
Drawing Graphs with GLEE�

Lev Nachmanson, George Robertson, and Bongshin Lee

Microsoft Research
One Microsoft Way, Redmond, WA 98052, USA

{levnach,ggr,bongshin}@microsoft.com

Abstract. This paper describes novel methods we developed to lay out graphs
using Sugiyama’s scheme [16] in a tool named GLEE. The main contributions
are: a heuristic for creating a graph layout with a given aspect ratio, an efficient
method of edge-crossings counting while performing adjacent vertex swaps, and
a simple and fast spline routing algorithm.

1 Introduction

GLEE is a graph drawing tool that is being developed at Microsoft Research. Ei-
glsperger et al. [8] mention that most practical implementations of directed graph lay-
out engines follow Sugiyama’s scheme (or STT); GLEE is not an exception. In spite
of the fact that there is lot of research devoted to the scheme, we were confronted with
questions during the development process, for which we did not find answers in the
literature. In the paper we address some of these questions. To our knowledge, nobody
has solved the problem of creating a layered graph layout with a given aspect ratio. We
developed a heuristic for creating such a layout. At an earlier stage of the development,
GLEE’s performance bottleneck was counting edge crossings while swapping adjacent
nodes during the ordering step. We designed data structures and procedures to speed
up the counting. Furthermore, several previous approaches for drawing splines did not
give us satisfactory results. We developed a simple and efficient algorithm, producing
aesthetic splines.

2 Layout with a Given Aspect Ratio

When laying out a graph, we would like to better utilize the available space and create
an aesthetically pleasing layout. Here we present a heuristic of laying out graphs inside
of a rectangle of a given aspect ratio. Figures 1 and 2 show two drawings of the same
graph in rectangles of the same size. Both layouts were created by GLEE. We used the
default algorithm for Fig. 2, and the heuristic for Fig. 1. The drawing in Fig. 1 better
uses the available space and its larger nodes improve the readability.

� The full version of the paper is available at ftp://ftp.research.microsoft.com/pub/tr/TR-2007-
72.pdf. GLEE can be downloaded at http://research.microsoft.com/˜levnach/GLEEWebPage.
htm.

S.-H. Hong, T. Nishizeki, and W. Quan (Eds.): GD 2007, LNCS 4875, pp. 389–394, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

390 L. Nachmanson, G. Robertson, and B. Lee

pq h

Z

jk

lm

n o ab cd e

f gi

PQ HIJ K

LMNO ABC D

E FG

Fig. 1. Using the heuristic

pqh

Z

jk lmn oa bc d efg i

PQ HIJ K LM NOA BC DE F G

Fig. 2. Using the default layout

2.1 Description of the Heuristic

An algorithm for scheduling computer tasks for parallel processing on multiple proces-
sors can be used to compute the layering for STT. A scheduling algorithm deals with a
DAG of computer tasks. If there exists a directed path in the DAG from task t0 to task
t1, then t0 is called a predecessor of t1 and t0 has to be completed before t1 can be
begun. Suppose each task takes a unit of time to complete on any processor. Then a task
schedule corresponds to the layering, such that tasks scheduled to time 0 form the top
layer, tasks scheduled to time 1 form a layer right below it, and so on. An upper limit on
the sum of the node widths in a layer can play the role of the number of processors in a
task scheduling algorithm. In particular, we could use Coffman-Graham algorithm [6]
for our purposes. For a real number w let’s call A(w) a variation of Coffman-Graham
algorithm where we require that the sum of node widths in a layer is not greater than w.
In addition, A(w) respects Separation. There is a tendency that for a larger w algorithm
A(w) produces a layout with the less height. We use it to find out the width w giving a
good result. Let us call B(w) the following procedure applied to DAG G:

Execute the layering step using A(w)
Execute the ordering step
Calculate node x-coordinates of the proper layered graph

We apply a binary search to find W such that B(W) produces the aspect ratio which
is close to the given one. Algorithm B(w) can be repeated many times during the binary
search. To speed up its execution, starting from graphs of a specific size, we apply
the algorithm of [5] for calculation of node x-coordinates. We experimented with a
variation of A(w) where the width of edges crossing the layer is taken into account;
surprisingly, the results were better when we ignored edge widths.

The application of B(w) alone does not produce good layouts. To achieve a better
quality of the layout we apply additional heuristics. These heuristics are node demotion
and balancing of virtual and original nodes during the process of swapping of adjacent
nodes.

Node demotion. When a processor is available and there is a task which is ready to be
executed, Coffman-Graham algorithm immediately assigns the task to the processor. As

Drawing Graphs with GLEE 391

a result, some nodes can be positioned too high. We can improve the layout by pulling
nodes down, or, in other words, by demoting them. The demotion step that we execute
is the promotion step [14] being run in the opposite direction.

Balancing of virtual and original nodes. The heuristic helps in spreading uniformly
edges passing a layer and nodes of the layer. We apply the heuristic during the order-
ing step. The ordering step starts when we already have a proper layered graph, but
the order of nodes within a single layer is not yet defined. During the step we tra-
verse the layers up and down several times applying the median method of [9] and
create an ordering within the layers. The following sub-step of the ordering step is
the swapping of nodes which are adjacent on the same layer. This is done to reduce
the number of edge crossings. Here we utilize the sub-step for yet another purpose of
spreading evenly virtual and original nodes. Let us describe the way we change the
process of swapping of adjacent nodes. For a fixed layer, if the layer has fewer vir-
tual nodes than original ones then we call virtual nodes separators and original nodes
nulls. Otherwise we call virtual nodes of the layer nulls and original nodes separators.
In the usual swapping process we proceed with a swap if it reduces the number of edge
crossings, and do not proceed when it increases the number of edge crossings. In the
case when the number of edge crossings does not change as a result of the swap, we
have a freedom to apply the heuristic. Consider swapping of separator s with null m.
Let K (M) be the set of all null nodes z to the left (right) of s such that no separator
is positioned between z and s. Let K ′ and M ′ be sets defined the same way but as
if s and m are swapped. If ||K ′| − |M ′|| < ||K| − |M || then we proceed with the
swap.

Related work. Authors of Graphviz, a popular tool based on STT, mention Coffman-
Graham algorithm as one of the approaches [2] to the aspect ratio problem. In [11]
and [15] methods are developed to calculate layering for a directed graph with con-
straints on the width and the height of the layering. In the context of [11] and [15] the
width of a layering is the maximum number of nodes in its layers, and the height of a
layering is the number of its layers. Heuristics of [15] can be used instead of A(w) in
our approach, but we have not tried that.

3 Efficient Counting of Edge Crossings During Adjacent Swaps

Counting the crossings of edges connecting two neighboring layers at the ordering step
is done by using the technique from [4] and works fast. However we observed a perfor-
mance bottleneck in counting edge crossings at the phase of swapping adjacent nodes
in a layer. The approach and data structures suggested here lead to an efficient imple-
mentation.

Proposition 1. Swap of adjacent layer nodes u and v can be produced with the amor-
tized cost O(d(u) + d(v)), where d is the degree of layered graph nodes.

We give the details in the full version of the paper [1].

392 L. Nachmanson, G. Robertson, and B. Lee

4 Spline Routing

In general, in our method we modify the given polyline to avoid nodes, straighten the
polyline, and fit Bezier segments into its corners. Before describing the approach we
need to define some notions. Let PG be the proper layered graph with already defined
positions of nodes. For an edge (u, v) ∈ E there is a unique sequence of nodes U(e) =
[u0, ..., un] connecting u and v, such that; u0 = u,un = v, (ui, ui+1) is an edge of PG
for i = 0, ..., n − 1, and nodes u1, ..., un−1 are virtual. We call a polyline formed by
positions of nodes from U(e) the polyline of edge e. Let us define blocking nodes of
an edge. Nodes u and v of PG belonging to the same layer are called non-blocking to
each other if they are both virtual and some of edges adjacent to u cross some edges
adjacent to v, as shown in Fig. 3. Otherwise u and v are called blocking to each other.
The intuition is that if u is blocking for v, then a spline passing through v has to be
disjoint from u. A node is called blocking for an edge e if it is blocking for some node
of U(e). For example, if u, v belong to the same layer and u is an original node, then
u,v are blocking to each other. We build a spline for edge e of G and let p be a polyline
of e. We proceed by the following steps which are explained below:

u v

Fig. 3. Non-blocking
u, v

`

dx

dy

Fig. 4. Polyline refinement step Fig. 5. Forbidden
shortcut

1) Refine p if it crosses nodes blocking for e
2) Straighten p by using an inflection heuristic.
3) Smoothen p by fitting Bezier segments into p corners.

In the refinement step, using the node and layer separation, we replace each segment
of p intersecting the blocking nodes with a polyine disjoint from the nodes. The inserted
polyline can be split up into two connected pieces; one piece turns clockwise and the
other counterclockwise as illustrated at Fig. 4. In the inflection heuristic we remove
some polyline vertices by shortcutting them. Suppose that a, b, c and d are consecutive
nodes of p. If at b polyline p turns, for example, clockwise, and at c it turns counter-
clockwise, then we remove b from p, but only in the case when triangle a,b,c does
not intersect a blocking node for e. Fig.5 shows a situation where we do not shortcut
vertex b. Allowing such shortcuts can create additional edge spline crossings or allow
the spline to intersect a blocking node.

Before smoothing corners we simplify the polyline, without actually changing its
geometry, in a way that no three consecutive vertices of the polyline are collinear. Let

Drawing Graphs with GLEE 393

a, b and c be consecutive vertices of the polyline, and k be a real number. Let us set m to
a+k(b−a) and n to c+k(b− c). We call Bz(k) the cubic Bezier segment with control
points m, (m + 2b)/3, (n + 2b)/3, and n. We find minimal k of the form 1 − 1/2i, for
i = 1, 2, ..., such that the figure bounded by line segment [m, b], line segment [b, n] and
Bz(k) does not intersect blocking nodes for e. Such k exists since p does not intersect
the blocking nodes. When we build Bz(k) for each polyline corner, we reach our goal.

Fig. 6. Set LS is composed by dashed
nodes

u0

u1

u2

Fig. 7. Set LT is formed by thick horizontal line
segments

We use the structure of PG to efficiently check for intersections. Namely, we do not
intersect the polyline or the Bezier segment with all blocking nodes of edge e, but rather
only with a subset of these nodes or with a specially constructed set of line segments.
Let us show how to build these sets from the left of the edge. Denote by L all nodes of
PG blocking for e and positioned to the left of e. The selected subset of nodes called
LS is defined as the set of all nodes of L that are reachable by a horizontal ray starting
at a point on p, as illustrated at Fig. 6. Set LT is formed by horizontal line segments
starting at the left side of the PG bounding box and ending at the rightmost blocking
node for ui positioned the left of ui, for i = 0, ..., n, as shown in Fig. 7. Sets RS and
RT are defined by the symmetry. Step 1) checks intersections of the polyline only with
nodes from sets LS and RS, while steps 2) and 3), in addition, intersect segment [a, c]
or Bz(k) with sets LT and RT to detect intersections of triangle a, b, c or the figure
bounded by [m, b], [b, n], Bz(k) correspondingly with the blocking nodes. To speed up
the calculation we build spatial trees on sets LS, RS, LT and RT, and utilize them in the
crossing routine.

5 Conclusion and Future Work

We presented several novel methods producing good layouts for directed graphs using
Sugiyama scheme. We developed a heuristic to lay out graphs inside of a rectangle
of a given aspect ratio, which helps us better utilize the available space and create an
aesthetically pleasing layout. We presented a fast edge-crossings counting method for
adjacent node swaps. We described an efficient edge routing algorithm, which modifies
a given edge polyline to avoid nodes, straightens the polyline, and fits Bezier segments
into its corners.

394 L. Nachmanson, G. Robertson, and B. Lee

We plan to introduce more balance and symmetry into GLEE layouts. Important
features to add to the tool include interactive and incremental layout, and graph editing.

We would like to thank Stephen North and Yehuda Koren for fruitful discussions.

References

1. Drawing graphs with GLEE technical report, Lev Nachmanson, George Robertson and Bong-
shin Lee,
ftp://ftp.research.microsoft.com/pub/tr/TR-2007-72.pdf

2. Graphviz todo list (December 22, 2005),
http://www.graphviz.org/doc/todo.html

3. Abello, J., Gansner, E.R.: Short and smooth polygonal paths. In: Lucchesi, C.L., Moura, A.V.
(eds.) LATIN 1998. LNCS, vol. 1380, pp. 151–162. Springer, Heidelberg (1998)

4. Barth, W., Jünger, M., Mutzel, P.: Simple and efficient bilayer cross counting. In: Goodrich,
M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 130–141. Springer, Heidelberg
(2002)

5. Brandes, U., Köpf, B.: Fast and simple horizontal coordinate assignment. In: Mutzel, P.,
Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 31–44. Springer, Heidelberg
(2002)

6. Coffman, E.G., Graham, R.L.: Optimal Scheduling for Two-Processor Systems. Acta Infor-
matica 1(3), 200–213 (1972)

7. Dobkin, D.P., Gansner, E.R., Koutsofios, E., North, S.: Implementing a general-purpose edge
router. In: Di Battista, G. (ed.) Graph Drawing, Rome, Italy, September 18-20, 1997, pp.
262–271. Springer, Heidelberg (1998)

8. Eiglsperger, M., Siebenhaller, M., Kaufmann, M.: An efficient implementation of sugiyama’s
algorithm for layered graph drawing. In: Pach, J. (ed.) Graph Drawing, New York, pp. 155–
166. Springer, Heidelberg (2004)

9. Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.-P.: A Technique for Drawing Directed
Graphs. IEEE Transactions on Software Engineering 19(3), 214–230 (1993)

10. Goodrich, M.T., Kobourov, S.G. (eds.): GD 2002. LNCS, vol. 2528. Springer, Heidelberg
(2002)

11. Healy, P., Nikolov, N.S.: A branch-and-cut approach to the directed acyclic graph layering
problem. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 98–109.
Springer, Heidelberg (2002)

12. Lutterkort, D., Peters, J.: Smooth paths in a polygonal channel. In: Symposium on Compu-
tational Geometry, pp. 316–321 (1999)

13. Myles, A., Peters, J.: Threading splines through 3d channels. Computer-Aided Design 37(2),
139–148 (2005)

14. Nikolov, N.S., Tarassov, A.: Graph layering by promotion of nodes. Discrete Applied Math-
ematics 154(5), 848–860 (2006)

15. Nikolov, N.S., Tarassov, A., Branke, J.: In search for efficient heuristics for minimum-width
graph layering with consideration of dummy nodes. J. Exp. Algorithmics 10(2.7) (2005)

16. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical sys-
tem structures. IEEE Transactions on Systems, Man and Cybernetics SMC-11(2), 109–125
(1981)

ftp://ftp.research.microsoft.com/pub/tr/TR-2007-72.pdf
http://www.graphviz.org/doc/todo.html

	Drawing Graphs with GLEE
	Introduction
	Layout with a Given Aspect Ratio
	Description of the Heuristic

	Efficient Counting of Edge Crossings During Adjacent Swaps
	Spline Routing
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

