.inbox

Fig. 3 shows an instance of the XLANG abstract machine.

The XLANG model instance in Fig. 3 contains several

service abstract machines (SAMs) and a network abstract

machine (consisting of several communicators). Each SAM

contains a manager, some service instances, and other

processes. The XLANG abstract machine has been imple-

mented in AsmL [43]; a GUI is used to control with

executions of the model interactively and visualize the

machine states during simulation runs.

6 APPLICATIONS TO MODEL-BASED TESTING AND

ANALYSIS

The original purpose in creating the abstract communica-

tion model was to reflect the common part of all TCP/IP

communication networks. The model allows one to con-

ceptualize complicated networks without using a miracu-

lous transfer of messages from one endpoint to another. The

model is useful in high-level modeling and simulation of

distributed systems. In the preceding sections, we presented

two examples illustrating these points.

It turned out that the model has additional important

uses, namely, testing and analysis of distributed systems.

Taking into account the space limitation, we illustrate this

new point on a minimal example that nevertheless reflects

some key aspects of real applications of our technology at

Microsoft. We are using here the AsmL tester tool [8] that

we refer to below as the model explorer.

6.1 Sender-Responder Model

Consider a system of two endpoint agents, a sender and a
responder, connected via two communicators as illustrated
in Fig. 4.

For either i, the communicator Ci does not lose messages,
and if its mailbox is nonempty, then one of the messages is
ready for delivery. The main method of Ci, called Deliver,
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calls the underlying Program method of the communicator.
The sender agent has two methods, Send and Read, and the
responder has a single Respond method. There is an
Initilalize method that creates the agents and establishes
the desired topology shown in the diagram. For simplicity,
messages here are represented by strings.

type MESSAGE = String

class MyCOMMUNICATOR extends COMMUNICATOR

name as String

override ReadyToDeliver(messages as Set of

MESSAGE) as Set of MESSAGE

choose m in messages

return{m}

ifnone return{}

Deliver()

me.Program()

class ENDPOINT extends Agent

name as String

var target as Agent? = null

class SENDER extends ENDPOINT

Send(m as MESSAGE)

target.InsertMessage(m)

Read()as MESSAGE

choose m in me.mailbox

remove m from me.mailbox

return m

class RESPONDER extends ENDPOINT

Respond()

choose m in me.mailbox

remove m from me.mailbox

target.InsertMessage(”Re:”+ m)

var initialized as Boolean = false

Initialize()

initialized := true

let C1 = new MyCOMMUNICATOR(”C1”)

let C2 = new MyCOMMUNICATOR(”C2”)

let S = new SENDER(”S”)

let R = new RESPONDER(”R”)

S.target := C1

R.target := C2

... //configure the communicators

6.2 Exploring the Sender-Responder Model

Some methods in the model are identified in the model

explorer as actions. In this particular case, the actions are

Initialize, Send, Read, Respond, and Deliver. In

addition, enabling conditions are associated with the actions:

to Initialize, the system must be uninitialized; to Read,

Respond, or Deliver, the corresponding agent’s mailbox

must be nonempty; to Send(m), sender’s target mailbox

must not contain the message m.
The model explorer is used to generate a finite state

machine that describes part of the overall behavior of the

system. Besides enabling conditions, there are several

additional ways in which the user may limit the scope of

exploration to avoid state space explosion or to concentrate

on particular parts of the state space [24]. In the end, the

states of the FSM are the states of the explored part of the

system and the transitions are labeled by the appropriate
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actions. A trace through the FSM corresponds to a run of the

system that can be used as a scenario or a test case. In order

to avoid irrelevant6 interleavings of the agents in this

model, the exploration is configured so that the enabled

endpoint actions (one enabled action per endpoint agent)

are fired simultaneously in a single transition; similarly for

communicators. This is justified by the fact that endpoints

in this model are mutually independent (they do not share

state), the same holds for communicators. Notice that

mutual independence does not hold for all pairs of the

agents. For example, C2 writes into sender’s mailbox and

sender reads from it; the resulting state depends on the

order these actions are executed.

By running the model explorer on this model with the

given settings, we get an FSM as shown in Fig. 5.

Transitions that describe endpoint and communicator

actions are labeled with E(...) and C(...), respectively.

For example, from state S6 the transition labeled

E(S.Read,R.Respond) (both Read and Respond are

fired) goes to state S7 and the transition labeled

E(S.Send(Hi),R.Respond) goes to state S10. The

specific message Hi originates from the parameter config-

uration settings of the tool. The values of the mailboxes in

all the states except for the uninitialized one are shown in

the boxes surrounding the nodes that represent the

corresponding states (Fig. 5).
After generating the FSM, the tool uses standard FSM

based techniques to produce test sequences. For example, in

our case, we produce a 43 step long minimal transition tour

(so-called Chinese postman traversal) of the whole FSM. See

the beginning of the tour as shown in Fig. 6.
In real applications, such as Indigo [13], that are

designed to operate reliably under less than ideal network-

ing conditions, it is often desirable to explore the model

behavior under corresponding conditions. A typical goal is

test case generation. It has been our experience that often

such network conditions can be realized in the model by

appropriately adapting the behavior of the communicators,

without changing the remainder of the model. For example,

in our sample model we could allow the communicator C2,

from the responder to the sender, to lose some of its

messages.

7 RELATED WORK

We address four bodies of work: Architecture Description

Languages, Network Simulation Tools, Coordination Lan-

guages, and ASM models.

7.1 Architecture Description Languages

The main focus of an ADL is to specify a system’s conceptual

architecture rather than its actual implementation. Recent
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surveys of ADLs are found in [14] and [35]. The following is
a quote from [35] regarding the need for ADLs:

They [ADLs] are necessary to bridge the gap between
informal, “boxes and lines” diagrams and programming
languages which are deemed too low-level for application
design activities.

From that point of view, AsmL is an ADL, and the abstract
communication model can be seen as an ADL artifact. There
are, however, important distinctions between AsmL and the
traditional ADLs. The most important distinction is that
AsmL is executable.

AsmL has rigorous mathematical semantics. This is in
contrast to many existing ADLs which lack formal
semantics completely, or use different formal semantic
models for components and connectors [35]. A rigorous
semantics is often a prerequisite for many tools [32], [31]
and for being able to reason about the global behavior of the
modeled system. Since AsmL specifications are executable,
they can be and are used for simulation, automatic test case
generation [24], [8], scenario-based testing [7], conformance
checking [6], [9], to provide behavioral interfaces for
components [5], and so on. There are ongoing efforts in
combining AsmL with automated or semiautomated ver-
ification tools. The issue of ASMs versus ADLs was
addressed in [37], [38].

7.2 Network Simulation Tools

Among the simulation tools targeted at networking
research, the most prominent and widely used one is the
ns-2 network simulator [36] developed by the VINT project
[41], a collaboration of UC Berkeley, LBL, USC/ISI, and
Xerox Parc. Ns-2 is a powerful discrete event simulator
written in a mixture of C++ and OTcl. The latter is an object
oriented dialect of Tcl. Ns-2 provides substantial support
for simulation of TCP, routing, and multicast protocols over
wired and wireless networks.

It may seem that ns-2 models and abstract communica-

tion models (ACMs) compete, but we do not think so. The

two approaches target complementary aspects of computer

network modeling. Basically, the difference is between a

light-weight specification and a heavy-weight prototype;

both are needed. A heavy-weight ns-2 simulates real-world

systems as realistically as possible. The inherent complexity

of ns-2 models makes it difficult for the user to focus on

purely semantic aspects of the model. A light-weight, plug-

in ACM-based simulator facilitates the analysis of the

interaction between network entities and application

entities as required for modeling and analyzing distributed

systems at a semantic level.
As we see it, every distributed system, properly

abstracted, gives rise to an ACM, a faithful abstraction that

does not commit you to any implementation decisions. An

ACM can be viewed as a high-level specification of the

communication part of the global system. This piece of

theory helps one comprehend and design a distributed

system. An ACM is written in a simple high-level language

and, thus, lends itself to analysis. On early design stages, it

may be more appropriate for simulation. Note that ”users

are responsible for verifying for themselves that their simulations

are not invalidated because the model implemented in the

simulator is not the model that they were expecting” [36]. Such

a verification is easier for an ACM-based simulator.

Furthermore, an ACM model enables test case generation

and global-level system analysis, e.g., via model checking.

On the later stages, in particular, when timing issues are

taken into account, one needs a heavy-duty tool like ns-2.

7.3 Coordination Languages

Coordination languages have been attracting much atten-
tion recently. The most famous coordination approach is
that of Linda [19]. Here is a textbook on the subject: [1].
Some recent work (of group that interacts with our group) is
found in [2]. The purpose of coordination languages is to
give you means to program distributed systems. To do that,
a coordination language provides a communication model.
For example, in Linda, the coordination is achieved by
means of operations on tuples that live in a (conceptually)
shared space. Since the communication modes of a
coordination language is used for programming, it’s
abstraction level is fixed. Our language, AsmL, is not
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aimed for programming distributed systems and the
abstraction level of our abstract communication model is
much higher. As a result, the task of analysis is much easier
in our case. Besides, a coordination language operates on
top of a conventional programming language, like C,
whereas AsmL is a single language.

7.4 ASM Models

The abstract communication model is not the first ASM
model related to network communication. There exist
DASM models of network protocols, including well-known
protocols like Kermit [33] and Kerberos [10]. However,
none of those models explicitly separates the behavior of the
network from the behavior of the particular application as is
done by our abstract network model. To this end, the novel
idea presented here is to make the network model reusable.

8 CONCLUSION

We presented the abstract communication model (ACM). It
is our contention that every message-based distributed
system, properly abstracted, gives rise to a specialization of
the ACM. The ACM is potentially useful for system level
analysis of the given distributed system. It separates the
interaction logic from the computation logic. It is not
dissimilar to using a coordination language except that the
appropriate specialization of the ACM abstracts the
irrelevant details and is tailored to fit the semantics of the
application in hand. There are some limitations of course.
The ACM is useful mostly at the beginning of the modeling
process; it allows one to conceptualize (and document!) the
communication part of the system and, thus, helps you to
see the forest behind the trees. The ACM abstracts from
timing issues. The ACM time is logical; it is not obvious
how to incorporate real time into the picture.

We have been mostly concerned with verifying our
contention. As far as the analysis goes, we have been using
the ACM only for simulation and test-generation. In these
usages, the ACM itself is not very interesting or informa-
tive; it is the interplay between (a specialization of) the
ACM and the particular application that is of interest. A
relatively modest size of a typical ACM specialization
makes it amenable for other types of analysis, e.g., model
checking. We have not done that yet. As far as performance
analysis is concerned, it is not clear whether the ACM is
useful at all for the purpose.

One can imagine that the ACM may be useful for high-
level design of distributed systems; we have done nothing
in this direction.
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