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Abstract

A t-private private information retrieval (PIR) scheme
allows a user to retrieve thih bit of ann-bit string = repli-
cated among servers, while any coalition of up teservers
learns no information about We present a new geometric
approach to PIR, and obtain

e A t-private k-server protocol with communication
o) (’“72 log k nl/L(Q""U/”), removing the(%) term of
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Unfortunately, if information-theoretic privacy is re-
quired, then there is no better solution than the trivial one
[11]. To get around this, Chaat al[11] suggested replicat-
ing the database amoig> 1 non-communicating servers.

In this setting, one can do substantially better. Indeed, Chor
et al [11] give a protocol with complexity)(n'/3) for as
few at two servers, and ad(k? log k n'/*) solution for the
general case. Ambainis [1] then extended @& '/?) pro-
tocol to achieveD (2" n!/(2k-1)) complexity for everyk.
Finally, in [7], building upon [14, 5], Beimeét al reduce

previous schemes. This answers an open question ofhe communication t@2®) n " Fses" . For constant;, the

[14].

e A 2-server protocol with O(n'/3) communica-
tion, polynomial preprocessing, and online work
O(n/log" n) for any constant. This improves the
O(n/ log® n) work of [8].

e Smaller communication for instance hiding [3, 14],
PIR with a polylogarithmic number of servers, robust
PIR [9], and PIR with fixed answer sizes [4].

To illustrate the power of our approach, we also give alter-
native, geometric proofs of some of the blegptivate upper
bounds from [7].

1 Introduction

Private information retrieval (PIR) was introduced in a
seminal paper by Chat al [11]. In such a scheme a server
holds ann-bit stringz € {0, 1}", representing a database,

and a user holds an indéx [n] ef {1,...,n}. Atthe end

of the protocol the user should learpand the server should
learn nothing about A trivial solution is for the server to
send the usex. While private, thecommunication com-
plexityis linear inn. In contrast, in a non-private setting,
there is a protocol with onljog n + 1 bits of communica-
tion. This raises the question of how much communication
is really necessary to achieve privacy.

*Supported by an NDSEG fellowship.
TSupported in part by NTT Award MIT 2001-04 and NSF grant CCR
0219218.

latter is the best upper bound to date. The best lower bound
is a humbleclogn for some small constamt> 1 [18]. For
a survey, see [12].

A drawback of all of these solutions is that if any two
servers communicate, they can completely recovérhis
motivates the notion of grivacy threshold, 1 < t < k,
which limits the number of servers that might collude in or-
der to get information about That is, the joint view of any
t servers should be independentiofThe case¢ > 1 was
addressed in [11, 14, 5]. Beimel and Ishai [5] give the best

upper bound prior to this workO ((’;)’“;nlﬂ(%*l)/”)
Since this bound grows rapidly within [14] it is asked:

Can one avoid th¢") overhead induced by our use of
replication-based secret sharing?

We give a scheme with communication
O(%zlogknl/“%—l)/”) for any ¢, and thus answer

this question in the affirmative.

Our upper bound is of considerable interest in tne
acle instance-hidingcenario [2, 3]. In this setting there
is a function F,, : {0,1}™ — {0,1} held by 72—
oracles. The user haB € {0,1}™, and wants to pri-
vately retrieveF,,(P), even if up tot oracles collude.
The user’s computation, let alone the total communication,
should be polynomial inn. For constant, running our
PIR scheme on the truth table 6f,, gives a scheme with
total communicatiorO(m**/>+2). This improves the pre-
vious bound of O(m</2+2+1) (see [14]) by a factor of

1The best upper bound fdrprivate PIR [7] does not apply since it is



mt. Whenm = logn, this is exactly the problem of PIR tion of F' to . In particular the user obtains the desired
with & = Q(logn/loglogn), for which we obtain the best  value of F(P). The idea of polynomial interpolation has

known bound. been used previously in the private information retrieval lit-

Another application of our techniques fsout-of- ro- erature [2, 11, 3]; however, we significantly extend and im-
bust PIR [9]. In this scenario a user should be able to prove upon earlier techniques through the use of derivatives
recoverz; even if after sending his queries, up ke- k and more general varieties.

servers do not respond. Previous bounds for this problem  Qutline: In section 2 we introduce our notation and pro-
include O(kn'/*1log1) and 90 (k) *Fie" | logi [9]. The vide some necessary definitions. In section 3 we describe a
first bound is weak for smalt, while the second is weak non-recursive -private PIR protocol on a line. We also dis-
for largek. We improve upon these withiaout-of{ robust cuss the robustness of our protocol. Section 4 deals#with

protocol with communicatio® (kn'/2*=Dlog1). private PIR protocols for arbitrary and discusses applica-
Another concern with the abovementioned solutions is tions to instance-hiding. The underlying variety is a curve.
the time complexityof the servers per query. Beimet In section 5 we present our construction of PIR protocols

al [8] show, among other things, that if two servers are With preprocessing. Finally, in section 6 we wrap up with
given polynomial-time preprocessing, then during the on- a geometric proof of some of the upper bounds of [7]. The
line stage they can respond to queries wittn/ log® n) underlying variety is a low dimensional affine space.

work, while preserving)(n'/?) total communication. By

combining a balancing technique similar to thatin [10] with 2  Preliminaries

a specially-designed 2-server protocol in our language, we

can reduce the work t0(n/ log" n) for any constant > 0. By default, variables\, take values in a finite field,
Itis immediate from our construction that if a server has an- and variables?, V, V7, Q andQ’ take values i, Let W

swers of size for anya = O(n'/?), then there is a 2-server  pe an element df’. We use the subscrifit; to denote the
protocol with query siz&)(n/a?). This, in particular, re-  jth component ofV.

solves an open question of [4]. A k-server PIR protocol involves serversSy, ..., Sk,

We note that using techniques similar to those in [6], gach holding the samebit string = (the database), and a
our 1-private protocols can be modified to achieve the best ,so17/ who knowsn and wants to retrieve some bif, i €

known probe complexitywhich measures the number of [n], without revealingi. We restrict our attention tone-
bits the user needs to read in the server’s answers. More-

- ! round,information-theoretic PIR protocols.
over, since we improve upon Theorem 6.1 and Corollary  pefinition - [7] A t-private PIR protocol is a triplet of

6.3 of [6], our construction also yields minor improvements algorithmsP = (Q, A,C). At the beginning of the pro-
for PIR schemes with logarithmic query length, yielding ef- tocol, the uset/ invokes Q(k, n,i) to pick a randomized
ficient locally decodable codes over large alphabets. k-tuple of queriesqr, . .., g ), along with an auxiliary in-
Finally, our techniques are of independent interest, andormation stringau. It sends each served; the queryg;
may serve as a tool for obtaining better upper bounds. Asyng keepsiua for later use. Each serve; responds with
an example of the model's power, we give a new geometric g, answeu; = A(k, j, x, ;). (We can assume without loss
proof of the best known upper bound fbiprivatek-server  f generality that the servers are deterministic; hence, each
PIR protocols of [7] fork < 26. answer is a function of a query and a database.) Finally,
U computes its output by applying the reconstruction algo-
rithm C(k,n,aq, ..., ax, auz). A protocol as above should
satisfy the following requirements:

The general idea behind our protocols is the idea of poly-
nomial interpolation. As in previous work, we model the

database as a degré@olynomialF’ € F,[z1, . . ., 2z, With

m = O(dn'/%). The polynomialF is such that there is an e Correctness :For anyk,n, x € {0,1}™ andi € [n],
encodingE : [n] — Fi* for which F(E(i)) = z; for ev- the user outputs the correct valuegfwith probability
eryi € [n]. The user wants to retrieve the valilig P) 1 (where the probability is over the randomnes<)f

for P = E(i) while keeping the identity of private. To
this end the user randomly selects a low-dimensional affine
variety (i.e. line, curve, plane, etc;y C ;" containing
the point P and discloses certain subvarietiesyoto the
servers. Each server computes and returns the valuEs of
and the values opartial derivativesof F' at every point

on its subvariety. Finally, the user reconstructs the restric-

e t-Privacy : Each collusion of up to servers learns no
information abouti. Formally, for anyk, n, iy,is €
[n], and everyl' C [k] of size|T'| < t the distributions
Qr(k,n,i;) andQr(k,n,iz) are identical, wher@r
denotes concatenation gfth outputs ofQ for j € T.

Thecommunication complexitf a PIR protocolP, de-

not known how to make it-private, and in any case, the dependencé on notedC’p(n, k) i$ a function _Ofk andn measuring the to-
there is22(F). tal number of bits communicated between the user fand




servers, maximized over all choices®ok {0,1}", i € [n] This divisibility condition implies thatf (A\) = 0 since the
and random inputs. degree off is at most2s — 1. |

In our protocols we represent the databadsy a mul-
tivariate polynomialF'(z1, ..., z,,) over afinite field. The 3 PIR on the line
important parameters of the polynomialare its degred
Zgg Lges T)L;rgr?irsc;jva:'ea\‘/?é?s'l Air:/e;y sﬁ”ﬁ; ri?trsr?tegitf?ér We start this section with a PIR protocol of [11]. This
ence of our represerlnatation is)':hat[vv]é use p(flynomials overprOtOCOI has a simple geometric interpretation and has
. . . served as the starting point for our work.
fields larger tharf",. The polynomialF’ represents: in the gp
following sense: with every € [n] we associate a point

E(i) € F™; the polynomialF satisfies: Theorem 3 ([11]) There exists a 1-private k-

server PIR protocol with communication complexity
Vi€ [n], F(E())=. O(k2log k n/(*=1)).

We use the assignment functién: [n] — F* from [7].
Let E(1),..., E(n) denoten distinct points of Hamming
weight d with coordinate values from the sft, 1} C F,,.
Such points exist if"}) > n. Thereforem = O(dn'/)

Protocol description : Consider a finite fieldf,, where
k < q <2k Let)Aq,...,\; € F, be distinct and nonzero.
Setd = k — 1. Let P = E(i). The user wants to retrieve

variables are sufficient. Define F(P).

= Uu . PicksV € F* uniformly at random|

Flanezm) =3 o ]| 2 U—S, © P+aV

=1 E(i);=1 U — 'Sh : F(P+ Ahv)
(E(7), is thel-th coordinate ofE(i).) Since eachE(i) is
of weightd, the degree of' is d. Each assignmeri (i) to Privacy : It is immediate to verify that the inpytP +
the variableg; satisfies exactly one monomial in(whose AnV') of each serves; is distributed uniformly oveff;".
coefficient isx;); thus, F(E(i)) = z;. Thus the protocol is private.

Correctness :We need to show that valué§ P+ A\, V)
for h € [k] suffice to reconstruck'(P). Consider the line
d , L ={P+ AV | X € F,} inthe space;". Let f(\) =
f(N) = a0 + Y a;\" € F,y[)] the derivative is defined  F(P + \V') be the restriction of to L. Clearly, f € F,[\]
P is a univariate polynomial of degree at maest= & — 1.
by f/(A) = 3 da; L. Note thatf(\,) = F(P + A\, V). Thusid knows the values
1 of f(\) at k points and therefore can reconstriyf¢t\). It
remains to note that'(P) = f(0).

Our constructions rely heavily on the notion of a deriva-
tive of a polynomial over a finite field. Recall that for

i=
We conclude the section with two technical lemmas.

Lemmal Letf € F,[\] ands < charF, — 1. Suppose Complexity : The user sends each bkervers a length-
m vector of values irF,. Recall thatm = O(dn'/?) and
Fo) = f(ho) =...= I (N) =0, k < ¢ < 2k. Thus the total communication from the
then(A — Ao)**! | £. user to all the servers ©(k?log k n'/*=1)). Eachs), re-

. sponds with a single value frofiiy,, which does not affect
Proof: See lemma 6.51 in [15] and note that“ 0. W the asymptotic communication of the protocol.

Lemma 2 Suppose{\, }, {v}}, {v,} are elements oF, In the protocol above there is an obvious imbalance be-
whereh € [s] and {\,} are distinct; then there exists at  tween the communication from the user to the servers and
most one polynomigf(A) € Fy[A] of degree< 2s —1such  yijce versa. The next theorem extends the technique of The-
that f(\i) = v) and f'(As) = vy, orem 3 to fix this imbalance and obtain a better communi-

Proof: Assume there exist two such polynomigig\) cation complexity.

and f>()). Consider their differencg¢ = f; — f,. Clearly,
F(A) = f'(An) = 0forall h € [s]. Therefore, by lemma 1~ Theorem 4 There exists d-private k-server PIR protocol
with communication complexity (k2 log k n'/(2k=1)),

S

TTO =22 ] .

Pt Protocol description : We use the standard mathematical

notation g—fl o to denote the value of the partial derivative

2The Hamming weight of a vector is defined to be the number of ) )
nonzero coordinates. of F' with respect toy; at pointQ. Let Ay,..., A\, € F, be



distinct and nonzero. Sdt= 2k — 1. Let P = E(i). The
user wants to retrieve'(P).

u PicksV € i uniformly at random.
Uu—3Sy, P+ MV
U~ Sy, F(P + )\}LV),

OF OF

821 P+/\hV gee ey 8Zm P+)\hv

Privacy : The proof of privacy is identical to the proof
from Theorem 3.

Correctness : Again, consider the lind. = {P +
AV | A € F,}. Let f(A) = F(P + AV) be the restric-
tion of F to L. Clearly, f(A,) = F(P + A,V). Thus
the user knows the valuds(\,)} for all h € [k]. How-
ever, this time the value§f(\;)} do not suffice to re-
construct the polynomialf, since the degree of may
be up to2k — 1. The main observation underlying our
protocol is that knowing the values of partial derivatives

e oo, 2 , the user can reconstruct the
AP,V FmA Py, vV

value of f(\;,). The proof is a straightforward application
of the chain rule:

of
O

OF(P+ AV)
)

" OF
AL =1 8zl

V.
P+, V

An

Thus the user can reconstrgt(A\,)} and{f’(\;)} for all

h € [k]. Combining this observation with Lemma 2, we
conclude that user can reconstrycand obtainF'(P) =
£(0).

Complexity : The user sends each &f servers a
length+sn vector of values inF,. Servers respond with
length{m + 1) vectors of values ifF,. Recall thatm =
O(dn'/4) andq < 2k. Thus the total communication is
O(k?log k nt/(2k=1)),

3.1 Application to Robust PIR

We review the definition of robust PIR [9].

Definition 5 A k-out-of{ PIR protocol is a PIR protocol

with the additional property that the user always computes

the correct value of; from anyk out of! of the answers.

As noted in [9], robust PIR has applications to servers
which may hold different versions of a database, as long

Theorem 6 There exists &-out-of{ robust PIR with com-
municationO (kn'/(?*=]log1).

4 PIR on the curve

Theorem 7 There exists a&-private k-server PIR protocol
with communication complexity (? log k nl/tz’“t’lJ) ‘

Protocol description : Again, consideff,, wherek < ¢ <
2k and letA,,..., Ay € F, be distinct and nonzero. Set
d = [#1]. Let P = E(i). The user wants to retrieve
F(P).

U Randomly picks/',..., V! € F}".

U8, @ QPE PNV NVI4 4 AV
hy OF oF

U8y o P@NEE| g

Privacy : We need to show that for eve#y C [k], where
|T'| < t; the collusion of server§Sy}her learns no in-
formation about the poinP = FE(i). The joint input of
servers{Sy ther is {P + MV + ...+ X Vi}er. Since
the coordinates are shared independently, it suffices to show
that for eachl € [m] andV;/ € F, chosen independently
and uniformly at random; the valués$’, + /\th1 + ...+
A V' hher disclose no information abou. The last state-
ment is implied by the properties of Shamir’s secret sharing
scheme [17].

Correctness :Consider the curvg = {P+ AV +.. .+
MVE|X € Fy ). Let f(A) = F(P + AV + ...+ MV
be the restriction of" to . Obviously, f is a univariate
polynomial of degree at mogk — 1. By definition, we
have f(A\,) = F(Q"); thusi/ knows the valueg f(A\x)}
for all h € [k]. Now we shall see how knowing the values

of partial derivatives2Z| ... 2E| 1/ reconstructs
0z1 | Hn h

> Ozm
the value off’(\.,). Again, the reconstruction is a straight-
forward application of the chain rule:

of

OF(P+ AV 4 ...+ 'V
oA

)\h >\h

0
o a(Pﬁ/\VlW...%\tV’f)

oF
2 o

=1

An

as somek have the latest version and there is a way to Thusl/ can reconstructf(An)} and{f"(An)} forall h €

distinguish thesé. Another application is to servers with

varying response times. Here we improve the two boundsclude that the user can reconstrifcand obtainF'(P)

200, *F1s k" [log I andO(kn'/*1log 1) given in [9].

Indeed, in the protocol above, if for servers we set
the field sizeg > [ and the degredeg F' = 2k — 1, then
from any k servers’ answers, we can reconstryctas
before. We conclude

[k]. Combining this observation with Lemma 2, we con-

£(0).

Complexity : As in the protocol of Theorem 4{ sends
each ofk servers a lengthw vector of values inf, and
servers respond with lengis + 1) vectors of values in
F,. Herem = O(dn'/?) andq < 2k. Thus the total com-

2k—1 )

munication isO (? log k n'/L7%




4.1 Application to Instance Hiding

As noted in the introduction, in the instance-hiding sce-
nario [2, 3] there is a functiof,,, : {0,1}" — {0, 1} held
by TTogm oracles for some constant The user has a point
P € {0,1}™ and should leart#,, (P). Further, the view of
up tot oracles should be independentfafWe have the fol-
lowing improvement upon the best knov@(mt/2+2+t)
bound of [14].

Theorem 8 There exists a-private non-adaptive oracle
instance-hiding scheme with communication and computa-

tion O(m**/>+2), whereO(f) © O(f10g°™ ).

Proof: Using the above protocol on the truth tablerof,
the communication is

k2
0 ( log knl/umcl)/u) _
t

O (m2 . (gm)u(%—l)/m*) — O(met/2+2),

Itis also easy to see thétruns in time which is quasilinear
in the communication. |

5 PIR with preprocessing

To measure the efficiency of an algorithm with prepro-
cessing, we use the definition wiork in [8] which counts

the number of precomputed and database bits that need to

be read in order to respond to a query. The goal of this
section is to prove the following theorem.

Theorem 9 There exists a2-server PIR protocol with
O(n'/3) communication, poly(n) preprocessing, and
O(n/log") server work for any constanmt

We need a lemma about preprocessing polynonmfals
Fyplz1,...,2m]. We assume the number of variablesis
tending to infinity, while the degree @f is always constant.
The lemma is similar to Theorem 3.1 of [8]. The main idea
is to write the input polynomiak’ as a sum ofoly (m) dif-
ferent polynomials over disjoint monomials. We do this so
that each summand polynomi@linvolves only a logarith-
mic number of variables, and thus we can precompluts

all possible assignments to its variables. As the diffeéent
are over disjoint monomials, to evaluat&V’) we simply
read one precomputed answer for edchand sum them

up.

Lemma 10 Let F' be a homogeneous degrégsolynomial
iNFp[z1,...,2m]. Usingpoly(m) preprocessing time, for
all vV e F', F(V) can be computed witt(m?/log? m)
work.

Proof:  Partition [m] into & = m/logm disjoint sets
Dy,...,D, of sizelogm. For every sequencé <
t1,...,ta < a,letFp, . p, denote the sum of all mono-

mials of ' of the formcz;, - - - z;, for somec € F, and
i1 € Dy,,...,1q € Dy,. The following is the preprocess-
ing algorithm.

Preprocess(F):
1. For each polynomial’p, . Dy,
(a) Evaluatef'p, .. p,, onallW € F;
for which Supp(W) € U; Dy,.

Time Complexity: There aren? = (m/logm)? polyno-
mials Fp, ....,p,,. For each polynomial, there are at most
p?les™ = poly(m) differentW whose support is it; Dy, .
Thus the algorithm needs onbyly(m) preprocessing time.

For a setS C [m], let V|5 denote the point” € " with
vV} = V;forj e SandV] = 0 otherwise. The following
describes how to compufé(V).

Evaluate(F, V):

1.0 0.

2. For each ponnomiaFDt1 v Deg
(a)O' — 0o+ FDtl,---7Dt,d (V|U11Dti )

3. Outputo.

Correctness: Immediate from

.....

Work: The sum is oven? = (m/logm)? polynomials
Fp, ...Di, each with a precomputed answer, and thus the

total work isO(m</log® m). [
5.1 Two server protocol

We start with the intuition underlying our two server pre-
processing protocol. Suppose the servers were to represent
the database as a degré@olynomial F in m = O(n'/?)
variables, where = 2r 4 1 is an arbitrary odd constant.
Proceeding as in the protocol of section 3, the user sends
each server a point on a random lihehrough his point of
interest. To reconstrudt|, the user needs the evaluation
of F' on his query points, together with all partial deriva-
tives of F' up to orden-. The observation is that each partial
derivative computed by the servers is a polynomial of de-
gree at leastl — r = r + 1 in at mostm variables, and
therefore we can apply Lemma 10 to achieve low server
work.

However, while the user is only senditifm) bits to the
servers, the servers’ answers are of §i{en”). To fix this,
we use a balancing technique similar to that in [10]. Each
server partitions the database inttatabases); of sizen/t,



for some parameter Each database will be represented as f(—)\). We have
a degreel polynomial inm = O((n/t)}/) variables. The

user sendg points to each server, one for each database. Z Z Ve
Suppose the user want (P). For thet — 1 databases}, 3211 o ° ta
j # u, that the user doesn't care about, he sends radidom ~ ° 77° wna
and—V7 to serverd and2 respectively. On the other hand, w AR
for the databasé’, that he cares about, he proceeds as in 5’211 02, Q2 ! ¢
the protocol of section 3. The servers compute the lists of "
partial derivatives for each database, as before, but instead - Z 321 82:1 Vi
of sending them back, they send teemof each partial el P+Vu
derivative over allt databases. We show this information L (DO F, V.
is sufficient for the user to reconstrugt, (P). The total Oz, -0z, | pyu la

X —t .
work will be O(n/log" ™" n), and by carefully choosing — F@O(1) 4 (=) f@ (1) = g (1).

we can keep the communication@tn'/?).

Consider a primefield F,, for somemax(2,7) < p <
2max(2,r). Such a prime exists by the Bertrand’s Postu-
late [16].S; andS, preprocess as follows.

Thusi{ can computg(1), g™ (1),..., ¢ (1) from the an-
swers. Since every monomial gf has even degree, for
v = A% we can definei(y) = g()\) for a degree- poly-
nomialh. Using that

Preprocessing phase(z):
P r—1 4 ipns (=) dg dh dv dh
A = o
2. Partitionz into ¢ databases DB. . ., DB, each dx — dy dx - dy
containingn!~* elements. ) ) ) o
3. Represent DBas a homogeneous polynomia| a simple induction shows that frop® (1), ..., ¢ (1), U
of degreed = 2r + 1 with m = O (n(1=*)/4) vars. can computér(?)(1),..., h(")(1). The claim is that these
4.Fora=0,...,r forj € [t], andforly,..., 1, € [m], values determiné. Indeed, ifh; # hy agree on these val-
9" F; ues, then by lemma 1
computePreprocess(W :
1 a

_ 1)+l _
Let DB, be the database containing. Assume the user (y =1 [ (= ha),

wantsF, (P). Letda,s belif a = §, and0 otherwise. which contradicts thatt; — hy has degree at most Hence

7 . Randomly pick&/",..., V' € . the user obtaing(0) = g(q) = 2f(0) = 2F(P), and thus
. Fori hadel _\htly 45, p F(P) since the charactenstp:> 2.
ZH gh j vor] GO[ L@ dg b ! + % Privacy: Since theV” are independent and uniformly
—Sn 5 Vaed "I"r} andiy, ..., la € [m], random, so are th@'/ and the@Q?7. Thus the view of

23:1 % Q,” = each ofS, S, is independent of.
t  Evaluat h.j Communication: U sends O(tm) =
Zj 1 Evalua e( azl Q ) O(ns+(1—s)/(2r+1)) — O(n(r—l)/(Br)+1/(3r)) _ O(n1/3)

bits. Si, S, respond withO(m + m? + --- + m")
O(m") = O(n(t=#)r/2r+1)) = O(n'/3) bits.

Correctness: Sinced is odd, for allV’

0" F; _ (—1)ett 0 F; Server Work: Notice that the work is dominated by the
Dz, -0z, |_ Dz, -0z, |y calls toEvaluate. For anya € {0, ... m},ﬂanyll, ol €
_ [m], and anyj € [t], the ponnomial% is either0
It follows that for alla and allj # w, or has degreér + 1 — a, and at mosin variables. Thus
Z Z . for any V, Evaluate((%aigﬂ;l,V) can be computed in
8zl 8zl L 8211 8zl v O(m? 1% /10g?" *'=*m) time. As the number of such

# is O(m®), it follows that the time for all calls to
11021,

Put f(A\) = (Fu)|lp+av«, and defineg(\) = f(A\) +  Evaluate per DB is

3In sections 5 and 6 we base our protocols on prime figjgland do _ _
not consider general finite fields,. We do this to avoid issues related to Z mem> e _ O(m?) _ o(n'~?)
subtle properties of derivatives of orders greater than one in finite fields log®> 1= m log"™'m  log"n
of small characteristic. Another possible solution to this problem is to use
Hasse derivatives (referred to as hyperderivatives in [15]) instead of usual
derivatives. This allows for protocols over arbitrary finite fields. Thus the total work over alt® DBs isO(n/log" ! n).

a



5.2 Application to PIR with fixed answer sizes value of parameteA = 2. This case is sufficient to ob-
tain 1-private PIR protocols with communication complex-
In [4] it is asked: ity matching the results of [7] for all values &f < 26,

. where the bound ok was determined experimentally.
For two-server PIR protocols and for constantf the

answers have size at mdstcan the queries have size less

thann /b? Theorem 13 Suppose there is &private PIR protocolP
with communication complexityp (n, k). Letd, k' be posi-
We answer this with the following theorem. tive integers such thdt' < k andd < 3k—k&’. Thenthere is

. a l-private PIR protocofP’ with communication complexity
Theorem 11 For anyb = O(n'/3), there exists & server

PIR protocol with answer lengti®(b) and query length i ,
O(n/b?), where the constant in the big-Oh is independent Cpi(n,k) =0 <n1/d + <k/) Cp(n2k'/e, k’)) .
of n andb.

Proof:  Before the protocol beginss; andS, partition It may seem that the bound _of Theorem 13 improves
zintot = O(n/b%) databases DB..., DB, each of size ~ UPON the bound of Theorem 12 since there are no terms cor-

responding to values défe [k’ + 1, k]. However this is not
a real improvement, since the original proof of Theorem 12
can also be modified to eliminate these terms.

O(b*). Each such DB is a degreepolynomial inm =
O(b) variables. Let DB be the database containing The
protocol follows.

We start with a high-level view of our protoca@l. wants

u : Randomly pickd/", ..., V' € F}". to retrieve the valué”(P). To this end/ randomly selects
U—S, : Forjelt], Qi< (—1)h+1Vi45,,P ak’ dimensional affine subspdte(L) containing the point
U—S - F(QM), andVl € [m], S, 2L P and sends each serv8, a (k' — 1) dimensional affine

e A ml, 25 o Qi subspacer(L;) C 7(L). EachSy, replies with values and

derivatives of the polynomidr at every point ofr(L;,). We
assume the subspaced.;,) are in general position. In par-
ticular this implies that for every sét of k' servers there
is a unique pointP” = () (L) that is known to all of

The correctness follows from the correctness of our prepro-
cessing protocol for = 1. For the communicatiodf sends
tm = O(n/b?) bits, andS; andS, each respond with) (b)

|

bits. heT
them. For each subs@&tof £’ serverd/ runs a separaté’-
6 Recursive PIR in the space serverl-private PIR protocoto obtain the value of 8k’-th

partial derivative of the functiof at pointP” in the direc-
tion towards the poinP. Finally we demonstrate that the

O'(Afflloj!?()ak IS constant. The pest known l.Jpper bpund of information aboutt’ obtained byi/ suffices to reconstruct
n~\"*Tegx ) for the communication complexity dfprivate the restriction off” to r(L).

k server PIR protocols is due to Beinetlal.[7]. Although
their proof is elementary, it is rather complicated and hard L
to follow. The key theorem of [7] is: 6.1 Preliminaries

Theorem 12 ([7] Theorem 3.5) Suppose there is & In what follows we work in a prime er|dF? with
private PIR protocolP with communication complexity ~max(2k",k,d) < p. We start with some notation. Let
Cp(n, k). Letd, A\, k' be positive integers (which may de- 1@ }rey be distinct and nonzero elements i6f. For

pend onk) such thatt’ < kandd < (A + 1)k — (A — h € [k] let
1)k’ + (A — 2). Then there is d-private PIR protocolP’ ot )
with communication complexity g, ) S a2 . Fal A\ — 1
k _ k/ ’ . . .
k LetL =F, be ak’ dimensional affine space ov&j. Con-
Cp/(n,k) =0 <n1/d +> (Z)CP(”Wd» l)) : sider the hyperplanes, C L :
=k’
def
Recursive applications of Theorem 12 starting frorg-a Ly = {1, M) [ gn(Aas 5 Aw) = 0}

server protocol with communication complexi€)(n'/3)
yield the best known upper bounds foprivate PIR. In pro

this section we present an alternative geometric proof of the” s, certain degenerate cases the dimensions of b6t andx (L)
special case of Theorem 12 that corresponds to setting thenay in fact be smaller thakf andk’ — 1.

4We use the complicated notatiari L) for consistency with the actual



The properties of the Vandermonde matrix imply that for
anyT C [k], where|T'| < &/, the hyperplane$L;, } e are
in general position, i.e.:

dim ﬂ L,=k —

heT

7] @)

ForT C [k], such thalT| = &', let QT denote the unique
intersection point of Ly, }per. l.€:

QT ﬂ Ly.

heT

Consider a certain hyperplarg, and a vectow € F’;'.
We say that vectoo = (vy, ..., vy ) is off the hyperplane
Ly, if apvy + a2vy + ... + of v # 0. Clearly, for every
hyperplanel,;, there exists a vectar € ]F’; thatis off L,,.
Consider the map : L — F}* induced by a uniformly
random choice of V7 } (i) © Fm for afixedP € F}':

def

7T(>\17"'7>\k:’) P—|—)\1V1 ._'_)\k/vk‘/.

Let PT denote the image @’ undernr, i.e.:
def
PT = x(Q").

In the remaining part of this subsection we establish
two geometric lemmas. The first lemma concerns the non-
recursive part of our protocol.

Lemma 14 Letf € F,[A1,..., ], deg f < |Fp|andh €
[k]. Supposef|L, = 0 and %’L’ = 0, wherev is off L.
Theng? | f.

Proof: The fact thatg;, | f is a direct consequence of
Bézout's theorem ([13] p. 58) To see thay,, divides f
twice, letf = g - g5. By the chain rule,

of _ 59
av 9h + g Z ah/U’H

and sincev is off of L, Zj aflvj # 0. Restricting both
sides toL,,, the premise of the lemma impligs= ¢|z,,
and another application ofé&out’s theorem giveg, | g,
which proves the lemma.

The next lemma concerns the recursive part of our protocol.

6More formally, we have a polynomigl that vanishes on ever,-
point of a hyperpland.;,. This implies thatf vanishes on ever¥,-point
of Ly, since|F,| > deg f. Now, once we have passed to the algebraically
closed fieldF,, we can apply Bzout's theorem to conclude thaf and f
have a common factor, and therefgsg | f.

Lemma 15 Let f € Fy[A1,..., \i]. AssumeT C [k],
IT| = k. Supposef = g I] (gx)? andv € F¥ is off

RET
every{ Ly }ner; then

a2k’f

5| =C 9(Q"),

where C' # 0 is some constant that depends only on
{gh}hGT~

Proof: LetC, = %2 =3~ ajv;, and observe that), #

0 sincewv is off of L. By repeated application of the chain
rule,

0* (Ilner(gn)?)

_ / 2
81}“ — 5a72k’ (2k )' H Clm

heT

QT
whered, g is 1 if o = § and0 otherwise. Again by the
chain rule,

an/f
Ov2k’

- I e

heT

(2T, Cr-

QT

The lemma follows by setting’ = |

6.2 The protocol

Protocol description : As usual the database is represented
by a degreel polynomial inm = O(dn'/?) variables. Re-
call thatd < 3k — k’. Therefore we can treat as a con-
stant. LetP = E(¢). The user wants to retrievié(P). Our
protocol is one-round. However (as in the work of [7]) it
is convenient to think about the protocol as several execu-
tions of PIR protocols that take place in paralléd.sends
servers the affine space§L;, ). Each server returns the val-
ues of F on w(L;) and the values of all first order partial
derivatives of F' on w(Ly;,). Moreover,i{ runs a separate
PIR protocol with every groufd’ of &’ servers to obtain the

92k B . -
value PP | pr Below is the formal description of

the protocol. Here&s denotes the set of servel§;, } ner-

u : Picks arandomr : L — )7,
T, ) =P+ MV 4 A VF
U— Sp:m(Ly)
U—8y:Fl, , oF o, 2E
— Op | (Lp) 0z1 7(Ln) OzZm 7(Ln)
U — St : A k’-server PIR subprotocol for
v ' p
retrieving the value ofW o

To complete the description of the protocol, we need the
following lemma.



Lemma 16 LetF(zy,..., 2, ) be anm-variate polynomial
of degreel, whered is a constant. Assume = £(i) € )
is a point of Hamming weight. Let T C [k], |T| = k.
Suppose each of the serveisy, } ,cr knows the poinP?;
theni/ can learn the value of the directional derivative

O°F
(P = PT)* |

privately (with respect t@) with communication complexity
O(Cp(m?®, k).

Proof: We have

O°F _
a(P—PT) | pr

Z O°F

L, OO LT

(P_PT)ll t '(P_PT)lsa (2)

and sinceP” and F' are known to allS, with h € T,
these servers can interpret the RHS of equation (2) as-an
variate degree-polynomialG in the ringF,[P;, ..., Py].
Sincedeg G = s and the Hamming weight oP is d, at
most2¢ = O(1) monomialsM of G are nonzero orP.
Thus, to learnG(P) it is enough forl{ to learn the co-
efficients of theseM. To this end, i/ and these servers
run a PIR protocol on the list of coefficients of monomials
M =P, - P, forl <iq,...,iqg < m. The complexity

is therefore29Cp (O(m?), k') = O(Cp(m®, k')). |

We now show the desired properties of our protocol.

Privacy :
and P is private by assumption (recall the condition of
theorem 13), in order to show th& is private it suffices
to show privacy at the top level of recursion. In this level
Sy’s view is

7(Ln) {P+ V4. + M\ VH

A €Fp, aphi+ ...+ af Ay =1}

Observe that any pointim(L;,) is some linear combination
(over[F,) of the points

P+ (ap)" V. P+ ()W e n(Ly).

Thus.S’s view can be generated from these points. But as

distributions,

’

(P+ (o) 'V, .., P+ (o) VH) =
(R',...,R¥),

where the R’ e F}' are independent and uniformly
random. ThusS,,’s view does not depeng.

def

Correctness: Let f = F(m(A\1,...,Ar)) denote the

Since the subprotocols are independent,

restriction of F' to w(L). We show the information thd#
obtains from{ Sy, } <) suffices to reconstrugt

Information aboutF' translates into information aboyt:

1. Forh € [k], flz, = Flx(L,), SOU can compute the
values off along everyL,,.

2. Now leth € [k]. Letwy, € IE";' be a vector that is off
the hyperpland.,,. We show how to computeL

Ly
from 2£ oo 2E . From the chain rule
Ulr(Ly) #m x(Ly)
of | _ 9FGOwe )|
oo |, don, Ly
m
OF 6] 1 K’
237, aTh(PerAlV} +. V)
=1 (L) h

Thus for everyh € [k], U can compute values oL
at every point ofl;,.

3. Finally, letT C [k] be such thaiT| = k'. Let
(AL, -, M) denoteP; + M\ Vit + ...+ A\ V¥ for
[ € [m]. We have

azk/f
a(-QT)

2

ll,...,l2k/

8 F(r(M, M)
A=QT)*

QT -
9%

82[1...6212k,

QT
2k’
X (P, - PT) =

PT

'
d(P—PT)2k’

)

PT

where we use tha% or P, — P, and
that P, — P! is constant. Thus for every C [k],

where|T| = k/, U can reconstruc (f;’;];%,

QT
Reconstructing’: It suffices to show the above information
is sufficient to reconstruct. Assume there are two func-
tions f1 # fo € Fp[A1,..., \x] that agree on all of the
constraints above. Consider their differente= f; — f.
We shall prove thaf is identically zero. By Lemma 14,
can be written as

k
f=9]]a,
h=1
for someg € Fp[A1, ..., \p] with degg < d — 2k.

We induct downwards on, starting withr = &/, to show
9lanerr, = 0 for every setl” of sizer. It will follow for
r = 0thatg|;, = 0, and thugy = 0. Forr = &/, since—Q”
is off Ly, for everyh € T, by Lemma 15 and the above,
g(QT) = 0 for everyT C [k] with |T| = r.

Letr < k' and assume inductively thatn, .., = 0
for every sefl” of size greater than. Let M = Ny Ly, for
an arbitrary sef’ of sizer. Then dim{M) = k' — r (recall



equation (1)). Consider thg’' — r — 1)-dimensional spaces
of the formM’ = Nperuy;y Ly for somej € [k]\ T. There
arek — r of them. Then in the spad¥, the M’ are distinct

hyperplanes and can therefore be described as solutions to

par = 0 for degreet polynomialsp,,,. Applying Bézout's

theorem,
H Py | Glas -
M

The degree ofg|y, is at mostd — 2k since M is an
affine space, whileleg ([],,, ppr) = k — r. But since
d < 3k — k' by assumption and < %’ by induction, we
haved — 2k < k — r, which means thag|,; = 0. By
induction, f = g = 0, which completes the proof.

Complexity : In the non-recursive stepsl/ sends
eachS;, the spacer(L;) described byk’ vectors iy

OF OF

021 | () 0o ()
which is just a list of(m + 1)p* = O(1) valueg in F,,. In

the recursive steps, by Lemma 16 the total communication
is (})o (C'p(ﬁLQk,,k‘,)). Sincem = O(n'/%), the total

communication of our protocol is

C&uOuk):(9<nUd+-<£>Cp0ﬂw/ﬂkﬁ).

Sy, responds withF. 7,y and
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