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Machine Learning and Programming

 “Data widely available; what is scarce is the ability to extract 
wisdom from them” , Hal Varian, 2010

 “Machine learning!”, Mundie and Schmidt at Davos, 2012

 Researchers use Bayesian statistics as unifying principle:
 Models are conditional probabilities; inference algorithms separate

 For the programmer, what’s the problem?
 Cottage industry of inflexible libraries and algorithms

 Custom implementations are 1000s LOC

 Probabilistic programming offers a solution
 Write your model as succinct, adaptable probabilistic program

 Run compiler to get efficient inference code
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Murder Mystery in Fun
// Either Alice or Bob dunnit
// Alice dunnit 30%, Bob dunnit 70%
// Alice uses gun 3%, uses pipe 97%
// Bob uses gun 80%, uses pipe 20%
let mystery () =

let aliceDunnit = random (Bernoulli 0.30)
let withGun =
if aliceDunnit
then random (Bernoulli 0.03)
else random (Bernoulli 0.80)

aliceDunnit, withGun

// Pipe at scene - now Alice dunnit 69%
let PipeFoundAtScene () =

let aliceDunnit, withGun = mystery () 
observe(withGun = false)
aliceDunnit, withGun
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Probabilistic Programming

 BUGS (Spiegelhalter et al 1994, CU)

 IBAL (Pfeffer, 2002)

 BLOG (Milch et al 2005, UCB/MIT) – Gibbs sampling

 Alchemy (Domingos et al 2005, UW) – probabilistic  logic 
programming

 CHURCH (Goodman et al 2008, MIT) – recursive 
probabilistic functional programming

 HANSEI (Kiselyov  and Shan, 2009) – discrete distributions 
from Ocaml

 FACTORIE (McCallum et al 2008, UMASS)

 Infer.NET
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Judea Pearl, Turing Award Winner 2011

For fundamental contributions to 
artificial intelligence through the 
development of a calculus for 
probabilistic and causal reasoning. 

…

He identified uncertainty as a core 
problem faced by intelligent systems 
and developed an algorithmic 
interpretation of probability theory 
as an effective foundation for the 
representation and acquisition of 
knowledge.
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Probabilistic Graphical Models

 Pioneered by Bayes Networks (Pearl 1988)
 Model of world, both observed and unobserved states

 Probabilistic for uncertainty: missing data, noise, how data arises

 Graphical notations capture dependence, for scalability

 Pearl “invented message-passing algorithms that exploit 
graphical structure to perform probabilistic reasoning 
effectively”

 Many application areas: “natural language processing, speech 
processing, computer vision, robotics, computational biology, 
and error-control coding”

 In last few years, large-scale deployments include:
 TrueSkill – How do we rank Halo players?

 AdPredictor – How likely is a user to click on this ad?
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Infer.NET (since 2006)

 A .NET library for probabilistic inference

 Multiple inference algorithms on graphs

 Far fewer LOC than coding inference directly

 Designed for large scale inference

 User extensible

 Supports rapid prototyping and deployment of Bayesian 
learning algorithms

 Graphs represented by object model for pseudo code,
but not as runnable code

 Realization: language geeks can do machine learning, 
without comprehensive understanding of Bayesian stats, 
message-passing, etc

7



MICROSOFT RESEARCH 8



MICROSOFT RESEARCH

Infer.NET Fun – New Feature

 Bayesian inference by functional programming
 Write your model in F#

 Run forwards to synthesize data

 Run backwards to infer parameters

 Benefits:
 Models are simply code in F#’s simple succinct syntax

 Higher-level features than C# OM: tuples, records, array 
comprehensions,functions

 Custom graphical notations (“plates”,”gates”) just code

 Testing inference by running forwards then backwards
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Programming in Infer.NET Fun
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Linear
Regression

 Linear regression:
Forwards, compute yi = axi + b + noise from a and b
Backwards, given yi infer a and b
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let prior() =
let a = random(Gaussian(0.0, 1.0))
let b = random(Gaussian(5.0, 0.3))
let noise = random (Gamma(1.0, 1.0))
a, b, noise

let point x a b noise = 
x, random(Gaussian(a * x + b, noise))

let model data =
let a, b, noise = prior()
observe (data =
[| for x,_ in data -> point x a b noise |])

a, b, noise

let aD, bD, noiseD = inferFun3 <@ model @> data
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Some Probability Distributions in Fun
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Source: Wikipedia
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dist ::= // Fun distribution
Beta(expr)
Gaussian(expr1,expr2)
Gamma(expr1,expr2) 
Binomial(expr1,expr2)
VectorGaussian(expr1,expr2)
Discrete(expr)
Poisson(expr)
Bernoulli(expr)
Dirichlet(expr)
Wishart(expr1,expr2)

type ::= // Fun value type
unit
bool
int
double
(type1 * ... * typeN)
{ field1: type1; ...; fieldN: typeN}
type[]

expr ::= // Fun expression
var // variable
literal // literal eg -1.0, true, 42
{ field1 = expr1; ...; fieldN = exprN } // record 
( expr1, ..., exprN ) // tuple
expr.field // record lookup
fst(expr) // first projection
snd(expr) // second projection
not expr // negation
expr1 R expr2 //  relation (eg, =, >)
expr1 f expr2                                  // function (eg, +, -)
let var = expr1 in expr2 // let
if expr1 then expr2 else expr3 // conditional
expr : type // type annotation
for var in expr1 do expr2 // iteration loop
[| 0 .. expr |] // integer range
[| for var in expr1 -> expr2 |] // comprehension
Array.zip expr1 expr2 // zip two arrays
random(dist) // draw from distribution
observe expr // observation of boolean
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TrueSkill in Fun
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TrueSkill in Fun
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type ISampler type ILearner

type Model

module Classifier
module Regression

module TrueSkill
module TopicModel

Or choose
from library

module LinearRegression =
type TH = {MeanA: double; PrecA: double; … }
let h = {MeanA=0.0; PrecA=1.0; … }
type TW<'a,'b,'c> = {A:'a; B:'b; Noise:'c}
type TX = double
type TY = double
let M: Model<TH,TW<double,double,double>,TX,TY> =
{ Prior = <@ fun h ->

{ A = random(Gaussian(h.MeanA,h.PrecA))
B = random(Gaussian(h.MeanB,h.PrecB))
Noise = random(Gamma(h.ShapeN,h.ScaleN)) } @>

Gen = <@ fun a -> let m = (a.W.A * a.X) + a.W.B
random(Gaussian(m, a.W.Noise)) @> }

Write your
model in F# or C#

Or automatically 
generate

Assemble
multiple
models

Synthetic
data to test
learner

Choose algorithm
(eg, EP, VMP, Gibbs, ADD, Filzbach) 

Train, predict, repeat

The model-learner pattern brings structure and types, 
as well as PL syntax, to probabilistic graphical models

http://research.microsoft.com/fun 
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Models, Samplers, and Learners
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type Model<'TH,'TW,'TX,'TY> =
{ HyperParameter: 'TH
Prior: Expr<'TH ->'TW>
Gen: Expr<'TW *'TX ->'TY> }

type ISampler<'TW,'TX,'TY> =
interface
abstract Parameters: 'TW
abstract Sample: x:'TX -> 'TY

end

type ILearner<'TDistW,'TX,'TY,'TDistY> =
interface
abstract Train: x:'TX * y:'TY -> unit
abstract Posterior: unit -> 'TDistW
abstract Predict: x:'TX -> 'TDistY

end
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TrueSkill
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let perf(w,pid) =  
let m = w.Skills.[pid]
Fun.random(Fun.GaussianFromMeanAndPrecision(m,1.0/beta2))

let M:Model<TH,TW<real>,TX,TY> =
{ HyperParameter = {Players = 4

GM = {Mean=25.0;Precision=1.0/sigma2} }
Prior = <@ fun h ->

{Skills =
[| for x in 0..h.Players-1 ->

let m,p = h.GM.Mean,h.GM.Precision in
Fun.random(Fun.GaussianFromMeanAndPrecision(m,p))|]

} @>
Gen = <@ fun (w,x) -> (perf(w,x.P1) > perf(w,x.P2)) @>}
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Binary Mixture Combinator

 We code a variety of idioms as functions from 
models to models, eg, mixtures:
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let Mixture(m1,m2) =
{Prior =

<@ fun h ->
{Bias=random(Uniform(0.0,1.0))
P1=(%m1.Prior) h
P2=(%m2.Prior) h} @>

Gen =
<@ fun (w,x) ->

if random(Bernoulli(w.Bias))
then (%m1.Gen) (w.P1,x)
else (%m2.Gen) (w.P2,x) @>}   
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Mixture

Of

Gaussians

let k = 4 // number of clusters in the model
let M = IIDArray.M(KwayMixture.M(VectorGaussian.M,k))

let sampler1 = Sampler.FromModel(M);
let xs = [| for i in 1..100 -> () |]
let ys = sampler1.Sample(xs); 

let learner1 = InferNetLearner.LearnerFromModel(M,mg0)
do learner1.Train(xs,ys)
let (meansD2,precsD2,weightsD2) = learner1.Posterior()
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Evidence Combinator

 A variation of mixtures, where the choice between models 
is made per-model, rather than per-output
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let Evidence(m1,m2) =
{Prior = <@ fun (bias,h1,h2) ->

(random(Bernoulli(bias))),
(%m1.Prior) h1, (%m2.Prior) h2) @>

Gen = <@ fun ((switch,w1,w2),x) ->
if switch then (%m1.Gen) (w1,x) 
else (%m2.Gen) (w2,x) @>}  
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Demo:
Model
Selection

let mx k = NwayMixture.M(VectorGaussian.M,k)
let M2 = Evidence.M(mx 3, mx 6)



Fitting Model to Climate Data (TACAS’13)

 We developed scientific 
models as Fun models

 One benefit is the automatic 
extraction of the likelihood 
function as the density of a 
probabilistic expression

module NPP =
let predict w x = 

let prec_lim = w.max_NPP * (1.0 - exp (-w.p * x.MAP))
let temp_lim = w.max_NPP / (1.0 + exp (w.t1 - w.t2 * x.MAT))
let pred_NPP = min prec_lim temp_lim
pred_NPP

let model = 
{Prior = 

<@ fun () ->
{max_NPP = random(Gamma(1.0, 1.0))
p       = random(Gamma(1.0, 1.0))
t1      = random(Gamma(1.0, 1.0))
t2      = random(Gamma(1.0, 1.0))
s_NPP = random(Gamma(1.0, 1.0))} @>

Gen = 
<@ fun (w,x) ->

{NPP = random(Gaussian(predict w x,
w.s_NPP * w.s_NPP))} @>}
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Infer.NET Fun

 Bayesian inference by functional programming
 Write your model in F#

 Run forwards to synthesize data (normal F#)

 Run backwards to infer parameters (via Infer.NET)

 Benefits:
 Models are simply code in F#’s simple succinct syntax

 Higher-level features than core Infer.NET: tuples, records, array 
comprehensions, and functions

 A wide range of efficient algorithms for regression, classification, 
and specialist learning tasks derive by probabilistic functional 
programming.

 Papers, download available: http://research.microsoft.com/fun

25
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Challenges
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Three Challenges

 Poor usability could be a show-stopper

 Fragmentation

 Potential beneficiaries may not have the time, 
inclination, or aptitude to learn to write and debug 
probabilistic programs.
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Pain Points of Probabilistic Programming
 15%: “Complicated object model in language/library syntax and type system.”

 15%: “Gap between declarations and operational semantics.”

 “You can write graphical models  that make sense but can’t execute due to internal 
details of the engines.”

 20%: “Tuning is time-consuming (parameters/algorithm selection, no. of iterations).”

 “I spent most of my time on robustness; setting hyperparameters  and the priors .”

 20%: “Performance (cost of model in memory, perf impact of designs), scalability.”

 “It would be nice if a simple annotation could inform the model of how to batch 
elements.”

 30%: “Understanding inference results is hard.”

 “Once you have a model running, there’s no explanation for  the inference, hard to 
find whether issues come from modelling, features, parameters, or the data 
deficiencies.”
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Is there better data?  Should we gather more to create a baseline?
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Probabilistic Metaprogramming

 Singh and Graepel’s InfernoDB
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Questions?


