
@AndrewDGordon, Microsoft Research and University of Edinburgh

Based on joint work with Mihhail Aizatulin (OU), Johannes Borgström
(Uppsala), Guillaume Claret (MSR), Thore Graepel (MSR), Aditya Nori
(MSR), Sriram Rajamani (MSR), and Claudio Russo (MSR)

PROBABILISTIC
PROGRAMMING

MICROSOFT RESEARCH

Machine Learning and Programming

 “Data widely available; what is scarce is the ability to extract
wisdom from them” , Hal Varian, 2010

 “Machine learning!”, Mundie and Schmidt at Davos, 2012

 Researchers use Bayesian statistics as unifying principle:
 Models are conditional probabilities; inference algorithms separate

 For the programmer, what’s the problem?
 Cottage industry of inflexible libraries and algorithms

 Custom implementations are 1000s LOC

 Probabilistic programming offers a solution
 Write your model as succinct, adaptable probabilistic program

 Run compiler to get efficient inference code

2

MICROSOFT RESEARCH

Murder Mystery in Fun
// Either Alice or Bob dunnit
// Alice dunnit 30%, Bob dunnit 70%
// Alice uses gun 3%, uses pipe 97%
// Bob uses gun 80%, uses pipe 20%
let mystery () =

let aliceDunnit = random (Bernoulli 0.30)
let withGun =
if aliceDunnit
then random (Bernoulli 0.03)
else random (Bernoulli 0.80)

aliceDunnit, withGun

// Pipe at scene - now Alice dunnit 69%
let PipeFoundAtScene () =

let aliceDunnit, withGun = mystery ()
observe(withGun = false)
aliceDunnit, withGun

Alice

Bob
0

0.5

1

pipe
gun

Alice

Bob
0

0.5

1

pipe
gun

MICROSOFT RESEARCH

Probabilistic Programming

 BUGS (Spiegelhalter et al 1994, CU)

 IBAL (Pfeffer, 2002)

 BLOG (Milch et al 2005, UCB/MIT) – Gibbs sampling

 Alchemy (Domingos et al 2005, UW) – probabilistic logic
programming

 CHURCH (Goodman et al 2008, MIT) – recursive
probabilistic functional programming

 HANSEI (Kiselyov and Shan, 2009) – discrete distributions
from Ocaml

 FACTORIE (McCallum et al 2008, UMASS)

 Infer.NET

4

Judea Pearl, Turing Award Winner 2011

For fundamental contributions to
artificial intelligence through the
development of a calculus for
probabilistic and causal reasoning.

…

He identified uncertainty as a core
problem faced by intelligent systems
and developed an algorithmic
interpretation of probability theory
as an effective foundation for the
representation and acquisition of
knowledge.

5

MICROSOFT RESEARCH

Probabilistic Graphical Models

 Pioneered by Bayes Networks (Pearl 1988)
 Model of world, both observed and unobserved states

 Probabilistic for uncertainty: missing data, noise, how data arises

 Graphical notations capture dependence, for scalability

 Pearl “invented message-passing algorithms that exploit
graphical structure to perform probabilistic reasoning
effectively”

 Many application areas: “natural language processing, speech
processing, computer vision, robotics, computational biology,
and error-control coding”

 In last few years, large-scale deployments include:
 TrueSkill – How do we rank Halo players?

 AdPredictor – How likely is a user to click on this ad?

6

MICROSOFT RESEARCH

Infer.NET (since 2006)

 A .NET library for probabilistic inference

 Multiple inference algorithms on graphs

 Far fewer LOC than coding inference directly

 Designed for large scale inference

 User extensible

 Supports rapid prototyping and deployment of Bayesian
learning algorithms

 Graphs represented by object model for pseudo code,
but not as runnable code

 Realization: language geeks can do machine learning,
without comprehensive understanding of Bayesian stats,
message-passing, etc

7

MICROSOFT RESEARCH 8

MICROSOFT RESEARCH

Infer.NET Fun – New Feature

 Bayesian inference by functional programming
 Write your model in F#

 Run forwards to synthesize data

 Run backwards to infer parameters

 Benefits:
 Models are simply code in F#’s simple succinct syntax

 Higher-level features than C# OM: tuples, records, array
comprehensions,functions

 Custom graphical notations (“plates”,”gates”) just code

 Testing inference by running forwards then backwards

9

http://research.microsoft.com/fun

http://en.wikipedia.org/wiki/File:Ada_lovelace.jpg

MICROSOFT RESEARCH 10

Programming in Infer.NET Fun

MICROSOFT RESEARCH

Linear
Regression

 Linear regression:
Forwards, compute yi = axi + b + noise from a and b
Backwards, given yi infer a and b

11

-35

-30

-25

-20

-15

-10

-5

0

5

10

0 5 10 15 20 25

true a: -1.422354626
true b: 7.171306243
true prec: 0.1829893437

MICROSOFT RESEARCH

let prior() =
let a = random(Gaussian(0.0, 1.0))
let b = random(Gaussian(5.0, 0.3))
let noise = random (Gamma(1.0, 1.0))
a, b, noise

let point x a b noise =
x, random(Gaussian(a * x + b, noise))

let model data =
let a, b, noise = prior()
observe (data =
[| for x,_ in data -> point x a b noise |])

a, b, noise

let aD, bD, noiseD = inferFun3 <@ model @> data

-35

-30

-25

-20

-15

-10

-5

0

5

10

0 10 20

-35

-30

-25

-20

-15

-10

-5

0

5

10

0 10 20

Linear Regression in Fun

MICROSOFT RESEARCH

Some Probability Distributions in Fun

13

Source: Wikipedia

MICROSOFT RESEARCH 14

dist ::= // Fun distribution
Beta(expr)
Gaussian(expr1,expr2)
Gamma(expr1,expr2)
Binomial(expr1,expr2)
VectorGaussian(expr1,expr2)
Discrete(expr)
Poisson(expr)
Bernoulli(expr)
Dirichlet(expr)
Wishart(expr1,expr2)

type ::= // Fun value type
unit
bool
int
double
(type1 * ... * typeN)
{ field1: type1; ...; fieldN: typeN}
type[]

expr ::= // Fun expression
var // variable
literal // literal eg -1.0, true, 42
{ field1 = expr1; ...; fieldN = exprN } // record
(expr1, ..., exprN) // tuple
expr.field // record lookup
fst(expr) // first projection
snd(expr) // second projection
not expr // negation
expr1 R expr2 // relation (eg, =, >)
expr1 f expr2 // function (eg, +, -)
let var = expr1 in expr2 // let
if expr1 then expr2 else expr3 // conditional
expr : type // type annotation
for var in expr1 do expr2 // iteration loop
[| 0 .. expr |] // integer range
[| for var in expr1 -> expr2 |] // comprehension
Array.zip expr1 expr2 // zip two arrays
random(dist) // draw from distribution
observe expr // observation of boolean

MICROSOFT RESEARCH

TrueSkill in Fun

0

0.05

0.1

0 10 20

Alice

Bob

Cyd

MICROSOFT RESEARCH

TrueSkill in Fun

0

0.05

0.1

0 10 20

Alice

Bob

Cyd

-0.05

0

0.05

0.1

0.15

0.2

0 10 20

Alice

Bob

Cyd

17

type ISampler type ILearner

type Model

module Classifier
module Regression

module TrueSkill
module TopicModel

Or choose
from library

module LinearRegression =
type TH = {MeanA: double; PrecA: double; … }
let h = {MeanA=0.0; PrecA=1.0; … }
type TW<'a,'b,'c> = {A:'a; B:'b; Noise:'c}
type TX = double
type TY = double
let M: Model<TH,TW<double,double,double>,TX,TY> =
{ Prior = <@ fun h ->

{ A = random(Gaussian(h.MeanA,h.PrecA))
B = random(Gaussian(h.MeanB,h.PrecB))
Noise = random(Gamma(h.ShapeN,h.ScaleN)) } @>

Gen = <@ fun a -> let m = (a.W.A * a.X) + a.W.B
random(Gaussian(m, a.W.Noise)) @> }

Write your
model in F# or C#

Or automatically
generate

Assemble
multiple
models

Synthetic
data to test
learner

Choose algorithm
(eg, EP, VMP, Gibbs, ADD, Filzbach)

Train, predict, repeat

The model-learner pattern brings structure and types,
as well as PL syntax, to probabilistic graphical models

http://research.microsoft.com/fun

MICROSOFT RESEARCH

Models, Samplers, and Learners

18

type Model<'TH,'TW,'TX,'TY> =
{ HyperParameter: 'TH
Prior: Expr<'TH ->'TW>
Gen: Expr<'TW *'TX ->'TY> }

type ISampler<'TW,'TX,'TY> =
interface
abstract Parameters: 'TW
abstract Sample: x:'TX -> 'TY

end

type ILearner<'TDistW,'TX,'TY,'TDistY> =
interface
abstract Train: x:'TX * y:'TY -> unit
abstract Posterior: unit -> 'TDistW
abstract Predict: x:'TX -> 'TDistY

end

MICROSOFT RESEARCH

TrueSkill

19

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

A ANDERSSEN

L PAULSEN

W STEINITZ

CAPT MACKENZIE

I KOLISCH

P MORPHY

S WINAWER

J BLACKBURNE

J ZUKERTORT

A BURN

J MASON

M CHIGORIN

I GUNSBERG

S TARRASCH

D JANOWSKI

R TEICHMAN

E LASKER

G MAROCZY

H PILLSBURY

R CHAROUSEK

C SCHLECHTER

F MARSHALL

let perf(w,pid) =
let m = w.Skills.[pid]
Fun.random(Fun.GaussianFromMeanAndPrecision(m,1.0/beta2))

let M:Model<TH,TW<real>,TX,TY> =
{ HyperParameter = {Players = 4

GM = {Mean=25.0;Precision=1.0/sigma2} }
Prior = <@ fun h ->

{Skills =
[| for x in 0..h.Players-1 ->

let m,p = h.GM.Mean,h.GM.Precision in
Fun.random(Fun.GaussianFromMeanAndPrecision(m,p))|]

} @>
Gen = <@ fun (w,x) -> (perf(w,x.P1) > perf(w,x.P2)) @>}

MICROSOFT RESEARCH

Binary Mixture Combinator

 We code a variety of idioms as functions from
models to models, eg, mixtures:

20

let Mixture(m1,m2) =
{Prior =

<@ fun h ->
{Bias=random(Uniform(0.0,1.0))
P1=(%m1.Prior) h
P2=(%m2.Prior) h} @>

Gen =
<@ fun (w,x) ->

if random(Bernoulli(w.Bias))
then (%m1.Gen) (w.P1,x)
else (%m2.Gen) (w.P2,x) @>}

21

Mixture

Of

Gaussians

let k = 4 // number of clusters in the model
let M = IIDArray.M(KwayMixture.M(VectorGaussian.M,k))

let sampler1 = Sampler.FromModel(M);
let xs = [| for i in 1..100 -> () |]
let ys = sampler1.Sample(xs);

let learner1 = InferNetLearner.LearnerFromModel(M,mg0)
do learner1.Train(xs,ys)
let (meansD2,precsD2,weightsD2) = learner1.Posterior()

MICROSOFT RESEARCH

Evidence Combinator

 A variation of mixtures, where the choice between models
is made per-model, rather than per-output

22

let Evidence(m1,m2) =
{Prior = <@ fun (bias,h1,h2) ->

(random(Bernoulli(bias))),
(%m1.Prior) h1, (%m2.Prior) h2) @>

Gen = <@ fun ((switch,w1,w2),x) ->
if switch then (%m1.Gen) (w1,x)
else (%m2.Gen) (w2,x) @>}

23

Demo:
Model
Selection

let mx k = NwayMixture.M(VectorGaussian.M,k)
let M2 = Evidence.M(mx 3, mx 6)

Fitting Model to Climate Data (TACAS’13)

 We developed scientific
models as Fun models

 One benefit is the automatic
extraction of the likelihood
function as the density of a
probabilistic expression

module NPP =
let predict w x =

let prec_lim = w.max_NPP * (1.0 - exp (-w.p * x.MAP))
let temp_lim = w.max_NPP / (1.0 + exp (w.t1 - w.t2 * x.MAT))
let pred_NPP = min prec_lim temp_lim
pred_NPP

let model =
{Prior =

<@ fun () ->
{max_NPP = random(Gamma(1.0, 1.0))
p = random(Gamma(1.0, 1.0))
t1 = random(Gamma(1.0, 1.0))
t2 = random(Gamma(1.0, 1.0))
s_NPP = random(Gamma(1.0, 1.0))} @>

Gen =
<@ fun (w,x) ->

{NPP = random(Gaussian(predict w x,
w.s_NPP * w.s_NPP))} @>}

MICROSOFT RESEARCH

Infer.NET Fun

 Bayesian inference by functional programming
 Write your model in F#

 Run forwards to synthesize data (normal F#)

 Run backwards to infer parameters (via Infer.NET)

 Benefits:
 Models are simply code in F#’s simple succinct syntax

 Higher-level features than core Infer.NET: tuples, records, array
comprehensions, and functions

 A wide range of efficient algorithms for regression, classification,
and specialist learning tasks derive by probabilistic functional
programming.

 Papers, download available: http://research.microsoft.com/fun

25

http://en.wikipedia.org/wiki/File:Ada_lovelace.jpg

MICROSOFT RESEARCH 26

Challenges

MICROSOFT RESEARCH

Three Challenges

 Poor usability could be a show-stopper

 Fragmentation

 Potential beneficiaries may not have the time,
inclination, or aptitude to learn to write and debug
probabilistic programs.

27

MICROSOFT RESEARCH

Pain Points of Probabilistic Programming
 15%: “Complicated object model in language/library syntax and type system.”

 15%: “Gap between declarations and operational semantics.”

 “You can write graphical models that make sense but can’t execute due to internal
details of the engines.”

 20%: “Tuning is time-consuming (parameters/algorithm selection, no. of iterations).”

 “I spent most of my time on robustness; setting hyperparameters and the priors .”

 20%: “Performance (cost of model in memory, perf impact of designs), scalability.”

 “It would be nice if a simple annotation could inform the model of how to batch
elements.”

 30%: “Understanding inference results is hard.”

 “Once you have a model running, there’s no explanation for the inference, hard to
find whether issues come from modelling, features, parameters, or the data
deficiencies.”

28

Is there better data? Should we gather more to create a baseline?

MICROSOFT RESEARCH

Probabilistic Metaprogramming

 Singh and Graepel’s InfernoDB

30

31

Questions?

