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Abstract

A t-private private information retrieval (PIR) scheme
allows a user to retrieve theith bit of ann-bit stringx repli-
cated amongk servers, while any coalition of up tot servers
learns no information abouti. We present a new geometric
approach to PIR, and obtain

• A t-private k-server protocol with communication

O
(

k2

t log k n1/b(2k−1)/tc
)

, removing the
(
k
t

)
term of

previous schemes. This answers an open question of
[14].

• A 2-server protocol with O(n1/3) communica-
tion, polynomial preprocessing, and online work
O(n/ logr n) for any constantr. This improves the
O(n/ log2 n) work of [8].

• Smaller communication for instance hiding [3, 14],
PIR with a polylogarithmic number of servers, robust
PIR [9], and PIR with fixed answer sizes [4].

To illustrate the power of our approach, we also give alter-
native, geometric proofs of some of the best1-private upper
bounds from [7].

1 Introduction

Private information retrieval (PIR) was introduced in a
seminal paper by Choret al [11]. In such a scheme a server
holds ann-bit stringx ∈ {0, 1}n, representing a database,

and a user holds an indexi ∈ [n] def= {1, . . . , n}. At the end
of the protocol the user should learnxi and the server should
learn nothing abouti. A trivial solution is for the server to
send the userx. While private, thecommunication com-
plexity is linear inn. In contrast, in a non-private setting,
there is a protocol with onlylog n + 1 bits of communica-
tion. This raises the question of how much communication
is really necessary to achieve privacy.
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Unfortunately, if information-theoretic privacy is re-
quired, then there is no better solution than the trivial one
[11]. To get around this, Choret al [11] suggested replicat-
ing the database amongk > 1 non-communicating servers.
In this setting, one can do substantially better. Indeed, Chor
et al [11] give a protocol with complexityO(n1/3) for as
few at two servers, and anO(k2 log k n1/k) solution for the
general case. Ambainis [1] then extended theO(n1/3) pro-
tocol to achieveO(2k2

n1/(2k−1)) complexity for everyk.
Finally, in [7], building upon [14, 5], Beimelet al reduce

the communication to2Õ(k)n
2 log log k

k log k . For constantk, the
latter is the best upper bound to date. The best lower bound
is a humblec log n for some small constantc > 1 [18]. For
a survey, see [12].

A drawback of all of these solutions is that if any two
servers communicate, they can completely recoveri. This
motivates the notion of aprivacy thresholdt, 1 ≤ t ≤ k,
which limits the number of servers that might collude in or-
der to get information abouti. That is, the joint view of any
t servers should be independent ofi. The caset > 1 was
addressed in [11, 14, 5]. Beimel and Ishai [5] give the best

upper bound prior to this work:O
((

k
t

)
k2

t n1/b(2k−1)/tc
)

.

Since this bound grows rapidly witht, in [14] it is asked:

Can one avoid the
(
k
t

)
overhead induced by our use of

replication-based secret sharing?

We give a scheme with communication

O
(

k2

t log k n1/b(2k−1)/tc
)

for any t, and thus answer

this question in the affirmative.
Our upper bound is of considerable interest in theor-

acle instance-hidingscenario [2, 3]. In this setting there
is a functionFm : {0, 1}m → {0, 1} held by m

c log m

oracles. The user hasP ∈ {0, 1}m, and wants to pri-
vately retrieveFm(P ), even if up to t oracles collude.
The user’s computation, let alone the total communication,
should be polynomial inm. For constantt, running our
PIR scheme on the truth table ofFm gives a scheme with
total communicationÕ(mct/2+2). This improves the pre-
vious bound1 of Õ(mct/2+2+t) (see [14]) by a factor of

1The best upper bound for1-private PIR [7] does not apply since it is



mt. Whenm = log n, this is exactly the problem of PIR
with k = Ω(log n/ log log n), for which we obtain the best
known bound.

Another application of our techniques isk-out-of-l ro-
bust PIR [9]. In this scenario a user should be able to
recoverxi even if after sending his queries, up tol − k
servers do not respond. Previous bounds for this problem

includeO(kn1/kl log l) and2Õ(k)n
2 log log k

k log k l log l [9]. The
first bound is weak for smallk, while the second is weak
for largek. We improve upon these with ak-out-of-l robust
protocol with communicationO(kn1/(2k−1)l log l).

Another concern with the abovementioned solutions is
the time complexityof the servers per query. Beimelet
al [8] show, among other things, that if two servers are
given polynomial-time preprocessing, then during the on-
line stage they can respond to queries withO(n/ log2 n)
work, while preservingO(n1/3) total communication. By
combining a balancing technique similar to that in [10] with
a specially-designed 2-server protocol in our language, we
can reduce the work toO(n/ logr n) for any constantr > 0.
It is immediate from our construction that if a server has an-
swers of sizea for anya = O(n1/3), then there is a 2-server
protocol with query sizeO(n/a2). This, in particular, re-
solves an open question of [4].

We note that using techniques similar to those in [6],
our 1-private protocols can be modified to achieve the best
known probe complexity, which measures the number of
bits the user needs to read in the server’s answers. More-
over, since we improve upon Theorem 6.1 and Corollary
6.3 of [6], our construction also yields minor improvements
for PIR schemes with logarithmic query length, yielding ef-
ficient locally decodable codes over large alphabets.

Finally, our techniques are of independent interest, and
may serve as a tool for obtaining better upper bounds. As
an example of the model’s power, we give a new geometric
proof of the best known upper bound for1-privatek-server
PIR protocols of [7] fork < 26.

The general idea behind our protocols is the idea of poly-
nomial interpolation. As in previous work, we model the
database as a degree-d polynomialF ∈ Fq[z1, . . . , zm] with
m = O(dn1/d). The polynomialF is such that there is an
encodingE : [n] → Fm

q for which F (E(i)) = xi for ev-
ery i ∈ [n]. The user wants to retrieve the valueF (P )
for P = E(i) while keeping the identity ofP private. To
this end the user randomly selects a low-dimensional affine
variety (i.e. line, curve, plane, etc.)χ ⊆ Fm

q containing
the pointP and discloses certain subvarieties ofχ to the
servers. Each server computes and returns the values ofF
and the values ofpartial derivativesof F at every point
on its subvariety. Finally, the user reconstructs the restric-

not known how to make itt-private, and in any case, the dependence onk
there is2Ω(k).

tion of F to χ. In particular the user obtains the desired
value of F (P ). The idea of polynomial interpolation has
been used previously in the private information retrieval lit-
erature [2, 11, 3]; however, we significantly extend and im-
prove upon earlier techniques through the use of derivatives
and more general varieties.

Outline: In section 2 we introduce our notation and pro-
vide some necessary definitions. In section 3 we describe a
non-recursive1-private PIR protocol on a line. We also dis-
cuss the robustness of our protocol. Section 4 deals witht-
private PIR protocols for arbitraryt, and discusses applica-
tions to instance-hiding. The underlying variety is a curve.
In section 5 we present our construction of PIR protocols
with preprocessing. Finally, in section 6 we wrap up with
a geometric proof of some of the upper bounds of [7]. The
underlying variety is a low dimensional affine space.

2 Preliminaries

By default, variablesλh take values in a finite fieldFq

and variablesP, V, V j , Q andQj take values inFm
q . Let W

be an element ofFm
q . We use the subscriptWl to denote the

l-th component ofW.

A k-server PIR protocol involvesk serversS1, . . . ,Sk,
each holding the samen-bit string x (the database), and a
userU who knowsn and wants to retrieve some bitxi, i ∈
[n], without revealingi. We restrict our attention toone-
round,information-theoretic PIR protocols.

Definition : [7] A t-private PIR protocol is a triplet of
algorithmsP = (Q,A, C). At the beginning of the pro-
tocol, the userU invokesQ(k, n, i) to pick a randomized
k-tuple of queries(q1, . . . , qk), along with an auxiliary in-
formation stringaux. It sends each serverSj the queryqj

and keepsaux for later use. Each serverSj responds with
an answeraj = A(k, j, x, qj). (We can assume without loss
of generality that the servers are deterministic; hence, each
answer is a function of a query and a database.) Finally,
U computes its output by applying the reconstruction algo-
rithm C(k, n, a1, . . . , ak, aux). A protocol as above should
satisfy the following requirements:

• Correctness :For anyk, n, x ∈ {0, 1}n andi ∈ [n],
the user outputs the correct value ofxi with probability
1 (where the probability is over the randomness ofQ).

• t-Privacy : Each collusion of up tot servers learns no
information abouti. Formally, for anyk, n, i1, i2 ∈
[n], and everyT ⊆ [k] of size|T | ≤ t the distributions
QT (k, n, i1) andQT (k, n, i2) are identical, whereQT

denotes concatenation ofj-th outputs ofQ for j ∈ T.

Thecommunication complexityof a PIR protocolP, de-
notedCP(n, k) is a function ofk andn measuring the to-
tal number of bits communicated between the user andk



servers, maximized over all choices ofx ∈ {0, 1}n, i ∈ [n]
and random inputs.

In our protocols we represent the databasex by a mul-
tivariate polynomialF (z1, . . . , zm) over a finite field. The
important parameters of the polynomialF are its degreed
and the number of variablesm. A very similar representa-
tion has been used previously in [7]. An important differ-
ence of our representation is that we use polynomials over
fields larger thanF2. The polynomialF representsx in the
following sense: with everyi ∈ [n] we associate a point
E(i) ∈ Fm

q ; the polynomialF satisfies:

∀i ∈ [n], F (E(i)) = xi.

We use the assignment functionE : [n] → Fm
q from [7].

Let E(1), . . . , E(n) denoten distinct points of Hamming
weight2 d with coordinate values from the set{0, 1} ⊂ Fq.
Such points exist if

(
m
d

)
≥ n. Thereforem = O(dn1/d)

variables are sufficient. Define

F (z1, . . . , zm) =
n∑

i=1

xi

∏
E(i)l=1

zl,

(E(i)l is the l-th coordinate ofE(i).) Since eachE(i) is
of weightd, the degree ofF is d. Each assignmentE(i) to
the variableszi satisfies exactly one monomial inF (whose
coefficient isxi); thus,F (E(i)) = xi.

Our constructions rely heavily on the notion of a deriva-
tive of a polynomial over a finite field. Recall that for

f(λ) = a0 +
d∑

i=1

aiλ
i ∈ Fq[λ] the derivative is defined

by f ′(λ) =
d∑

i=1

iaiλ
i−1.

We conclude the section with two technical lemmas.

Lemma 1 Letf ∈ Fq[λ] ands ≤ charFq − 1. Suppose

f(λ0) = f ′(λ0) = . . . = f (s)(λ0) = 0,

then
(
λ− λ0)s+1

∣∣ f.

Proof: See lemma 6.51 in [15] and note thats! 6= 0.

Lemma 2 Suppose{λh}, {v0
h}, {v1

h} are elements ofFq,
whereh ∈ [s] and {λh} are distinct; then there exists at
most one polynomialf(λ) ∈ Fq[λ] of degree≤ 2s− 1 such
thatf(λi) = v0

h andf ′(λh) = v1
h.

Proof: Assume there exist two such polynomialsf1(λ)
andf2(λ). Consider their differencef = f1 − f2. Clearly,
f(λh) = f ′(λh) = 0 for all h ∈ [s]. Therefore, by lemma 1

s∏
h=1

(λ− λh)2
∣∣∣∣∣ f(λ).

2The Hamming weight of a vector is defined to be the number of
nonzero coordinates.

This divisibility condition implies thatf(λ) = 0 since the
degree off is at most2s− 1.

3 PIR on the line

We start this section with a PIR protocol of [11]. This
protocol has a simple geometric interpretation and has
served as the starting point for our work.

Theorem 3 ([11]) There exists a 1-private k-
server PIR protocol with communication complexity
O(k2 log k n1/(k−1)).

Protocol description : Consider a finite fieldFq, where
k < q ≤ 2k. Let λ1, . . . , λk ∈ Fq be distinct and nonzero.
Setd = k − 1. Let P = E(i). The user wants to retrieve
F (P ).

U : PicksV ∈ Fm
q uniformly at random.

U → Sh : P + λhV
U ← Sh : F (P + λhV )

Privacy : It is immediate to verify that the input(P +
λhV ) of each serverSi is distributed uniformly overFm

q .
Thus the protocol is private.

Correctness :We need to show that valuesF (P +λhV )
for h ∈ [k] suffice to reconstructF (P ). Consider the line
L = {P + λV | λ ∈ Fq} in the spaceFm

q . Let f(λ) =
F (P + λV ) be the restriction ofF to L. Clearly,f ∈ Fq[λ]
is a univariate polynomial of degree at mostd = k − 1.
Note thatf(λh) = F (P + λhV ). ThusU knows the values
of f(λ) at k points and therefore can reconstructf(λ). It
remains to note thatF (P ) = f(0).

Complexity : The user sends each ofk servers a length-
m vector of values inFq. Recall thatm = O(dn1/d) and
k < q ≤ 2k. Thus the total communication from the
user to all the servers isO(k2 log k n1/(k−1)). EachSh re-
sponds with a single value fromFq, which does not affect
the asymptotic communication of the protocol.

In the protocol above there is an obvious imbalance be-
tween the communication from the user to the servers and
vice versa. The next theorem extends the technique of The-
orem 3 to fix this imbalance and obtain a better communi-
cation complexity.

Theorem 4 There exists a1-privatek-server PIR protocol
with communication complexityO(k2 log k n1/(2k−1)).

Protocol description : We use the standard mathematical

notation ∂F
∂zl

∣∣∣
Q

to denote the value of the partial derivative

of F with respect tozl at pointQ. Let λ1, . . . , λk ∈ Fq be



distinct and nonzero. Setd = 2k − 1. Let P = E(i). The
user wants to retrieveF (P ).

U : PicksV ∈ Fm
q uniformly at random.

U → Sh : P + λhV
U ← Sh : F (P + λhV ),

∂F
∂z1

∣∣∣
P+λhV

, . . . , ∂F
∂zm

∣∣∣
P+λhV

Privacy : The proof of privacy is identical to the proof
from Theorem 3.

Correctness : Again, consider the lineL = {P +
λV | λ ∈ Fq}. Let f(λ) = F (P + λV ) be the restric-
tion of F to L. Clearly, f(λh) = F (P + λhV ). Thus
the user knows the values{f(λh)} for all h ∈ [k]. How-
ever, this time the values{f(λh)} do not suffice to re-
construct the polynomialf, since the degree off may
be up to2k − 1. The main observation underlying our
protocol is that knowing the values of partial derivatives
∂F
∂z1

∣∣∣
P+λhV

, . . . , ∂F
∂zm

∣∣∣
P+λhV

, the user can reconstruct the

value off ′(λh). The proof is a straightforward application
of the chain rule:

∂f

∂λ

∣∣∣∣
λh

=
∂F (P + λV )

∂λ

∣∣∣∣
λh

=
m∑

l=1

∂F

∂zl

∣∣∣∣
P+λhV

Vl.

Thus the user can reconstruct{f(λh)} and{f ′(λh)} for all
h ∈ [k]. Combining this observation with Lemma 2, we
conclude that user can reconstructf and obtainF (P ) =
f(0).

Complexity : The user sends each ofk servers a
length-m vector of values inFq. Servers respond with
length-(m + 1) vectors of values inFq. Recall thatm =
O(dn1/d) and q ≤ 2k. Thus the total communication is
O(k2 log k n1/(2k−1)).

3.1 Application to Robust PIR

We review the definition of robust PIR [9].

Definition 5 A k-out-of-l PIR protocol is a PIR protocol
with the additional property that the user always computes
the correct value ofxi from anyk out ofl of the answers.

As noted in [9], robust PIR has applications to servers
which may hold different versions of a database, as long
as somek have the latest version and there is a way to
distinguish thesek. Another application is to servers with
varying response times. Here we improve the two bounds

2Õ(k)n
2 log log k

k log k l log l andO(kn1/kl log l) given in [9].

Indeed, in the protocol above, if forl servers we set
the field sizeq > l and the degreedeg F = 2k − 1, then
from any k servers’ answers, we can reconstructf as
before. We conclude

Theorem 6 There exists ak-out-of-l robust PIR with com-
municationO(kn1/(2k−1)l log l).

4 PIR on the curve

Theorem 7 There exists at-privatek-server PIR protocol

with communication complexityO
(

k2

t log k n1/b 2k−1
t c
)

.

Protocol description : Again, considerFq, wherek < q ≤
2k and letλ1, . . . , λk ∈ Fq be distinct and nonzero. Set
d = b 2k−1

t c. Let P = E(i). The user wants to retrieve
F (P ).

U : Randomly picksV 1, . . . , V t ∈ Fm
q .

U → Sh : Qh def= P + λhV 1 + λ2
hV 2 + . . . + λt

hV t

U ← Sh : F (Qh), ∂F
∂z1

∣∣∣
Qh

, . . . , ∂F
∂zm

∣∣∣
Qh

Privacy : We need to show that for everyT ⊆ [k], where
|T | ≤ t; the collusion of servers{Sh}h∈T learns no in-
formation about the pointP = E(i). The joint input of
servers{Sh}h∈T is {P + λhV 1 + . . . + λt

hV t}h∈T . Since
the coordinates are shared independently, it suffices to show
that for eachl ∈ [m] andV j

l ∈ Fq chosen independently
and uniformly at random; the values{Pl + λhV 1

l + . . . +
λt

hV t
l }h∈T disclose no information aboutPl. The last state-

ment is implied by the properties of Shamir’s secret sharing
scheme [17].

Correctness :Consider the curveχ = {P +λV 1+. . .+
λtV t | λ ∈ Fq}. Let f(λ) = F (P + λV 1 + . . . + λtV t)
be the restriction ofF to χ. Obviously,f is a univariate
polynomial of degree at most2k − 1. By definition, we
havef(λh) = F (Qh); thusU knows the values{f(λh)}
for all h ∈ [k]. Now we shall see how knowing the values

of partial derivatives∂F
∂z1

∣∣∣
Qh

, . . . , ∂F
∂zm

∣∣∣
Qh
U reconstructs

the value off ′(λh). Again, the reconstruction is a straight-
forward application of the chain rule:

∂f

∂λ

∣∣∣∣
λh

=
∂F (P + λV 1 + . . . + λtV t)

∂λ

∣∣∣∣
λh

=
m∑

l=1

∂F

∂zl

∣∣∣∣
Qh

∂

∂λ
(Pl + λV 1

l + . . . + λtV t
l )
∣∣∣∣
λh

ThusU can reconstruct{f(λh)} and{f ′(λh)} for all h ∈
[k]. Combining this observation with Lemma 2, we con-
clude that the user can reconstructf and obtainF (P ) =
f(0).

Complexity : As in the protocol of Theorem 4,U sends
each ofk servers a length-m vector of values inFq and
servers respond with length-(m + 1) vectors of values in
Fq. Herem = O(dn1/d) andq ≤ 2k. Thus the total com-

munication isO
(

k2

t log k n1/b 2k−1
t c
)

.



4.1 Application to Instance Hiding

As noted in the introduction, in the instance-hiding sce-
nario [2, 3] there is a functionFm : {0, 1}m → {0, 1} held
by m

c log m oracles for some constantc. The user has a point
P ∈ {0, 1}m and should learnFm(P ). Further, the view of
up tot oracles should be independent ofP . We have the fol-
lowing improvement upon the best knowñO(mct/2+2+t)
bound of [14].

Theorem 8 There exists at-private non-adaptive oracle
instance-hiding scheme with communication and computa-

tion Õ(mct/2+2), whereÕ(f) def= O(f logO(1) f).

Proof: Using the above protocol on the truth table ofFm,
the communication is

O

(
k2

t
log kn1/b(2k−1)/tc

)
=

Õ
(
m2 · (2m)(b(2k−1)/tc)−1

)
= Õ(mct/2+2).

It is also easy to see thatU runs in time which is quasilinear
in the communication.

5 PIR with preprocessing

To measure the efficiency of an algorithm with prepro-
cessing, we use the definition ofwork in [8] which counts
the number of precomputed and database bits that need to
be read in order to respond to a query. The goal of this
section is to prove the following theorem.

Theorem 9 There exists a2-server PIR protocol with
O(n1/3) communication, poly(n) preprocessing, and
O(n/ logr) server work for any constantr.

We need a lemma about preprocessing polynomialsF ∈
Fp[z1, . . . , zm]. We assume the number of variablesm is
tending to infinity, while the degree ofF is always constant.
The lemma is similar to Theorem 3.1 of [8]. The main idea
is to write the input polynomialF as a sum ofpoly(m) dif-
ferent polynomials over disjoint monomials. We do this so
that each summand polynomialG involves only a logarith-
mic number of variables, and thus we can precomputeG on
all possible assignments to its variables. As the differentG
are over disjoint monomials, to evaluateF (V ) we simply
read one precomputed answer for eachG, and sum them
up.

Lemma 10 Let F be a homogeneous degree-d polynomial
in Fp[z1, . . . , zm]. Usingpoly(m) preprocessing time, for
all V ∈ Fm

p , F (V ) can be computed withO(md/ logd m)
work.

Proof: Partition [m] into α = m/ log m disjoint sets
D1, . . . , Dα of size log m. For every sequence1 ≤
t1, . . . , td ≤ α, let FDt1 ,...,Dtd

denote the sum of all mono-
mials of F of the form czi1 · · · zid

for somec ∈ Fp and
i1 ∈ Dt1 , . . . , id ∈ Dtd

. The following is the preprocess-
ing algorithm.

Preprocess(F):
1. For each polynomialFDt1 ,...,Dtd

,
(a) EvaluateFDt1 ,...,Dtd

on allW ∈ Fm
p

for whichSupp(W ) ∈ ∪iDti
.

Time Complexity: There areαd = (m/ log m)d polyno-
mialsFDt1 ,...,Dtd

. For each polynomial, there are at most
pd log m = poly(m) differentW whose support is in∪iDti

.
Thus the algorithm needs onlypoly(m) preprocessing time.

For a setS ⊆ [m], let V |S denote the pointV ′ ∈ Fm
p with

V ′
j = Vj for j ∈ S andV ′

j = 0 otherwise. The following
describes how to computeF (V ).

Evaluate(F, V ):
1. σ ← 0.
2. For each polynomialFDt1 ,...,Dtd

,
(a)σ ← σ + FDt1 ,...,Dtd

(V |∪iDti
).

3. Outputσ.

Correctness:Immediate from

F (V ) =
∑

t1,...,td

FDt1 ,...,Dtd
(V |∪iDti

).

Work: The sum is overαd = (m/ log m)d polynomials
FDt1 ,...,Dtd

, each with a precomputed answer, and thus the

total work isO(md/ logd m).

5.1 Two server protocol

We start with the intuition underlying our two server pre-
processing protocol. Suppose the servers were to represent
the database as a degree-d polynomialF in m = Θ(n1/d)
variables, whered = 2r + 1 is an arbitrary odd constant.
Proceeding as in the protocol of section 3, the user sends
each server a point on a random lineL through his point of
interest. To reconstructF |L, the user needs the evaluation
of F on his query points, together with all partial deriva-
tives ofF up to orderr. The observation is that each partial
derivative computed by the servers is a polynomial of de-
gree at leastd − r = r + 1 in at mostm variables, and
therefore we can apply Lemma 10 to achieve low server
work.

However, while the user is only sendingO(m) bits to the
servers, the servers’ answers are of sizeO(mr). To fix this,
we use a balancing technique similar to that in [10]. Each
server partitions the database intot databasesFj of sizen/t,



for some parametert. Each database will be represented as
a degreed polynomial inm = O((n/t)1/d) variables. The
user sendst points to each server, one for each database.
Suppose the user wantsFu(P ). For thet− 1 databasesFj ,
j 6= u, that the user doesn’t care about, he sends randomV j

and−V j to servers1 and2 respectively. On the other hand,
for the databaseFu that he cares about, he proceeds as in
the protocol of section 3. The servers compute the lists of
partial derivatives for each database, as before, but instead
of sending them back, they send thesumof each partial
derivative over allt databases. We show this information
is sufficient for the user to reconstructFu(P ). The total
work will be O(n/ logr+1 n), and by carefully choosingt,
we can keep the communication atO(n1/3).

Consider a prime3 field Fp for somemax(2, r) < p <
2 max(2, r). Such a primep exists by the Bertrand’s Postu-
late [16].S1 andS2 preprocess as follows.

Preprocessing phase(x):
1. s← r−1

3r , t← ns.
2. Partitionx into t databases DB1, . . . , DBt, each

containingn1−s elements.
3. Represent DBj as a homogeneous polynomialFj

of degreed = 2r + 1 with m = O
(
n(1−s)/d

)
vars.

4. Fora = 0, . . . , r, for j ∈ [t], and forl1, . . . , la ∈ [m],
computePreprocess

(
∂aFj

∂zl1 ···∂zla

)
.

Let DBu be the database containingxi. Assume the user
wantsFu(P ). Let δα,β be1 if α = β, and0 otherwise.

U : Randomly picksV 1, . . . , V t ∈ Fm
p .

U → Sh : For j ∈ [t], Qh,j def= (−1)h+1V j + δj,uP
U ← Sh : ∀a ∈ {0, . . . , r} andl1, . . . , la ∈ [m],∑t

j=1
∂aFj

∂zl1 ...∂zla

∣∣∣
Qh,j

=∑t
j=1 Evaluate

(
∂aFj

∂zl1 ...∂zla
, Qh,j

)
Correctness:Sinced is odd, for allV

∂aFj

∂zl1 · · · ∂zla

∣∣∣∣
−V

= (−1)a+1 ∂aFj

∂zl1 · · · ∂zla

∣∣∣∣
V

It follows that for alla and allj 6= u,∑
l1,...,la

∂aFj

∂zl1 · · · ∂zla

∣∣∣∣
V j

+
∑

l1,...,la

(−1)a∂aFj

∂zl1 · · · ∂zla

∣∣∣∣
−V j

= 0.

Put f(λ) = (Fu)|P+λV u , and defineg(λ) = f(λ) +

3In sections 5 and 6 we base our protocols on prime fieldsFp and do
not consider general finite fieldsFq . We do this to avoid issues related to
subtle properties of derivatives of orders greater than one in finite fields
of small characteristic. Another possible solution to this problem is to use
Hasse derivatives (referred to as hyperderivatives in [15]) instead of usual
derivatives. This allows for protocols over arbitrary finite fields.

f(−λ). We have

∑
j

∑
l1,...,la

∂aFj

∂zl1 · · · ∂zla

∣∣∣∣
Q1,j

V u
l1 · · ·V

u
la

+
(−1)a∂aFj

∂zl1 · · · ∂zla

∣∣∣∣
Q2,j

V u
l1 · · ·V

u
la

=
∑

l1,...,la

∂aFu

∂zl1 · · · ∂zla

∣∣∣∣
P+V u

V u
l1 · · ·V

u
la

+
(−1)a∂aFu

∂zl1 · · · ∂zla

∣∣∣∣
P−V u

V u
l1 · · ·V

u
la

= f (a)(1) + (−1)af (a)(−1) = g(a)(1).

ThusU can computeg(1), g(1)(1), . . . , g(r)(1) from the an-
swers. Since every monomial ofg has even degree, for
γ = λ2 we can defineh(γ) = g(λ) for a degree-r poly-
nomialh. Using that

dg

dλ
=

dh

dγ
· dγ

dλ
= 2λ

dh

dγ
,

a simple induction shows that fromg(0)(1), . . . , g(r)(1), U
can computeh(0)(1), . . . , h(r)(1). The claim is that these
values determineh. Indeed, ifh1 6= h2 agree on these val-
ues, then by lemma 1

(γ − 1)r+1
∣∣ (h1 − h2),

which contradicts thath1 − h2 has degree at mostr. Hence
the user obtainsh(0) = g(0) = 2f(0) = 2F (P ), and thus
F (P ) since the characteristicp > 2.

Privacy: Since theV j are independent and uniformly
random, so are theQ1,j and theQ2,j . Thus the view of
each ofS1, S2 is independent ofP .

Communication: U sends O(tm) =
O(ns+(1−s)/(2r+1)) = O(n(r−1)/(3r)+1/(3r)) = O(n1/3)
bits. S1,S2 respond withO(m + m2 + · · · + mr) =
O(mr) = O(n(1−s)r/(2r+1)) = O(n1/3) bits.

Server Work: Notice that the work is dominated by the
calls toEvaluate. For anya ∈ {0, . . . , r}, anyl1, . . . , la ∈
[m], and anyj ∈ [t], the polynomial ∂aFj

∂zl1 ···∂zla
is either0

or has degree2r + 1 − a, and at mostm variables. Thus
for any V , Evaluate( ∂aFj

∂zl1 ···∂zla
, V ) can be computed in

O(m2r+1−a/ log2r+1−a m) time. As the number of such
∂aFj

∂zl1 ···∂zla
is O(ma), it follows that the time for all calls to

Evaluate per DB is

∑
a

O

(
mam2r+1−a

log2r+1−a m

)
=

O(md)
logr+1 m

=
O(n1−s)
logr+1 n

.

Thus the total work over allns DBs isO(n/ logr+1 n).



5.2 Application to PIR with fixed answer sizes

In [4] it is asked:

For two-server PIR protocols and for constantb, if the
answers have size at mostb, can the queries have size less

thann/b?

We answer this with the following theorem.

Theorem 11 For anyb = O(n1/3), there exists a2 server
PIR protocol with answer lengthO(b) and query length
O(n/b2), where the constant in the big-Oh is independent
of n andb.

Proof: Before the protocol begins,S1 andS2 partition
x into t = O(n/b3) databases DB1, . . . , DBt each of size
O(b3). Each such DB is a degree-3 polynomial inm =
O(b) variables. Let DBu be the database containingxi. The
protocol follows.

U : Randomly picksV 1, . . . , V t ∈ Fm
p .

U → Sh : For j ∈ [t], Qh,j def= (−1)h+1V j + δj,uP

U ← Sh :
∑

j Fj(Qh,j), and∀l ∈ [m],
∑

j
∂Fj

∂zl

∣∣∣
Qh,j

The correctness follows from the correctness of our prepro-
cessing protocol forr = 1. For the communication,U sends
tm = O(n/b2) bits, andS1 andS2 each respond withO(b)
bits.

6 Recursive PIR in the space

Assumek is constant. The best known upper bound of

nO( log log k
k log k ) for the communication complexity of1-private

k server PIR protocols is due to Beimelet al. [7]. Although
their proof is elementary, it is rather complicated and hard
to follow. The key theorem of [7] is:

Theorem 12 ([7] Theorem 3.5) Suppose there is a1-
private PIR protocolP with communication complexity
CP(n, k). Let d, λ, k′ be positive integers (which may de-
pend onk) such thatk′ < k and d ≤ (λ + 1)k − (λ −
1)k′ + (λ − 2). Then there is a1-private PIR protocolP ′
with communication complexity

CP′(n, k) = O

(
n1/d +

k∑
l=k′

(
k

l

)
CP(nλl/d, l)

)
.

Recursive applications of Theorem 12 starting from a2-
server protocol with communication complexityO(n1/3)
yield the best known upper bounds for1-private PIR. In
this section we present an alternative geometric proof of the
special case of Theorem 12 that corresponds to setting the

value of parameterλ = 2. This case is sufficient to ob-
tain 1-private PIR protocols with communication complex-
ity matching the results of [7] for all values ofk < 26,
where the bound onk was determined experimentally.

Theorem 13 Suppose there is a1-private PIR protocolP
with communication complexityCP(n, k). Letd, k′ be posi-
tive integers such thatk′ < k andd ≤ 3k−k′. Then there is
a1-private PIR protocolP ′ with communication complexity

CP′(n, k) = O

(
n1/d +

(
k

k′

)
CP(n2k′/d, k′)

)
.

It may seem that the bound of Theorem 13 improves
upon the bound of Theorem 12 since there are no terms cor-
responding to values ofl ∈ [k′ + 1, k]. However this is not
a real improvement, since the original proof of Theorem 12
can also be modified to eliminate these terms.

We start with a high-level view of our protocol.U wants
to retrieve the valueF (P ). To this endU randomly selects
ak′ dimensional affine subspace4 π(L) containing the point
P and sends each serverSh a (k′ − 1) dimensional affine
subspace5 π(Lh) ⊆ π(L). EachSh replies with values and
derivatives of the polynomialF at every point ofπ(Lh). We
assume the subspacesπ(Lh) are in general position. In par-
ticular this implies that for every setT of k′ servers there
is a unique pointPT =

⋂
h∈T

π(Lh) that is known to all of

them. For each subsetT of k′ serversU runs a separatek′-
server1-private PIR protocolto obtain the value of a2k′-th
partial derivative of the functionF at pointPT in the direc-
tion towards the pointP. Finally we demonstrate that the
information aboutF obtained byU suffices to reconstruct
the restriction ofF to π(L).

6.1 Preliminaries

In what follows we work in a prime fieldFp with
max(2k′, k, d) < p. We start with some notation. Let
{αh}h∈[k] be distinct and nonzero elements ofFp. For
h ∈ [k] let

gh(λ1, . . . , λk′)
def= αhλ1 + α2

hλ2 + . . . + αk′

h λk′ − 1.

Let L = Fk′

p be ak′ dimensional affine space overFp. Con-
sider the hyperplanesLh ⊆ L :

Lh
def= {(λ1, . . . , λk′) | gh(λ1, . . . , λk′) = 0}

4We use the complicated notationπ(L) for consistency with the actual
proof.

5In certain degenerate cases the dimensions of bothπ(L) andπ(Lh)
may in fact be smaller thank′ andk′ − 1.



The properties of the Vandermonde matrix imply that for
anyT ⊆ [k], where|T | ≤ k′, the hyperplanes{Lh}h∈T are
in general position, i.e.:

dim
⋂

h∈T

Lh = k′ − |T |. (1)

For T ⊆ [k], such that|T | = k′, let QT denote the unique
intersection point of{Lh}h∈T . I.e:

QT def=
⋂

h∈T

Lh.

Consider a certain hyperplaneLh and a vectorv ∈ Fk′

p .
We say that vectorv = (v1, . . . , vk′) is off the hyperplane
Lh if αhv1 + α2

hv2 + . . . + αk′

h vk′ 6= 0. Clearly, for every
hyperplaneLh there exists a vectorv ∈ Fk′

p that is offLh.
Consider the mapπ : L → Fm

p induced by a uniformly
random choice of{V j}j∈[k′] ⊆ Fm

p for a fixedP ∈ Fm
p :

π(λ1, . . . , λk′)
def= P + λ1V

1 + . . . + λk′V
k′ .

Let PT denote the image ofQT underπ, i.e.:

PT def= π(QT ).

In the remaining part of this subsection we establish
two geometric lemmas. The first lemma concerns the non-
recursive part of our protocol.

Lemma 14 Letf ∈ Fp[λ1, . . . , λk′ ], deg f < |Fp| andh ∈
[k]. Supposef |Lh

= 0 and ∂f
∂v

∣∣∣
Lh

= 0, wherev is off Lh.

Theng2
h | f.

Proof: The fact thatgh | f is a direct consequence of
Bézout’s theorem ([13] p. 53)6. To see thatgh dividesf
twice, letf = g · gh. By the chain rule,

∂f

∂v
=

∂g

∂v
gh + g

∑
i

αi
hvi,

and sincev is off of Lh,
∑

j αj
hvj 6= 0. Restricting both

sides toLh, the premise of the lemma implies0 = g|Lh
,

and another application of Bézout’s theorem givesgh | g,
which proves the lemma.

The next lemma concerns the recursive part of our protocol.

6More formally, we have a polynomialf that vanishes on everyFp-
point of a hyperplaneLh. This implies thatf vanishes on everyFp-point
of Lh, since|Fp| > deg f. Now, once we have passed to the algebraically
closed fieldFp, we can apply B́ezout’s theorem to conclude thatgh andf
have a common factor, and thereforegh | f.

Lemma 15 Let f ∈ Fp[λ1, . . . , λk′ ]. AssumeT ⊆ [k],
|T | = k′. Supposef = g

∏
h∈T

(gh)2 and v ∈ Fk′

p is off

every{Lh}h∈T ; then

∂2k′f

∂v2k′

∣∣∣∣∣
QT

= C · g(QT ),

where C 6= 0 is some constant that depends only on
{gh}h∈T .

Proof: Let Ch = ∂gh

∂v =
∑

j αj
hvj , and observe thatCh 6=

0 sincev is off of Lh. By repeated application of the chain
rule,

∂a
(∏

h∈T (gh)2
)

∂va

∣∣∣∣∣
QT

= δa,2k′(2k′)!
∏
h∈T

C2
h,

whereδα,β is 1 if α = β and0 otherwise. Again by the
chain rule,

∂2k′f

∂v2k′

∣∣∣∣∣
QT

= g(QT ) · (2k′)!
∏
h∈T

C2
h.

The lemma follows by settingC = (2k′)!
∏

h C2
h.

6.2 The protocol

Protocol description : As usual the database is represented
by a degreed polynomial inm = O(dn1/d) variables. Re-
call thatd ≤ 3k − k′. Therefore we can treatd as a con-
stant. LetP = E(i). The user wants to retrieveF (P ). Our
protocol is one-round. However (as in the work of [7]) it
is convenient to think about the protocol as several execu-
tions of PIR protocols that take place in parallel.U sends
servers the affine spacesπ(Lh). Each server returns the val-
ues ofF on π(Lh) and the values of all first order partial
derivatives ofF on π(Lh). Moreover,U runs a separate
PIR protocol with every groupT of k′ servers to obtain the

value ∂2k′F
∂(P−P T )2k′

∣∣∣
P T

. Below is the formal description of

the protocol. HereST denotes the set of servers{Sh}h∈T .

U : Picks a randomπ : L→ Fm
p ,

π(λ1, . . . , λk′) = P + λ1V
1 + . . . + λk′V

k′

U → Sh : π(Lh)
U ← Sh : F |π(Lh),

∂F
∂z1

∣∣∣
π(Lh)

, . . . , ∂F
∂zm

∣∣∣
π(Lh)

U ↔ ST : A k′-server PIR subprotocol for

retrieving the value of ∂2k′F
∂(P−P T )2k′

∣∣∣
P T

To complete the description of the protocol, we need the
following lemma.



Lemma 16 LetF (z1, . . . , zm) be anm-variate polynomial
of degreed, whered is a constant. AssumeP = E(i) ∈ Fm

p

is a point of Hamming weightd. Let T ⊆ [k], |T | = k′.
Suppose each of the servers{Sh}h∈T knows the pointPT ;
thenU can learn the value of the directional derivative

∂sF

∂(P − PT )s

∣∣∣∣
P T

privately (with respect toi) with communication complexity
O(CP(ms, k′)).

Proof: We have

∂sF
∂(P−P T )s

∣∣∣
P T

=∑
l1,...,ls

∂sF
∂zl1 ···∂zls

∣∣∣
P T

(P − PT )l1 · · · (P − PT )ls ,
(2)

and sincePT and F are known to allSh with h ∈ T ,
these servers can interpret the RHS of equation (2) as anm-
variate degree-s polynomialG in the ringFp[P1, . . . , Pm].
Sincedeg G = s and the Hamming weight ofP is d, at
most2d = O(1) monomialsM of G are nonzero onP .
Thus, to learnG(P ) it is enough forU to learn the co-
efficients of theseM . To this end,U and these servers
run a PIR protocol on the list of coefficients of monomials
M = Pi1 · · ·Pid

for 1 ≤ i1, . . . , id ≤ m. The complexity
is therefore2dCP(O(ms), k′) = O(CP(ms, k′)).

We now show the desired properties of our protocol.

Privacy : Since the subprotocols are independent,
and P is private by assumption (recall the condition of
theorem 13), in order to show thatP ′ is private it suffices
to show privacy at the top level of recursion. In this level
Sh’s view is

π(Lh) = {P + λ1V
1 + . . . + λk′V

k′ |
λj ∈ Fp, αhλ1 + . . . + αk′

h λk′ = 1}.

Observe that any point inπ(Lh) is some linear combination
(overFp) of the points

P + (αh)−1V 1, . . . , P + (αk′

h )−1V k′ ∈ π(Lh).

ThusSh’s view can be generated from these points. But as
distributions,

(P + (αh)−1V 1, . . . , P + (αk′

h )−1V k′) ≡
(R1, . . . , Rk′),

where theRj ∈ Fm
p are independent and uniformly

random. ThusSh’s view does not dependP .

Correctness: Let f
def= F (π(λ1, . . . , λk′)) denote the

restriction ofF to π(L). We show the information thatU
obtains from{Sh}h∈[k] suffices to reconstructf.

Information aboutF translates into information aboutf :

1. Forh ∈ [k], f |Lh
= F |π(Lh), soU can compute the

values off along everyLh.

2. Now leth ∈ [k]. Let vh ∈ Fk′

p be a vector that is off

the hyperplaneLh. We show how to compute∂f
∂vh

∣∣∣
Lh

from ∂F
∂z1

∣∣∣
π(Lh)

, . . . , ∂F
∂zm

∣∣∣
π(Lh)

. From the chain rule

∂f
∂vh

∣∣∣
Lh

= ∂F (π(λ1,...,λk′ ))
∂vh

∣∣∣
Lh

=
m∑

l=1

∂F
∂zl

∣∣∣
π(Lh)

∂
∂vh

(Pl + λ1V
1
l + . . . + λk′V

k′

l )
∣∣∣
Lh

.

Thus for everyh ∈ [k], U can compute values of∂f
∂vh

at every point ofLh.

3. Finally, let T ⊆ [k] be such that|T | = k′. Let
πl(λ1, . . . , λk′) denotePl + λ1V

1
l + . . . + λk′V

k′

l for
l ∈ [m]. We have

∂2k′f

∂(−QT )2k′

∣∣∣
QT

= ∂2k′F (π(λ1,...,λk′ ))

∂(−QT )2k′

∣∣∣∣
QT

=∑
l1,...,l2k′

∂2k′F
∂zl1 ...∂zl2k′

∣∣∣
P T

∏2k′

j=1(Plj − PT
lj

) =

∂2k′F
∂(P−P T )2k′

∣∣∣
P T

,

where we use that∂πl(λ1,...,λk′ )
∂(−QT )

∣∣∣
QT

= Pl − PT
l , and

that Pl − PT
l is constant. Thus for everyT ⊆ [k],

where|T | = k′, U can reconstruct ∂2k′f

∂(−QT )2k′

∣∣∣
QT

.

Reconstructingf : It suffices to show the above information
is sufficient to reconstructf. Assume there are two func-
tions f1 6= f2 ∈ Fp[λ1, . . . , λk′ ] that agree on all of the
constraints above. Consider their differencef = f1 − f2.
We shall prove thatf is identically zero. By Lemma 14,f
can be written as

f = g
k∏

h=1

g2
h,

for someg ∈ Fp[λ1, . . . , λk′ ] with deg g ≤ d− 2k.
We induct downwards onr, starting withr = k′, to show

g|∩h∈T Lh
= 0 for every setT of sizer. It will follow for

r = 0 thatg|L = 0, and thusg = 0. Forr = k′, since−QT

is off Lh for everyh ∈ T , by Lemma 15 and the above,
g(QT ) = 0 for everyT ⊂ [k] with |T | = r.

Let r < k′ and assume inductively thatg|∩h∈T Lh
= 0

for every setT of size greater thanr. LetM = ∩h∈T Lh for
an arbitrary setT of sizer. Then dim(M) = k′ − r (recall



equation (1)). Consider the(k′−r−1)-dimensional spaces
of the formM ′ = ∩h∈T∪{j}Lh for somej ∈ [k]\T . There
arek− r of them. Then in the spaceM , theM ′ are distinct
hyperplanes and can therefore be described as solutions to
ρM ′ = 0 for degree-1 polynomialsρM ′ . Applying Bézout’s
theorem, ∏

M ′

ρM ′

∣∣∣∣∣ g|M .

The degree ofg|M is at mostd − 2k since M is an
affine space, whiledeg (

∏
M ′ ρM ′) = k − r. But since

d ≤ 3k − k′ by assumption andr < k′ by induction, we
haved − 2k < k − r, which means thatg|M = 0. By
induction,f = g = 0, which completes the proof.

Complexity : In the non-recursive steps,U sends
eachSh the spaceπ(Lh) described byk′ vectors inFm

p .

Sh responds withFπ(Lh) and ∂F
∂z1

∣∣∣
π(Lh)

, . . . , ∂F
∂zm

∣∣∣
π(Lh)

,

which is just a list of(m + 1)pk′ = O(1) values7 in Fp. In
the recursive steps, by Lemma 16 the total communication

is
(

k
k′

)
O
(
CP(m2k′ , k′)

)
. Sincem = O(n1/d), the total

communication of our protocol is

CP′(n, k) = O

(
n1/d +

(
k

k′

)
CP(n2k′/d, k′)

)
.
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