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Abstract. One benefit of executable specifications is that they allow
one to test the conformance of implementations to their specifications.
We illustrate this on the example of Universal Plug and Play devices.
The necessary test sequences are generated automatically from ASM
specifications.

1 Introduction

Working with Microsoft’s product groups, we began to appreciate how important
it is to use specifications for generating test suites. Test suites allow you to check
whether the given implementation conforms to the specification. Is the ASM
approach good for the purpose? Egon Börger is optimistic [4, New Frontiers]:

If we succeed to exploit ASMs for defining and implementing methods
for generating test suites from high level specifications, this will turn a
dark and at present overwhelming part of software development into an
intellectually challenging and methodologically well supported task of
enormous practical value.

Here we are concerned with conformance testing for devices. The specification
of a device is an abstract state machine [15] with a fixed initial state. The ASM
may have many, possibly infinitely many, states. In general, you don’t have the
resources to explore all possible runs of the ASM. To this end, we group the ASM
states into finitely many hyperstates. This gives rise to a finite state machine, or
FSM, which is then used to generate a test suite using existing techniques. A test
suite is a set of test sequences that describe expected input-output behaviors of
the device. Exactly what information is encoded in the test sequences depends
on the method used to traverse the FSM and the method used to apply the test
suite to the device under test. Both issues are well studied in the literature and
are outside the scope of this paper. The basic assumption we make here is that
the device program text is not available to us.

It is important that the generated FSM and the original ASM are related in a
natural way. The runs of the ASM starting from a given initial state can be seen



as a directed graph whose vertices are states and whose edges are labelled by
actions that trigger the state transitions.

There are various ways that an ASM program can distinguish between ASM
states, the most important of them is by the means of guards. The guards re-
flect the state distinction that the programmer cared enough about to make
it explicit. Any rule involving nested conditional rules can be normalized so
that all its guards appear on the top level. Say that two states of the ASM are
guard distinguished by the specification program if there exists a guard in the
unnested form of the program that is satisfied by one of the two states but not
by the other. The guard-indistinguished property is an equivalence relation. It
is desirable that, during testing, you visit the equivalence class of every reach-
able state. Toward this goal, we define our hyperstates as equivalence classes of
guard-indistinguished states.

Generating a test suite from an FSM naturally raises questions regarding the
coverage of the FSM. Think of the FSM as a directed graph with labeled edges
and a distinguished initial node. What parts of the directed graph does the test
suite cover? For example, do you visit every reachable node and thus achieve
node coverage? Do you visit every link in the reachable part and thus achieve
link coverage?

We may also look at our ASM specification program text, and consider its struc-
tural coverage. Syntactically our ASM specification program is given as a set of
ASM rules, one rule per every input action. Full guard coverage is ensured if the
test suite involves, for each guard, some invocation of that rule with the guard
being true. In general, the problem of determining whether the given guard may
become true in some state is undecidable; see Section 3.1.

We restrict attention to deterministic programs; the generalization to the case
of nondeterministic programs is in preparation.

The rest of the paper is organized as follows. Section 2 provides a high-level
view of the two-step test-generation problem. The first step is to generate an
FSM from an ASM specification; it is treated in Section 3. The second step is
to generate test cases from the FSM; it is treated briefly in Section 4. Open
problems are discussed in Section 5. Related work is discussed in Section 6.
Executable AsmL [13] specification of the algorithm in Section 3 is given in
Appendix A.

2 Conformance Testing with ASMs

We are given a device and a specification for the device in the form of an ASM
program P of the following normal form. For each input action a in a fixed set
Actions of input actions, the ASM has a rule Pa called the action program for
a. Each Pa is a do-in-parallel block of rules



Pa =
if g1 then R1

. . .
if gk then Rk

(1)

where each ‘if gi then Ri’ will be called a clause (of the action program) with
gi as its guard and Ri as its body. The guard of a clause is a Boolean valued term
(essentially a first-order formula without free individual variables). The body of
a clause is nonbranching, i.e., has no if-then-else subrules.

A few words on the normalization. Every sequential ASM program is normaliz-
able [15]. The reducing algorithm generalizes to the case of programs with the
do-for-all construct and to all cases that came our way in the connection with
our project related to Universal Plug and Play [22].

The ASM specification P describes a device whose state is altered by one outside
agent (the user or the tester). At each step, independently of the current state
of the device, the agent invokes one of the input actions. We would like to find
out whether the device behaves according to the specification. The problem that
we address here is how to find a good conformance test suite. The method we
are describing consists of two, largely independent, steps that are treated in the
subsequent sections.

1. Extract a finite state machine M from P .
2. Generate a test suite from M .

Remark. In reality the device may have its own rules and may be influenced by
more than one agent. For testing purposes, the more general scenario reduces to
the simplified one.

Door example. The following sample specification is a stripped-down version
of a Universal Plug and Play door controller specification. For the purposes of
the presentation, we omitted several actions and state variables (that are used
for the locking and latching of the door as well as for the explicit setting and
resetting of the counter). This specification will be used as a running example
throughout the paper.

Consider a door that can be closed and opened. The controller of the door has a
counter for the number of times it has been opened and then closed. The counter
has a maximum value that is a positive integer; when this value is reached, the
counter starts over from 0. The ASM specification has the dynamic nullary
functions open and counter.

class Door
var open as Boolean
var counter as Integer
Open() = if not open then open:=true



Close() = if open and counter<Max then
open := false
counter := counter+1

if open and counter=Max then
open := false
counter := 0

The program can be simplified by counting modulo Max but current form has its
advantage; it stresses the importance of the border case.

2.1 Coverage

One can define various notions of coverage in terms of the generated FSM M ,
the ASM program P , and the generated test suite T , reflecting how good the
test suite is.

We look at the ASM program structure. ASM guard coverage is achieved under
the following condition. For every action program and each of its clauses, there
is some state where the action is invoked with the guard of the clause being true.
This notion of coverage is related to C2 coverage, also called branch coverage,
in path testing of software [2].

One achieves node coverage if all nodes in M are visited by T . One achieves link
coverage if all links in M are visited by T . In general, guard coverage does not
imply node or link coverage. Conversely, link coverage does not always imply
guard coverage. Both directions are illustrated below using the door ASM. Link
coverage implies node coverage though, because there are no isolated nodes in
the generated FSM.

3 The Extraction Algorithm

In order to find a test suite we extract a finite state machine from the ASM
specification and then use test generation techniques for FSMs. In this section,
we concentrate on the extraction problem.

The extraction uses the syntactic form of the ASM specification in an essential
way. Notice that the state of the specification does not include information on
which, if any, is the current control action.

Recall that two states are equivalent if they are guard indistinguished. A hyper-
state is a class of this equivalence relation. If the program has m guards then
the hyperstates can be succinctly represented as binary strings of length m. This
leads to a finite state machine1.
1 Usually only some binary strings of length m represent reachable states. Many com-

binations of guards represent unreachable states or violate the integrity constraints
and thus represent no states at all.



The extraction algorithm works with a given specification ASM and is itself
represented as an ASM. In the following we use the door controller as our sample
specification.

A test state is an encoding of the dynamic part of the state of the specification
ASM. Test states are represented here by structured data (other representations
are certainly possible).

structure TestState
open as Boolean
counter as Integer

The rule fire is used by the FSM generator to invoke any of the actions in the
specification by its name.

fire(S as TestState, A as String) as TestState =
machine
let D = new Door(S.open, S.counter)
if A = "Close" then D.Close() else D.Open()

step
return TestState(D.open,D.counter)

The function hyperstate returns the representation of the hyperstate of the
given test state (for example as a string of 0s and 1s). In this version of the
algorithm, representative(H,S) is a binary dynamic relation expressing that
H is a hyperstate and S is a test state that has been deposited as a representative
of H. The nullary function S0 provides the initial test state of the specification.
The generated state transitions are recorded in the ternary dynamic relation
links. The dynamic function frontier includes all the test states still to be
processed.

Initially, representative is {(hyperstate(S0),S0)}, links is the empty set,
and frontier is {S0}. The core of the extraction algorithm is to repeatedly
execute the following rule until the frontier is empty. See Appendix A for more
details.

genFSM() =
choose S ∈ frontier do
frontier(S) := false
forall A ∈ Actions do
let T = fire(S,A)
representative(hyperstate(T),T) := true
links(S,A,T) := true
if relevant(T) then frontier(T):=true

The definition of what is a relevant test state plays a central role in the algorithm.
The following definition states that the only relevant test states are those whose
hyperstates have not yet been encountered.



relevant(T as TestState) as Boolean =
¬(∃ x ∈ representative where first(x)=hyperstate(T))

At another extreme, the following definition states that a test state is relevant
if it has not been encountered yet. With this definition the algorithm may not
terminate, unless the total number of states is finite.

relevant(T as TestState) as Boolean =
¬(∃ x ∈ representative where second(x)=T)

Unless stated otherwise, we will assume that relevant is defined according to
the first definition.

Door example continued. There are 3 different guards in the door ASM and
therefore at most 23 possible hyperstates, with each guard being either true or
false. Some of the combinations are ruled out by being inconsistent. The guards
are:

g1 : open and counter=Max
g2 : open and counter<Max
g3 : not open

Every hyperstate can be characterized by a binary sequence b1b2b3 of 0’s and
1’s, as the set of all states that satisfy gi if and only if bi = 1. We will denote
such a hyperstate by Hb1b2b3 .

The initial state S0 is such that the counter is 0 and the door is closed. Thus,
g1 and g2 are false and g3 is true, i.e.,

hyperstate(S0) = H001

When we invoke the action Close in the initial state, the state does not change.
When we perform the action Open in the initial state we get a new state S1
where the value of counter is 0 and the value of open is true.

fire("Close",S0) = S0
fire("Open",S0) = S1

The hyperstate of S1 is H010, i.e., the door is open and the counter is less than
the maximum value.

When we perform the actions in the state S1, we get back states that are repre-
sentatives of either H010 or H001 and the algorithm terminates:

fire("Close",S1) = S0’, (where hyperstate(S0’) = hyperstate(S0))
fire("Open",S1) = S1



The generated finite automaton is illustrated in Figure 1. Its nodes are the
generated hyperstates and there is a transition with label L from node H to
node H ′ if there is a link with label L from some representative of H to some
representative of H ′.

H001 H010

Close Open

Open

Close

Fig. 1. Finite automaton generated from the door example.

Remark. Notice that the input ASM program P is executed in the process of
generating the FSM. The potential state explosion problem of the generated
FSM is ameliorated by producing only those hyperstates that are reachable from
the given initial state. Still, the total number of reachable hyperstates may be
exponential in the number of guards in P .

3.1 Complexity

Even though the process described in the previous section works in practice
(at least in our practice), in general the problem of extracting the finite state
machine is hard. As the following complexity results show, it may not even
be possible or computationally feasible to have an algorithm that generates all
possible hyperstates that are reachable from a given initial hyperstate.

Consider for example, the case when there is only one action a with the program

Pa =
if p(x1, x2, x3, x4) �= 0 then Updates
if p(x1, x2, x3, x4) = 0 then Halt

where x1, . . . , x4 are integer state variables and p is a polynomial. Updates can
be chosen so that varying the polynomial makes the problem of the existence of
a halting (hyper)state (where p(x1, x2, x3, x4) = 0) undecidable. This uses [20].
Now replace p(x1, x2, x3, x4) �= 0 with φ(b1, . . . , bn) where b1, . . . , bn are Boolean
state variables and φ is a propositional formula. The problem of the existence of
a halting (hyper)state becomes NP complete.

4 Generating a test suite

The extraction algorithm produces a finite state machine. View the machine as a
directed graph and mark each edge with the cost of executing the corresponding



action at the corresponding hyperstate. You want to walk through the graph
in a cheapest possible way traversing every edge at least once. That is the well
known Chinese Postman Problem [14] that naturally arises in conformance test-
ing [17, 19]. The problem has an efficient solution in the case when the finite
state machine is deterministic and strongly connected.

In general, the deterministic case has been studied extensively in the literature
and there exist several other methods for exploiting the structure of a deter-
ministic FSM, see e.g. [23]. The most common of them is the transition-tour
method, also known as the T-method, and one version of the T-method uses
the Postman Tour. We have integrated an efficient Postman Tour algorithm [24]
with our extraction algorithm.

Nondeterministic case. In our applications, nondeterminism is limited but it
does arise. Nondeterminism in the FSM is either caused by nondeterminism in
the device and thus in the specification, or by the extraction algorithm as a
result of abstraction. We are currently investigating different ways to deal with
nondeterminism.

5 Future Work

There are several open issues with the methodology that we have described. We
focus below on the so-called non-discovery problem that has to do with the fact
that not all reachable hyperstates may be discovered. There are other issues that
we haven’t dealt with in this paper. For example state explosion when joining
several (essentially independent) ASM programs into one. We are also looking at
alternative definitions for forming hyperstates. For example, instead of guards
themselves, one may consider sets of smallest closed subformulas of guards as
the basis for forming hyperstates. Normally, this leads to more hyperstates but
may provide better coverage.

In this paper, we assume that the action programs do not take parameters. A
solution to this problem will be presented in a subsequent paper. It builds on
grouping the values of parameter vectors according to the guards.

How to deal with nondeterminism is another open issue that has consequences
regarding the applicability of known FSM based test case generation techniques.
One interesting approach is the test case generation framework based of labeled
transition systems [25]. Some techniques for decreasing and sometimes even elim-
inating nondeterminism have been studied in the context of extended finite state
machines [9, 18] or EFSMs, EFSMs generalize the finite state machine model by
introducing state variables that can be tested and changed during a transition.
Notice that the structure generated by our extraction algorithm is richer than
an FSM. It is in fact a simple ASM that generalizes an EFSM.



5.1 The Non-Discovery Problem

Consider the door example. The algorithm generates a finite automaton with
two nodes, see Figure 1. It never discovers the reachable hyperstate where the
value of counter equals Max. That is the manifestation of the Non-Discovery
Problem in this example. If we would treat all new test states as relevant the
problem would not arise, but this would often be infeasible.

In general, you start with a test state s and you explore a vicinity V of it. There
could be states t in V that are treated as irrelevant but which may potentially
lead to new, and thus undiscovered (or non-discovered), hyperstates. A more
subtle manifestation of the Non-Discovery Problem is when you have all the
hyperstates but you miss certain links.

To illustrate the second phenomenon, let us modify the door controller specifi-
cation by adding a new action SetMax:

class Door..
SetMax() = if true then counter:=Max

Clearly, we still have the same hyperstates. The algorithm will now discover the
hyperstate H100. It has a single representative corresponding to the door being
open and the counter being max. Let us run through the algorithm once with
this extended set of actions, staring from the initial state S0.

First iteration. The frontier consists of S0, i.e. ¬open ∧ counter = 0.

fire("Close",S0) = S0
fire("Open",S0) = S1 = open ∧ counter=0
fire("SetMax",S0) = S2 = ¬open ∧ counter=Max

We can easily calculate that hyperstate(S1) = H010, hyperstate(S2) = H001
and thus only S1 is added to the frontier.

Second iteration. The frontier consists of S1.

fire("Close",S1) = S3 = ¬open ∧ counter=1
fire("Open",S1) = S1
fire("SetMax",S1) = S4 = open ∧ counter=Max

We get that hyperstate(S3) is H010, which is an existing hyperstate, and that
hyperstate(S4) is H100 is a new hyperstate. Hence, only S4 is added to the
frontier.

Third iteration. The frontier consists of S4.



fire("Close",S4) = S0
fire("Open",S4) = S4
fire("SetMax",S4) = S4

No new states are added to the frontier and the algorithm terminates. The
generated automaton is shown in Figure 2.

H001 H010

H100

Close, SetMax Open

SetMax, Open

Open

Close

SetMaxClose

Open

Fig. 2. Finite automaton generated from the door example. The dashed transition is
not part of the generated FSM.

As shown, the algorithm does not discover the transition labeled by the action
"Open" from H001 to H100. Notice that this link is obtained by opening the door
in a state where the counter has already the maximum value.

In general the Non-Discovery problem is unavoidable: there may be no algorithm
that always halts and generates the hyperstates for all reachable states. Never-
theless it must be coped with in one way or another. One can for example make
the process interactive and rely on the tester to provide the undiscovered links
explicitly.

Symbolic methods. We can try to find the undiscovered hyperstates and links by
solving the corresponding equations which may be possible in many cases. This
direction seems to be fruitful. We can identify important classes of cases where
the problem is solvable.

Randomization. Another approach is to use randomization. If you know the
set of states representing a given hyperstate h (rather than knowing only those
representative that have been discovered), you can randomly choose one and
apply the various actions. If the set is not too big then you can go through all



the representatives. (There are other ways to use randomization for testing. Here
is a naive way: start from the initial state and apply a randomly chosen action,
then again apply a randomly chosen action, and so on. There are various ways
to finish the process. Of course, this does not solve the Non-Discovery Problem.)

A Semi-Automatic Approach Currently we have adopted a pragmatic ap-
proach to the non-discovery problem. In the specifications that we have studied
so far, coming mostly from the context of UPnP [22], it is very often the case
that if a certain hyperstate is not reached, then this is directly reflected in the
guard coverage of the ASM. In some sense this is to be expected, because if
a guard is never true then either the clause is irrelevant and can be removed
completely, or the algorithm was not able to reach a state satisfying the guard.
We have developed a prototype environment where the tester may intervene by
introducing additional links and rerun the algorithm incrementally. This does
not really solve the problem of course, because in general guard coverage does
not imply node coverage.

6 Related work

The two main approaches for test case generation are based on labeled transition
systems (LTSs) and finite state machines (FSMs). A review of both approaches
is given in [3]. In this section we look briefly at both and their relation to our
work.

The main characterizing feature for all the test case generation techniques men-
tioned below is that they use the specification symbolically. This is in sharp
contrast to the ASM approach introduced in this paper where the specification
itself is executed to produce the test cases.

6.1 LTS based testing

Conformance testing plays a central role in testing communication protocols,
where it is important to have a precise model of the observable behaviour. This
has lead to a testing theory based on labeled transition systems. LTSs may in
general be nondeterministic. See an overview in [25] and an overview of the
literature in [6].

Compared to the ASM approach proposed in this paper and to some FSM and
EFSM based techniques, the main drawback of LTS based test case generation is
that the specification is normally taken “as is” and no systematic method is used
to take advantage of the structure of the specification. It is therefore difficult to
produce restricted test suits and make claims about resulting coverage. The best
one can do really, is to produce as many test cases as the resources allow. State
explosion is another important issue where known verification techniques may be



used [10]. Verification techniques can also be used to generate test cases when a
test purpose (a property to be tested) is given. TGV [12] is an industrial tool that
utilizes this approach to generate test cases from SDL and Lotos specifications.

6.2 FSM based testing

FSM based testing was initially driven by problems arising in functional testing
of hardware circuits. The theory has recently also been adapted to the context of
communication protocols. Most of the work in this area has dealt with determin-
istic FSMs. See [18, 23] for comprehensive surveys and [21] for an overview of the
literature. The Extended Finite State Machine (EFSM) approach has been in-
troduced mainly to cope with the state explosion problem of the FSM approach.
Essentially the problem arises if the system to be modeled has variables that may
take values in large, even infinite, domains, for example integers. In an EFSM
such variables are allowed and the transitions may depend on and update their
values. See [5, 9, 18].

In EFSMs the control part is finite and is separated from the data part, which
distinguishes them from ASMs. The purpose of the FSM extraction algorithm
in Section 3 is essentially to extract a finite control part out of the ASM. The
problem of removing nondeterminism from such an extracted control FSM is
closely related to the stabilization problem of EFSMs. The stabilization problem
is addressed in [9]. The inability to directly deal with nondeterminism is the main
drawback of the FSM based approaches.

In the context of software testing, advanced theorem proving techniques have
been introduced for extracting finite automata from Z specifications for test case
generation. This is demonstrated by the disjunctive normal form approach [11]
that is used also in [16]. The overall approach is similar to what is proposed
in this paper. Finite automaton based testing for object oriented software is
introduced in [26]. In this context [7] introduces techniques for factoring large,
possibly nondeterministic, FSMs into smaller deterministic ones. Some of these
techniques have been implemented in the KVEST tool [8]. More work related
to finite state machine based software testing can be found on the homepage of
Model-Based Testing [1].
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A FSM extraction algorithm

The following is an executable AsmL [13] specification of the FSM extraction
algorithm introduced in Section 3.

A.1 Test Harness

A class to be tested must support the following interface.

interface Testharness[TestState]
S0() as TestState
actions() as Set[String]
hyperstate(T as TestState) as String
fire(S as TestState, A as String) as TestState

A.2 FSM Generator

The class GenFSM defines the central reachability algorithm. It is completly
generic.

class GenFSM[TestState] (t as Testharness[TestState])
var links as Set of TestState*String*TestState = {}
var frontier as Set of TestState = {t.S0()}
var representative as Set of String*TestState =

{(t.hyperstate(t.S0()),t.S0())}

genFSM() =
choose S in frontier do
frontier(S) := false
forall A in t.actions() do
let T = t.fire(S,A)
representative(t.hyperstate(T),T) := true
links(S,A,T) := true
if relevant(T) then frontier(T):=true



relevant(T as TestState) as Boolean =
not(exists x in representative where first(x)=t.hyperstate(T))

class GenFullFSM[TestState] (t’ as Testharness[TestState])
extends GenFSM[TestState] (t’)

relevant(T as TestState) as Boolean =
not(exists x in representative where second(x)=T)

A.3 The Main Program

The main program instantiates the FSM generation with a door controler and
runs until no further change occurs.

run() =
machine
let th = new DoorTestharness()
let fsm = new GenFSM(th)

step
while fsm.frontier �= {} do fsm.genFSM()

step
writeln("generated FSM = "+

{(th.hyperstate(S), A, th.hyperstate(T)) |
(S,A,T) in fsm.links} )

A.4 Door Controler Specification

The following sample specification is a stripped-down version of a Universal Plug
and Play door controler specification.

Max as Integer = 10

class Door
var open as Boolean
var counter as Integer

Close() =
if open and counter < Max then
open:=false
counter:=counter+1

if open and counter=Max then
open:=false
counter:=0



Open() = if not open then open:=true

SetMax() = counter := Max

A.5 Door Controler Test Harness

This is the appropriate instance of a test harness for a door controler. It must
be provided by the user.

structure DoorTestState
open as Boolean
counter as Integer

class DoorTestharness implements Testharness[DoorTestState]
S0() as DoorTestState = DoorTestState(false,0)
actions() as Set[String] = {"Close", "Open", "SetMax"}

hyperstate(T as DoorTestState) as String =
let b0 = if T.open and T.counter = Max then "1" else "0"
let b1 = if T.open and T.counter lt Max then "1" else "0"
let b2 = if not T.open then "1" else "0"
return(b0 + b1 + b2)

fire(S as DoorTestState, A as String) as DoorTestState =
machine
let P = new Door(S.open, S.counter)
if A = "Close" then P.Close()
elseif A = "Open" then P.Open()
else P.SetMax()

step
return DoorTestState(P.open,P.counter)


