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The idea of probabilistic programming is that the user writes a probabilistic model for a Bayesian 

inference problem as a short piece of code, while the compiler turns this code into an efficient 

inference routine. Probabilistic programming systems include BUGS, IBAL, BLOG, Church, STAN, 

Infer.NET, and Factorie, amongst others. Application areas include scientific modelling, information 

retrieval, bioinformatics, epidemiology, vision, seismic analysis, semantic web, business intelligence, 

security, human cognition, and more. Probabilistic programming goes beyond the standard 

abstractions of classification and regression, and allows inference based on custom distributions 

definable in code, including recommendation systems, rating systems (as in TrueSkill, for instance), 

and other graphical models. The promise is that not just machine learning researchers, but also data 

scientists, domain experts, and general developers can specify custom machine learning solutions by 

authoring small probabilistic programs, while leaving the inference mechanisms to the compiler. 

Delivering on this promise would democratize machine learning, by empowering orders of 

magnitude more users to apply it to their problems. 

So what are the obstacles to overcome? 

Performance of inference backends has been the subject of much research and innovation, including 

hardware-based solutions as well as software enhancements. For example, many talks at the recent 

Probabilistic Programming workshop at NIPS 2012 addressed performance, including scalability to 

large datasets. 

Beyond performance, here are three problem areas where we need to make progress if probabilistic 

programming is truly to democratize machine learning. 

Usability, Usability, Usability 
The first problem is usability. A straw poll suggests that when doing probabilistic programming only 

10% of the developer’s time is spent writing the model, while the rest is spent on getting inference 

to run robustly and efficiently. It is instructive to run programs forward to generate synthetic data, 

but very frustrating to discover that inference fails on a program even though ordinary execution 

succeeds. Like other forms of declarative programming (such as logic programing), programmers 

may at first hope that they need only understand the abstract declarative semantics of a program, 

but soon discover they must also understand the underlying inference mechanism. Much time is 

spent tuning hyperparameters of prior distributions, numbers of iterations, tuning performance, and 

understanding results of inference. 

Poor usability could be a show-stopper for probabilistic programming: the worry is that experts 

produce a series of elegant, working models, but then users discover that apparently insignificant 

changes breaks inference, and give up on probabilistic programming. 



A Common Language for Portable Probabilistic Programming 
The second problem is fragmentation: there are almost as many probabilistic languages as there are 

probabilistic compilers. A common language with substantial benchmark suites and multiple 

implementations would benefit system developers wishing to benchmark performance, and would 

benefit end users wishing to port their models between systems. BUGS and Church are the 

probabilistic programming languages with multiple implementations at present. Still, a well-

engineered probabilistic fragment of some existing widely used language could become a very 

successful probabilistic language. R is the language of choice of the current population of data 

scientists, and indeed R is on the curriculum of the raft of new courses training up the next 

generation of data scientists. As far as I know, there are no implementations yet of a Probabilistic R, 

but the widespread adoption of R makes a probabilistic version next to inevitable. It will be a great 

opportunity to establish benchmark suites in Probabilistic R to test rival probabilistic programming 

systems via regular competitions. 

Still, subsetting an existing programming language has usability problems, as users may stray outside 

the supported subset. Moreover, different backends for a common language may support different 

subsets. For example, we could drive both Church and Infer.NET systems from R models, but these 

two systems would support rather different subsets of R (because Church depends on general 

recursion and memoization, while Infer.NET supports graphical models based on iteration over 

arrays). IDEs should help users track and understand compatibility between their code and multiple 

backends – ideas from the DrRacket IDE, which supports multiple “language levels” (such as 

Beginning Student, Intermediate Student, and so forth) may help. 

Probabilistic Metaprogramming for Ubiquitous Machine Learning 
The third problem is that potential beneficiaries of the flexible models enabled by probabilistic 

programming may not have the time, inclination, or aptitude to learn to write and debug 

probabilistic programs. 

A promising direction is probabilistic metaprogramming, where we automatically synthesize 

probabilistic programs to model given datasets. One early example is Singh and Graepel’s InfernoDB, 

which given the schema of a relational database, automatically constructs an Infer.NET model 

suitable for inferring missing data and detecting outliers in the database. Another example is 

Veritable, a predictive database developed by PriorKnowledge, recently acquired by SalesForce.com, 

which aims to let developers make predictions as easily as they do joins; developers use a SQL-like 

query language which hides the details of an automatically generated probabilistic program. 

Mark Weiser envisaged an era of ubiquitous computing in which information processing is 

thoroughly integrated into physical objects and activities, and human users may be unaware that 

they are interacting with computers. By analogy, we envisage an era of ubiquitous machine learning 

in which statistical inference is thoroughly integrated into our interactions with datasets, be they 

spreadsheets, or databases, or data structures in programs. InfernoDB and Veritable are early steps 

towards this era, when machine learning will be thoroughly democratized. 

 


