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Abstract

As concurrent programming becomes prevalent, software providers
are investing in concurrency libraries to improve programmer pro-
ductivity. Concurrency libraries improve productivity by hiding
error-prone, low-level synchronization from programmers and pro-
viding higher-level concurrent abstractions. Testing such libraries
is difficult, however, because concurrency failures often manifest
only under particular scheduling circumstances. Current best test-
ing practices are often inadequate: heuristic-guided fuzzing is not
systematic, systematic schedule enumeration does not find bugs
quickly, and stress testing is neither systematic nor fast.

To address these shortcomings, we propose a prioritized search
technique called GAMBIT that combines the speed benefits of
heuristic-guided fuzzing with the soundness, progress, and re-
producibility guarantees of stateless model checking. GAMBIT

combines known techniques such as partial-order reduction and
preemption-bounding with a generalized best-first search frame-
work that prioritizes schedules likely to expose bugs. We eval-
uate GAMBIT’s effectiveness on newly released concurrency li-
braries for Microsoft’s .NET framework. Our experiments show
that GAMBIT finds bugs more quickly than prior stateless model
checking techniques without compromising coverage guarantees
or reproducibility.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification – formal methods, model
checking, validation; D.2.5 [Software Engineering]: Testing and
Debugging – debugging aids, testing tools; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs – assertions, mechanical verification, specification
techniques

General Terms Algorithms, Reliability, Verification

Keywords Concurrency, model checking, partial-order reduction,
preemption bound, multithreading, software testing

1. Introduction

Multiprocessor architectures have become uniquitous and, as a
consequence, parallel and concurrent programming will become
increasingly common. Engineering principles suggest that ab-
straction layers will play a key role in enabling programmers to
write correct parallel and concurrent programs. Examples of this
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trend include the recent emergence of concurrency libraries such
as the java.util.thread package [16], the Intel Threading Building
Blocks [25], and the Microsoft Task Parallel Library [30, 18]. These
libraries improve programmer productivity by providing control,
synchronization, and data abstractions that simplify the design and
implementation of concurrent and/or parallel programs.

While these libraries help simplify higher-level programs, im-
plementing the libraries themselves is challenging. Users of con-
currency libraries expect consistent high performance. In response,
library developers often optimize their code with sophisticated syn-
chronization techniques that are fast, but error-prone. At the same
time, correctness is crucial for these libraries. Bugs in libraries
often introduce insidious errors in seemingly unrelated modules,
making concurrent applications, which are already difficult to de-
bug, even more challenging. For example, prior work [20] describes
a single bug in a low-level library that caused unreproducible errors
in more than 30 independent tests.

This paper is motivated by experience with developers and
testers using a model-checker to find concurrency errors in industry-
scale concurrency libraries. We use unit tests – many small test
cases that exercise different scenarios, and focus specifically on
concurrent unit tests. These tests use both external concurrency,
where multiple threads call into the library, and internal concur-
rency, where multiple library-internal threads operate concurrently.
Each test is short, but the set of all possible thread interleavings
for a given test is still very large, and the probability of choosing a
schedule that triggers a bug by pure chance may be very low.

While working with the test team we learned that testers initially
want to find bugs very quickly, in an almost interactive way. After
finding as many bugs as possible, however, they are willing to
run long background jobs for proof of coverage guarantees. Such
guarantees allow the test team to identify when to stop testing
and reallocate test resources appropriately. The following three
requirements summarize our experience:

Fast response: Most bugs should be found very quickly. Bugs may
manifest as livelocks, deadlocks, or assertion failures.

Reproducibility: Once a bug has been found, it should be easy to
reproduce. In particular, it must be possible to attach a debugger
and step through the schedule that causes the bug.

Coverage: The search should complete with a precise coverage
guarantee.

Strategies to detect concurrency bugs fall into three classes, which
meet these requirements to varying degrees:

1. Stress testing repeatedly runs the test under heavy load with
random noise to increase the probability of executing a rare
schedule. Stress testing provides fast response during the initial
stages of software development, but fails to perform as the
software matures, even if the software still contains errors.
Stress testing does not provide reproducibility or coverage.



2. Heuristic-based fuzzing uses heuristics such as patterns that
indicate potential deadlocks or atomicity violations to direct
an execution towards an interleaving that manifests a bug [7,
29, 22, 15]. While these techniques often provide fast response,
they do not provide coverage guarantees.

3. Stateless model checking systematically enumerates all sched-
ules to provide full coverage [10], or all schedules within a pre-
emption bound to provide preemption-bounded coverage [19].
Model checkers provide coverage guarantees and reproducibil-
ity, but they do not typically provide fast response.

Tools in each class provide either fast response or precise cover-
age guarantees, but they seldom provide both. Unfortunately, fast
response and precise coverage often involve conflicting goals. Fast
response favors a targeted search with flexible heuristics. Coverage
guarantees require systematic search, proofs, and sound reduction
techniques1 . To balance these goals, we introduce an algorithm and
a tool called GAMBIT that prioritizes a systematic search without
compromising coverage.

GAMBIT provides a generalized best-first search in a state-
less model checker. To provide fast response, GAMBIT supports
weighted combinations of heuristics that can be customized by the
user. Regardless of the heuristics chosen, however, the search (1)
does not waste time repeating the same schedule, and (2) eventually
explores all schedules, thus guaranteeing the desired level of cov-
erage (full or preemption-bounded). Moreover, because GAMBIT

controls all nondeterministic scheduling choices, GAMBIT vastly
improves the chances of reproducing a bug.

A key problem with any best-first strategy is state-management.
To alleviate this problem, we propose a compressed representation
called an execution tree that stores discovered, yet unexecuted
schedules. The execution tree 1) stores only deltas from a default
behavior, 2) stores only executions that still need to be performed,
rather than executions that have already been performed and (3)
uses space proportional to the number of high-priority schedules,
rather than the total number of schedules. Our experiments show
that this compressed representation reduces the space overhead of
the best-first search by 10x on average, compared to a standard
representation used by previous stateless model checkers. This
compression is effective enough that we do not need to use a disk,
as is commonly done for best-first search in other contexts. Our
experiments run out of time before they run out of space.

GAMBIT is built on top of the CHESS tool [20], but the tech-
niques it uses are applicable to other stateless model checkers. We
evaluate a suite of heuristics on 23 concurrency bugs in unit tests
for libraries under development at Microsoft. We find that an hour-
long search using the default CHESS settings is unable to find 9
of the bugs. In contrast, GAMBIT finds all 23 bugs in less than
two minutes, with an appropriately chosen heuristic. Similarly, for
a full-coverage search using partial-order reduction (with no pre-
emption bound), CHESS is unable to find 10 of the bugs within an
hour, while GAMBIT finds all of them in less than two minutes. We
also find that different heuristics work best for different tests. These
results suggest that the best way to use GAMBIT is to run multiple
versions in parallel with each test using a different heuristic.

2. Background

This section describes two techniques to alleviate the state-space
explosion problem in model checkers for concurrent software:

1 Testing tools often neglect proofs, probably because they are thought to be
infeasible in practice. Our experience, however, shows that for concurrency
unit testing, coverage guarantees such as preemption-bounded coverage are
worth striving for and greatly improve the user experience.
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Figure 1. State space for two threads operating on volatile vari-
ables x and y.

partial-order reduction, and bounded search. GAMBIT is comple-
mentary to both techniques, and we use them to augment the search.

2.1 Partial-order reduction

Partial-order reduction identifies equivalent thread interleavings
that lead to the same program state. By avoiding redundant thread
interleavings, partial-order methods can reduce the number of
schedules explored without compromising coverage.

Partial-order methods identify independent transitions and ex-
ploit their commutativity; the search will reach the same state with
each interleaving of independent transitions. Flanagan and Gode-
froid define independence and summarize it informally as follows:
independent transitions can neither enable nor disable one another,
and enabled independent transitions commute [8]. For example,
two attempts to acquire the same lock are dependent, yet attempts
to acquire two different locks are independent.

Figure 1 shows a state transition diagram for two threads,
Thread A and Thread B, each executing a short program. Nodes
in this diagram represent program state including global variables,
the heap, the stack, and kernel state. Edges represent transitions,
or synchronization variable accesses, that take the program to a
new state. There are six possible paths through the diagram, thus a
standard model checker would require six executions to ensure full
state-space coverage. All six of these executions lead to the same
final state, however. An optimal partial-order reduction algorithm
would require only one execution to uncover all possible states.

Partial-order reduction algorithms can be categorized into per-
sistent set techniques and sleep set techniques [9]. Persistent set
techniques conservatively reason about the possible future actions
that a thread may perform. Using this information, a persistent set
algorithm selects only a subset of the enabled threads in each state
and guarantees that none of the unselected transitions will inter-
fere with their execution [21, 12, 31]. While most persistent set
techniques use static analysis to reason about the future actions a
thread may perform, Flanagan and Godefroid introduce a dynamic
partial-order reduction (DPOR) algorithm that improves over static
algorithms by exploiting dynamic information about dependences
between transitions [8]. We implement the DPOR algorithm to rep-
resent the state-of-the-art in partial-order reduction techniques.

Sleep sets use information about the enabled transitions and the
past of the search to avoid different interleavings of independent
transitions [9]. Sleep sets are complementary to persistent sets and
combining them further reduces the size of the search space. We
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Figure 2. Threads A and B perform otherwise independent transi-
tions A1 and B1. Executing either of these transitions disables the
other, however, so A1 and B1 are not independent.

implement sleep sets as well and use them both as a heuristic and a
reduction technique.

2.2 Bounded search

During a bounded search, the model checker does not explore
executions that exceed an arbitrary bound on some property of the
execution. A bounded search is not sound; it does not maintain
full coverage of the underlying state-space. A bounded search may,
however, guarantee that safety properties hold among all executions
that do not exceed the bound. Many model checkers bound the
search based on depth; the model checker does not explore any
executions that contain more than n steps. An alternate way to
bound the search is to limit the number of preemptions that occur
during an execution [19]. A preemption bound may be more useful
than a depth bound because it limits the size of the state-space
significantly without arbitrarily limiting the depth in the execution.
In addition, Musuvathi and Qadeer empirically found that a small
number of preemptions is sufficient to expose many bugs [19].

2.3 Combining bounded search and partial-order reduction

Combining partial-order reduction with bounded search raises sev-
eral problems. Partial-order reduction is possible because different
interleavings of independent transitions cannot lead to new states.
Two transitions are independent if they commute, and they can nei-
ther enable nor disable one another [8]. In an unbounded search,
this usually means that transitions by different threads that operate
on different synchronization variables are independent. Once the
execution is bounded, however, these transitions may no longer be
independent.

After reaching the bound in a bounded search, any future tran-
sition that increases the bounded value becomes disabled. Using
a preemption bound, executing a preemption may disable any fu-
ture transition that requires a preemption. Instructions that do not
operate on the same synchronization variables or communicate in
any way may disable one another, making independence difficult to
prove even in a dynamic setting.

To illustrate this point, Figure 2 shows an example in which
threads A and B perform otherwise independent transitions A0 and
B0. The following condition must hold if A0 and B0 are indepen-
dent [8]: if A0 is enabled in a state, s, and s′ is the state reached after
taking transition A0 from s, then B0 is enabled in s iff B0 is enabled
in s′. A0 and B0 do not satisfy this condition because B0 is enabled
in s, the initial state, but is not enabled in s′, the state reached after

executing A0, as it would violate the preemption bound if executed
from s′. Thus, A0 and B0 are not independent even though they
do not access the same synchronization variables or communicate
in any way. This example shows why naı̈vely combining partial-
order reduction with bounded search is not sound. Instead, we use
the intuitions from partial-order reduction to prioritize rather than
prune the search. Likewise, we use the number of preemptions to
prioritize searches using partial-order reduction.

3. Best-first search

GAMBIT uses greedy best-first search to prioritize the large search
space of possible schedules. Traditional best-first search [17] is an
algorithm that generates a graph by maintaining sets of open and
closed nodes. Open nodes are nodes whose successors have not
yet been generated. Closed nodes are nodes whose successors have
already been generated. In every iteration, the algorithm removes
the open node with the highest priority from the list of open nodes,
generates all of its successors, and inserts the node into the list of
closed nodes. Then, it inserts each newly generated successor into
the list of open nodes, provided that it is not already present in
either list. The algorithm terminates once all nodes are closed.

In our case, nodes in the graph represent an execution of the
program; a unique sequence of transitions. This graph is always a
tree. Thus, whenever we generate a node during best-first search, it
is guaranteed to be a new node and we can insert it into the list of
open nodes without performing a check. This also implies that we
need not maintain a list of closed nodes. We call the list of open
nodes the fringe.

Unlike a depth-first search, where storage scales with the length
of the longest simple path through the graph, the storage overhead
of best-first search scales with the size of the graph. Thus, a concise
representation that limits space overhead is desirable. We refer to
the graph of states and transitions in a search as the schedule space,
and describe two different representations of this schedule space in
the next section: a straightforward one, and a more efficient one.

3.1 Uncompressed schedule space

We can represent the schedule space as a tree of partial schedules as
shown in Figure 3(a), where arrows point from child nodes to their
parent node. Each node at depth k represents a partial schedule of
length k, and its successors are the partial schedules that extend
their parent’s schedule by one more step. Each node has as many
successors as there are enabled threads after executing the partial
schedule that node represents.

Each node stores only the last transition, and a pointer to its
parent. The partial schedule corresponding to a given node can be
reconstructed by following the pointers to the root. Each node in the
tree in Figure 3(a) represents a partial path through an execution,
so the storage overhead scales with the number of partial states. We
propose a state-space representation in which the storage overhead
instead scales with the number of complete executions, or the
number of leaf nodes in Figure 3(a).

3.2 Execution trees

An execution tree is a compressed schedule space representation
that allows storage overhead to scale with the number of unique
program executions rather than the total number of partial states.
Figure 3 compares the full schedule space for a simple program
to its execution tree. In both cases, the only information actually
stored is the information along each edge.

The execution tree in Figure 3(b) leverages the systematic state-
space search by storing only deltas from other executions. Each
node represents a complete execution of the program, and each
edge represents a delta from its parent’s execution. The correspond-
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Figure 3. Compressed and uncompressed schedule space representation for two threads each performing two operations.

ing execution appears next to each node, and bold transitions rep-
resent the point at which the delta occurs.

We assume that the model checker has some default behavior
that can be systematically varied. Our model checker’s default
behavior is to never preempt the running thread, and to always
schedule the enabled thread with the minimum thread ID when the
running thread blocks. Any default behavior is acceptable provided
that it can be systematically varied. The root node in Figure 3(b)
represents the initial execution, which always performs the default
behavior. The two edges pointing from its successors represent
steps in that initial execution at which a different thread could have
been executed: at step 0, thread B could have been executed, 〈0, B〉;
at step 1, thread B could have been executed, 〈1, B〉. The root
node’s two successor nodes represent the executions obtained by
always performing the default behavior except at these steps. The
remaining nodes follow a similar pattern.

The model checker can replay any execution by performing
the default behavior except at the locations indicated along the
edges leading to that node. For example, to replay the execution
associated with the node labeled A0B0B1A1, the model checker
would perform the default behavior until step 1. At step 1, the
default behavior would be to schedule thread A again because
scheduling thread B requires a preemption, but the edge labeled
〈1, B〉 indicates that thread B should be scheduled at step 1 instead.
The rest of the execution performs the default behavior, so B is
not preempted at step 2, and A is allowed to execute again only
once B has terminated, producing the execution A0B0B1A1. Each
node in Figure 3(b) is equivalent to a leaf node in Figure 3(a). The
execution tree eliminates storing information for steps at which the
model checker performs its default behavior. We perform a best-
first search on this execution tree.

3.3 Best-first search algorithm

Figure 4 shows how the execution tree can be incorporated into
a best-first search in a stateless model checker. A node in the
execution tree in Figure 3(b) is called an ExecTreeNode. Each node
stores a link to its parent, a bit indicating whether it requires a
preemption, the step at which it diverges from the behavior of its
parent, and the thread it should perform at that step, tid. The step
and tid represent a backtracking point from its parent execution.

The BestFirstSearch routine in lines 1-16 first creates the
root node, initialized at line 2, which represents the initial, default

execution. The loop in lines 4-15 iterates through all nodes begin-
ning with the root node and continuing in priority order. Although
the root node is initially the only node in the fringe, each iteration
potentially adds new nodes to the fringe. Each node provides in-
formation to perform one unique execution of the program, and at
line 5 the model checker executes the program based on this infor-
mation. The Execute routine runs the program using the default
behavior except at the steps associated with nodes between node
and the root node, as described in Section 3.2. This Execute rou-
tine returns a data structure, exec, that contains information about
the execution including the transition executed at each step and the
enabled threads at each step.

At line 6 the algorithm checks whether the search is bounded. If
the search is bounded, then the algorithm finds backtracking points
via the FindBacktrackingPoints routine, which adds all back-
tracking points that do not exceed the bound. If the search is un-
bounded, then the algorithm calls FindDporBacktrackingPoints,
which uses a modified form of the DPOR algorithm [8] to update
the persistent set at each step.

The FindBacktrackingPoints routine in lines 17-26 adds
new executions (nodes) to the fringe for a preemption-bounded
search. In lines 18-25, the search iterates through all steps from
node.step to the end of the execution. These steps represent the
new portion of the execution, after it diverges from its parent’s ex-
ecution at node.step. At each of these previously unseen steps,
lines 20-24 iterate through all threads that were enabled but were
not executed. Line 21 identifies these threads and checks whether
executing them will exceed the preemption bound. For each unex-
ecuted 〈step, tid〉 pair that does not exceed the preemption bound,
the routine calls AddBacktrackingPoint at line 22, which cre-
ates a successor for node in the execution tree and adds this new
node to the fringe with its corresponding priority value.

Lines 27-41 show this same process for a DPOR search. This
routine iterates through new transitions in lines 28-40 and through
every thread, both enabled and disabled, in lines 29-39. Line 30
finds the lookahead transition for each thread, which is the next
transition that thread will perform. GAMBIT stores lookahead val-
ues during execution, so they are immediately available. Line 31
finds the most recent prior transition that conflicts with tid’s looka-
head. Unlike preemption-bounded search, where all new backtrack-
ing points occur below node.step, DPOR may produce a value for
bstep that is higher in the execution than node.step. As a result,



1: procedure BestFirstSearch() begin
2: root := ExecTreeNode(null, 0, 0, 0);
3: node := root;
4: while node 6= null do

5: exec := Execute(node);
6: if boundedSearch then

7: FindBacktrackingPoints(node, exec);
8: else

9: FindDporBacktrackingPoints(node, exec);
10: end if

11: if node.refCount == 0 then

12: node.Detatch();
13: end if

14: node := fringe.RemoveLowestCostNode();
15: end while

16: end
17: procedure FindBacktrackingPoints(ExecTreeNode node,

Execution exec) begin

18: for s ∈ [node.step, exec.NumSteps()] do
19: threadExecuted := exec.Transition(s).tid;
20: for all tid ∈ exec.EnabledThreads(s) do

21: if tid 6= threadExecuted && preemptBound >=
NumPreempts(exec, node, s, tid) then

22: AddBacktrackingPoint(exec, node, s, tid);
23: end if

24: end for
25: end for

26: end

27: procedure FindDporBacktrackingPoints(ExecTreeNode node,
Execution exec) begin

28: for s ∈ [node.step, exec.NumSteps()] do

29: for all tid ∈ exec.GetThreads() do

30: Transition lookahead := exec.Lookahead(s, tid);
31: bstep := StepOfMostRecentConflict(s, lookahead);
32: if exec.IsEnabledAtStep(bstep, tid) then

33: AddBacktrackingPoint(exec, node, bstep, tid);
34: else
35: for all t ∈ exec.GetEnabledThreads(bstep) do

36: AddBacktrackingPoint(exec, node, bstep, t);
37: end for

38: end if
39: end for

40: end for

41: end
42: procedure AddBacktrackingPoint(Execution exec, ExecTreeNode

node, int step, Thread tid) begin

43: succ := node.CreateSuccessor(step, tid);
44: fringe.Insert(succ, GetCost(exec, node, step, tid));
45: end

Figure 4. Best-first search using DPOR/preemption bounding.

each node in the DPOR search must keep track of its successors,
until all of them have been deleted, to avoid redundant work.

After computing the backtracking step, Line 32 checks whether
tid is enabled at bstep, and if so adds a backtracking point there.
If tid is not enabled, then the DPOR algorithm conservatively
adds a backtracking point for every enabled thread at bstep. This
algorithm explores the same executions that the depth-first DPOR
algorithm explores, but it may explore them in a different order.

After generating new nodes, Line 11 checks whether any new
nodes were actually created and if not, Line 12 deletes node. Delet-
ing node is sound in both preemption-bounded search and DPOR,
if node has no successors. In preemption-bounded search, node
will never acquire new successors after FindBacktrackingPoints
completes. With DPOR, node may acquire additional successors,
but only after executing other successors of node, of which there
are none. Thus, if node has no successors now, then it will never
have any, and deleting node will not sacrifice soundness.

The ExecTreeNode’s Detatch method, called at line 12, re-
moves node from the execution tree by decreasing its parent’s ref-
erence count. If, as a result, its parent has no successors, then node
recursively detatches its parent (which may then detatch its own
parent, etc.). Thus, ExecTreeNodes delete themselves and release
any memory they have allocated as soon as they become unneces-
sary. After all executions have been performed, the tree will there-
fore be completely empty aside from the root node. The tree both
discovers itself dynamically and deletes itself dynamically, so the
entire tree is never in memory. Every leaf node in the tree is in the
fringe and must still be executed, and every interior node has al-
ready been executed and has at least one descendent leaf node that
is in the fringe. Line 14 removes the leaf node with the lowest pri-
ority from the fringe so it can be executed during the next iteration.

The space required by the execution tree scales with the num-
ber of executions that have been discovered, but have not yet been
executed. In the tests we performed, GAMBIT can run for days us-
ing the best-first search without running out of memory. If running
for very long periods is desirable, however, or the state-space for
a program is very large, then writing the lowest priority nodes to
disk is a simple addition to GAMBIT. The nodes in the frige are
all leaf nodes and will not be touched until they are ready to be
executed, so writing them to disk should have a low performance
impact. Section 4 describes priority functions that provide the tester
with leverage in prioritizing this search.

4. Priority functions

A priority function dictates the order in which GAMBIT explores
new executions. Any priority function is admissible, but the best
priority functions will help testers find bugs more quickly. A prior-
ity function can use any approach to target the search, for example:

1. Find new happens-before executions at a faster rate.

2. Provide a randomized search with progress guarantees.

3. Allow the tester to guide the search.

4. Target known bug patterns.

We implemented priority functions using the first three approaches.
Heuristics from prior work [22, 15] could target the search at
known bug patterns, but we chose more general heuristics so that
we could detect many different types of bugs quickly.

4.1 Prioritizing new happens-before executions

A happens-before execution is an execution with a unique partial-
order on its synchronization variable accesses, or happens-before
graph. A priority function can guide the search towards new
happens-before executions, and thus towards previously unex-
plored program behavior. The following priority functions use un-
sound reductions as priority functions:

BF(pb) prioritizes executions with fewer preemptions. This prior-
ity function allows algorithms using persistent sets or sleep sets
to also favor fewer preemptions without sacrificing coverage,
though it cannot provide guarantees about coverage within the
preemption bound for these searches.

BF(dpor) uses the DPOR algorithm [8] to prioritize backtracking
points; those that would be performed by DPOR have higher
priority than those that would not. A preemption-bounded
search cannot prune these schedules without sacrificing cov-
erage, but it can defer them.

BF(ss) gives preference to backtracking points that appear useful
according to the sleep sets algorithm. Like persistent sets, sleep
sets are not sound in a preemption-bounded search.



BF(mdpor) defers backtracking points that are conservatively
added by DPOR, including those added by Lines 35-37 of Fig-
ure 4, and those that occur prior to a release operation that
cannot soundly be pruned.

These examples show how GAMBIT uses insights from unsound
reduction techniques to prioritize the search without sacrificing
coverage. We use the unsound combination of DPOR and sleep
sets with preemption-bounding as an example.

4.2 Random search

Random search is often surprisingly effective in a large search
space [4]. A pure random search provides no progress guarantees,
however, and may fail to find existing bugs. GAMBIT provides ran-
domization while guaranteeing progress and coverage by randomly
walking a program’s execution tree:

BF(rand) assigns a random priority to each execution.

This simple priority function ensures that the search does not
linger in uninteresting parts of the state-space, yet still guaran-
tees progress because it randomizes only the order of the search.
The search is not entirely random; it is biased towards the initial
schedule. Still, we show it is effective at finding bugs quickly.

4.3 Tester input

Unit tests are often designed to test a specific functionality. The
unit tests for concurrent data structures that we used often test
the interaction of specific methods, for example a simultaneous
Enqueue and Dequeue from a concurrent queue. The tester can
target the search at specific methods by specifying them at the
command line and using the following priority function:

BF(method) returns one of the following three priorities:

High: if the method being preempted is specified, and the
method preempting it is specified as well.

Medium: if the method being preempted is specified, or the
method preempting it is specified, but not both.

Low: if neither the method being preempted nor the method
preempting it is specified.

The method priority function allows the tester to target specific
methods. This priorify function may be useful for regression
testing, where only a subset of methods have been modified, or
reproducing errors from a stack trace.

BF(var) allows the tester to target specific variables. This priority
function is similar to the method priority function, but it reasons
about variables rather than methods. This priority function may
be useful to target data races, or for regression testing.

We provide these priority functions as examples, but GAMBIT is
totally general and adding new priority functions is very simple.
Each priority function implements a single method,

int GetPriority (exec, bstep, tid)

where exec is the completed execution being backtracked, bstep is
a step in exec at which a different thread could have been executed,
and tid is an alternative thread to execute at bstep. We make the
individual priority functions described above more powerful by
combining them hierarchically.

4.4 Hierarchical priority functions

We include a hierarchical priority function that combines individ-
ual priorities into a single value. The priority function listed first
receives the highest priority. When the first priority value is equiv-
alent, ties are broken by the second priority function, etc. We indi-

cate hierarchical priority functions by separating them with com-
mas. For example, the priority function BF(mdpor,pb) would first
prioritize backtracking points according to the BF(mdpor) prior-
ity function. Among executions whose values for BF(mdpor) were
equal, those that contain fewer preemptions (smaller values for
BF(pb)) would be executed first. The tester can combine any num-
ber of priority functions. Other operators are possible, as well, but
we do not evaluate other operators here.

When priority values for two executions are completely equal,
the fringe always returns the execution that was most recently
added. This behavior is equivalent to a depth-first search, and helps
keep the space requirement of the best-first search reasonable. If an
entire portion of the search space has the same priority value, then
it will be searched in a depth-first manner and have little impact on
the overall space requirement.

4.5 Selecting priority functions

We tried a variety of priority functions and present results for the
most successful ones in Section 5. Prioritizing executions with
fewer preemptions was very effective for full-coverage searches us-
ing DPOR. As the number of preemptions grows, the DPOR algo-
rithm becomes increasingly likely to swap conflicting accesses and
return to an already visited state. Sleep sets help combat this prob-
lem, but we cannot prune a portion of the state-space due to sleep
sets without performing at least one redundant execution. Prioritiz-
ing by preemption count helps defer these redundant executions. In
addition, testers find preemption points useful for identifying the
root cause of a bug. Traces that contain fewer preemptions are thus
preferable, as they make it easier to identify the root cause.

The modified DPOR priority function also improved the speed
with which the DPOR search finds bugs. Thus, we combined these
heuristics to find bugs even faster. The BF(mdpor,pb) priority func-
tion first prioritizes by the modified DPOR priority function, and
among executions with equivalent priority it chooses executions
that contain fewer preemptions. We found this priority ordering
was preferable because the fewer preemptions priority function was
more likely to defer useful backtracking points, whereas the modi-
fied DPOR priority function typically defers redundant executions.

The preemption-bounded search uses priority functions to gain
some of the benefits of DPOR and sleep sets without sacrific-
ing preemption-bounded coverage. The BF(ss,dpor) priority func-
tion, which prioritizes first by sleep sets and then by DPOR, was
particularly useful with preemption-bounded search. We priori-
tized by sleep sets first because CHESS’s sleep sets implementa-
tion includes a special case for non-preemptive context switches,
whereas the DPOR implementation does not. Non-preemptive con-
text switches can be critical in a preemption-bounded search be-
cause they expose a whole new segment of the search space that
can be accessed within the preemption bound. DPOR is thus more
likely than sleep sets to defer an execution that is really necessary.
To further improve the preemption-bounded search, we replace the
DPOR priority function with the modified version, BF(ss,mdpor).
We evaluate these priority functions on a set of concurrency bugs
in the next section.

5. Results

We evaluate the speed with which GAMBIT finds known bugs in
unit tests for concurrent libraries under development at Microsoft.
We compare different priority functions and also evaluate the mem-
ory usage of the execution tree.

5.1 Methodology

We evaluate GAMBIT on both preemption-bounded search and
unbounded search with dynamic partial-order reduction (DPOR).



Program Unit test (max steps) Description

CCR Iterator (165), Causality (2615), ScatterGather
(12156), TaskCoverage (203), GatherPost1 (142),
GatherPost2 (164)

Provides a highly concurrent programming model based
on message-passing with powerful orchestration primi-
tives enabling coordination of data and work.

RegionOwnership RegOwn (277) Supports ownership-based separation of the heap for par-
allel programs.

SYN Barrier1 (124), Barrier2 (102), ManualRe-
setEventSlim(MRSE) (93), SemaphoreSlim (120)

Low-level synchronization primitives.

CDS ConcBag1 (944), ConcBag2 (336), BlockingColl
(936)

Basic parallel data structures for .NET 4.0.

TPL NQueens (1079) Provides support for imperative task-parallelism in .NET
4.0

PLINQ NQueens (972), ParallelDo (2721) Provides support for declarative data-parallelism in
.NET 4.0.

Table 1. Programs and corresponding unit tests. Each unit test includes the maximum number of synchronization variable accesses observed
in a single run in parenthesis.

We compare directly to the CHESS tool’s default configuration,
which uses a depth-first search with a preemption bound of two.
The only modification we made to CHESS’s default configuration
was to disable sleep sets, which are used by default in CHESS even
though they are not sound with the default configuration.

Table 1 describes the unit tests that we used to evaluate GAM-
BIT. These unit tests were developed by testers for concurrent li-
braries and data structures at Microsoft such as the Concurrency
Coordination Runtime (CCR) [1] and the .NET 4.0 concurrency li-
braries. Column 2 provides, in parentheses, the maximum number
of transitions performed in a given execution for each unit test. This
number is generally correlated with the size of the state-space.

CCR ships as part of the Microsoft Robotics Studio Runtime
and provides primitives for building asynchronous programs, simi-
lar to those required for a robot controller. RegionOwnership tests
a library that supports ownership-based separation of the heap for
parallel programs. The remaining unit tests are for parts of the .NET
4.0 concurrency library. At the lowest level are unit tests for syn-
chronization primitives including barriers and lightweight versions
of a semaphore and a manual reset event. On top of those synchro-
nization primitives are several concurrent data structures (CDS) in-
cluding a concurrent bag and a blocking collection. TPL is a task-
parallel library that creates lightweight tasks for imperative task-
parallelism. Finally, PLINQ is an implementation of the declarative
data-parallel extensions to the .NET framework [3]. All of these
unit tests were written by the testers of the respective products.

5.2 Time to find bugs

Table 2 shows how many seconds were required to find each bug
with different priority functions. Column 2 contains the type of
bug. Multiple entries appear for unit tests that contain multiple
bugs. Columns labeled DPOR use both DPOR and sleep sets and
columns labeled PB(2) use a preemption bound of two. The “DF”
columns contain baseline depth-first results for each search. The
PB(2), DF results are the CHESS default. Cells marked ”–” indicate
that the search did not find the bug within one hour. The row labeled
“Total hours” shows the total number of hours required to run all
23 unit tests given a one-hour time limit per test, assuming each
test terminates after finding a bug. The row labeled “Bugs found”

shows the number of bugs that would be found during that time
period with each heuristic.

Using BF(pb) to favor fewer preemptions with DPOR reduces
the time required to find the bug in every case. Adding the modi-
fied DPOR priority function, BF(mdpor,pb), strictly improves the
time required to find the bug over BF(pb). The depth-first search
required 11.5 hours to complete all 23 unit tests, and it only found
13 bugs during that time. The BF(dpor,pb) test required 0.4 hours
to find all 23 bugs, and the BF(mdpor,pb) test required slightly less
time, 0.3 hours, to find all 23 bugs.

The ss and dpor priority functions improve the preemption-
bounded search significantly in all but one case. In ScatterGather,
the ss and dpor priority functions actually defer the execution that
causes the bug. The preemption-bounded search for this unit test
requires a non-preemptive context switch, which would be pruned
by DPOR in an unbounded search, to manifest the bug within
the preemption bound. Rather than choosing this non-preemptive
context switch, the DPOR algorithm selects a preemptive con-
text switch that has the same effect on the happens-before graph,
yet exceeds the preemption bound. This shortcoming illustrates
why DPOR cannot be trivially combined with preemption-bounded
search. Modifying the algorithm to give special treatment to non-
preemptive accesses could alleviate this problem.

Replacing the DPOR priority function with the modified DPOR
priority function always improves the time required to find the bug
in preemption-bounded search. The depth-first search required 11.8
hours to complete all 23 tests, and it found 14 bugs during that time.
The BF(ss,dpor) search required 2.4 hours to complete all 23 tests,
and it found 21 bugs. The BF(ss,mdpor) search required 1.2 hours
and found 22 bugs.

We performed each test 10 times using the rand priority func-
tion with the time as the random seed. The average, minimum, and
maximum number of seconds required to find the bug appear in Ta-
ble 2. The minimum time to find the bug with rand was at least as
small as with any other priority function in all but three cases. The
maximum time to find the bug was sometimes significantly higher,
however. The time required to find the bug in Barrier1 varied from
one second to longer than an hour depending on the random seed.
We suggest performing multiple tests in parallel with different ran-



Test Bug

Time to find bug (seconds)
DPOR PB(2)

DF
BF BF BF(rand)

DF
BF BF BF(rand)

(pb) (mdpor,pb) avg min max (ss,dpor) (ss,mdpor) avg min max

Iterator Livelock 82 4 3 6 3 11 78 9 5 4 1 4
Causality Livelock – 748 735 90 4 265 – 367 70 18 5 61
ScatterGather Livelock 784 94 33 41 16 88 1484 – – 4 2 13
TaskCoverage Livelock 1059 176 35 27 1 44 – 13 5 238 3 1202
GatherPost1 Assertion 1540 3 2 24 3 65 314 6 3 5 1 19
GatherPost2 Assertion – 31 15 34 3 139 – 592 236 10 1 14

RegOwn Assertion – 265 52 72 2 371 – 92 11 – – –

Barrier1 Assertion – 1 1 N/A 1 – 2654 18 18 1 1 3
Barrier2 Assertion 844 1 1 114 1 728 143 15 11 4 1 12
MRSE Deadlock 61 21 15 34 3 54 108 – 54 102 28 218
SemaphoreSlim Assertion 2 1 1 2 1 7 146 1 1 1 1 1

ConcBag1 Assertion 35 2 1 2l 1 11 458 4 2 6 1 21
ConcBag2 Assertion – 5 3 93 4 619 – 15 7 6 1 16
BlockingColl Deadlock – 84 72 190 20 1474 – 153 71 632 89 2362

NQueens Livelock 2 2 1 2 1 5 140 2 2 4 1 7
NQueens Assertion – 60 36 8 2 26 1659 20 11 28 5 91
NQueens Assertion – 63 37 7 1 15 1595 18 10 20 2 73

NQueens Assertion – 3 2 8 2 25 – 17 10 73 2 323
NQueens Assertion 227 3 2 6 1 12 – 7 3 20 3 73
NQueens Assertion – 3 2 9 1 39 – 17 10 52 8 157
ParallelDo Assertion 1 1 1 3 1 5 63 1 1 18 1 59
ParallelDo Assertion 462 24 15 10 1 28 597 23 19 18 5 37
ParallelDo Assertion 317 24 15 20 1 16 548 21 17 21 2 68

Total hours 11.5 0.4 0.3 1.2 11.8 2.4 1.2 1.4
Bugs found 13 23 23 22 14 21 22 22

Table 2. Time in seconds required to find each bug with different search strategies. “–” indicates that the search took longer than an hour.
If the tester set all unit tests to run for at most one hour, then “Total hours” is the number of hours required to run the entire test suite, and
“Bugs found” is the number of bugs that would be found within that time period.

dom seeds, or using random in conjunction with the other priority
functions. The space overhead with random search may be higher,
however, because fewer executions have equal priority, which sac-
rifices the space benefit of depth-first search among equal priority
executions. We are currently investigating probabilistic approaches
that harness the power of random search.

5.3 Prioritizing based on user input

We used a case study to test the BF(method) priority function. The
GatherPost2 unit test ran for an entire long weekend without find-
ing the bug using depth-first search with DPOR. The number of
transitions in GatherPost2 is relatively small (164), but the propor-
tion of those synchronization variable accesses that conflict is very
high. We reproduced the bug, identified the methods involved, and
realized that they were fairly obvious from the unit test. One thread
in GatherPost2 places a set of items on a port, and another thread
dequeues those items. The methods preempted to cause the bug
were the port’s Enqueue and TryDequeue methods.

This example helped motivate the BF(method) priority function.
By specifying both Enqueue and TryDequeue at the command
line, the BF(method) priority function found a bug that had not
manifested all weekend in 7 seconds. Specifying only the Enqueue
method manifested the bug in 68 seconds, and specifying only
the TryDequeue method manifested the bug in 13 seconds. We
suspect that this and the BF(var) priority function, which prioritizes
variables, will help testers target data races, perform regression
testing, and reproduce stress test failures given stack traces.

5.4 Space requirements

The primary downside to best-first search is its memory require-
ment. We recorded the number of nodes created and the number
of nodes destroyed by the execution tree during a DPOR and a
PB(2) search. For the DPOR search we used the best-performing
non-random heuristic, BF(mdpor,pb). For the PB(2) search we used
BF(mdpor). We did not use sleep sets with either test because our
sleep sets implementation currently has a very high space overhead.
This space overhead is totally orthogonal to the best-first search of
the execution tree, however, and adding sleep sets would only im-
prove the space requirements of the execution tree as it would either
reduce or better target the search. We provide space results for a
CDS BlockingCollection unit test that did not fail, so the test could
be long-running. This test contained approximately 204 transitions.

To compute the memory required, we assumed each node in the
execution would require 16 bytes; 4 bytes each for a parent pointer,
the number of successor nodes, the backtracking step, and the
thread to execute at that step. We recorded the number of nodes cre-
ated and the number of nodes destroyed during the entire test pro-
cess every 1,000 executions. The memory consumption we report
is equal to (nodesCreated − nodesDestroyed) ∗ 16/1000000
MB. We plot this value over time in Figure 5.

For both the DPOR and the PB(2) search we use a depth-
first strategy among nodes with equal priority. The fringe that
contains nodes waiting to be executed is organized as a set of
bins of equal priority, where each bin is a stack. Thus, GAMBIT

performs depth-first search among executions with equal priority,
conserving memory and deleting nodes as quickly as possible. This
organization helps prevent excessive growth in space overhead.



(a) DPOR with BF(mdpor,pb). (b) PB(2) with BF(mdpor).

Figure 5. MB of storage consumed by the execution tree over time on a CDS BlockingCollection unit test (max 204 steps) that did not
contain a bug.

In Figure 5(a) the underlying depth-first search is evident in
the fluctuations in the memory usage. Each time a backtracking
point high in the execution is chosen, GAMBIT learns of many new
executions that it must store. The DPOR execution terminated at
326,743 executions. Because each node represents an execution,
the total number of nodes created was exactly 326,743, as well.
Nodes recursively delete themselves and their childless parents,
however, as soon as their successors have all been executed, as
described in Section 3.2. As a result, the maximum number of
nodes alive in the system was 90,159. The additional space required
to maintain the frontier is not included here, but it could at most
double the memory usage.

Figure 5(b) shows a graph for a PB(2) search, where the ef-
fect of the priority function and the underlying depth-first search
is particularly obvious. The DPOR priority function guides the
preemption-bounded search towards new executions very quickly
at first. At about 16,000 seconds (490,000 executions), however,
the search stops discovering new behavior and the memory use be-
comes constant, as the search reverts to a depth-first search among
low-priority executions. The memory requirement does eventu-
ally return to zero, but only after searching the entire preemption-
bounded space (not shown).

These results suggest that for this test case, the DPOR algorithm
would be preferable because it searches the entire state-space in
less time than the PB(2) search searches the preemption-bounded
state-space. This is not always the case, however. As the ratio of
conflicting to total accesses grows, the preemption bound becomes
more desirable for reducing search completion time. The amount
of coverage it loses also increases, however. Fully evaluating the
relative benefits of preemption-bounding and DPOR is beyond
the scope of this paper, but these results suggest that there is an
interesting tradeoff between the two.

6. Related Work

This work is closely related to and builds upon the CHESS
tool [20]. CHESS uses model checking techniques [2, 24, 14, 32]
to enumerate thread interleavings with a bound on the number of
preemptions in each interleaving [19]. CHESS employs a simple
partial-order reduction algorithm that relies on the fact that pro-
grams are mostly data-race free. CHESS uses a depth-first search
within the preemption-bounded space. GAMBIT, in contrast, em-
ploys a best-first search and uses priority functions that provide
the benefits of the more sophisticated dynamic partial-order reduc-

tion algorithm [8]. Given the complications involved in combining
preemption-bounding and dynamic partial-order reduction, it is
impossible to achieve the same degree of partial-order reduction in
CHESS without resorting to the heuristics and state-management
techniques proposed in this paper.

The rand priority function exploits the same insights that mo-
tivate Parallel Randomized State-Space Search (PRSS) [4] in Java
PathFinder [32]. We reach a similar conclusion, that performing
a few parallel searches using the rand priority function with dif-
ferent seeds would be beneficial. GAMBIT’s random search differs
from the PRSS random search, however; PRSS performs a depth-
first, stateful search from random initial points, whereas GAMBIT

performs a stateless random walk of the execution tree from a sin-
gle initial point. These approaches could be complementary to one
another: GAMBIT may benefit from using random initial points,
and PRSS may benefit from a randomized rather than a depth-first
traversal with each test.

There is a long history of using heuristics in artificial intel-
ligence and planning [27, 23]. Our work is closely related and,
in part, motivated by the success of heuristics in model check-
ing [33, 6, 5, 26]. These directed model checking algorithms use so-
phisticated analysis of the input program model to generate heuris-
tics for guided search. These techniques have been studied in an
explicit-state or symbolic-state setting. GAMBIT scales to larger
concurrent programs for which capturing the program state is im-
possible. It is not straightforward to translate heuristics from state-
ful search into a stateless setting. For instance, Yang and Dill [33]
use Hamming distance to prioritize exploring states that are closer
to error states. Such heuristics are not applicable in the context
of GAMBIT. Preliminary work has been done in exploring heuris-
tics in stateless search [11], but the genetic algorithms used in this
work do not fare well when combined with partial-order reduction
techniques nor do they provide the same soundness and progress
guarantees. Finally, our use of user-provided heuristics is similar to
GuidePosts in SpotLight [33].

Groce and Visser investigate guided model-checking for stateful
search in PathFinder, and use several heuristics that are more appli-
cable in a stateless search [13]. For example, they include a thread
interleaving heuristic that actually favors more preemptions to in-
crease the variation in thread schedules, which allowed their search
to scale to more threads. We favor fewer preemptions because we
find these executions are most useful to developers, as the preemp-
tions often indicate the root cause of the bug. The state space is



much smaller with fewer preemptions, as well, which makes it pos-
sible to find errors more quickly.

GAMBIT is also related to fuzzing-based techniques [7, 29,
28, 22, 15]. In contrast to fuzzing techniques, however, GAMBIT

provides eventual soundness and progress guarantees.

7. Conclusions

Like most fuzzing techniques, GAMBIT allows testers to find con-
currency bugs quickly with limited resources. At the same time,
however, GAMBIT also provides testers with the soundness and
progress guarantees associated with model checking. Although the
best-first search used in GAMBIT incurs a significant space over-
head when compared to the depth-first search used in typical model
checkers, we introduce a compressed representation called an ex-
ecution tree that reduces this space overhead significantly, cleans
itself up as the search progresses, and lends itself well to a par-
allel search. Because GAMBIT stores unvisited rather than visited
states, the space requirement grows with the number of prioritized
executions, and reverts to a space-efficient depth-first search when
priorities are equal. In cases where the space requirement is still too
large, saving part of the space to disk is a simple addition.

We highlight several priority functions that find new happens-
before executions more quickly, enable randomized search with
progress guarantees, and allow the programmer to guide the search
by specifying methods or variables likely to be involved in bugs.
These heuristics help GAMBIT find more bugs in significantly less
time than depth-first search with both dynamic partial-order reduc-
tion and preemption-bounding. GAMBIT provides a flexible frame-
work for testing concurrent libraries so that developers can identify
bugs quickly while preserving coverage and progress guarantees.
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