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ABSTRACT 

Emerging large scale multicore architectures provide abundant 

resources for parallel computation. In practice, however, the 

speedup gained by parallelization is limited by the fraction of 

code that inherently needs to be executed sequentially (Amdahl’s 

Law). An important example is object serialization and deseriali-

zation. As any other I/O operation, they are inherently sequential 

and thus cannot immediately benefit from multicore technology. 

In this work, we study acceleration by offloading this sequential 

processing to a custom hardware circuit in an FPGA. The FPGA 

is placed in the data path between the network interface and the 

CPU. 

First, we present an efficient FPGA implementation for C++ 

object deserialization which we compare with the traditional 

approach. In the second part of the paper we describe how to 

create FPGA circuits, i.e., VHDL/Verilog code for C++ object 

structures based on the object layout and the serialization proce-

dure.  

 

1. INTRODUCTION 
As future system architectures will consist of multiple cores the 

problem the software community is confronted with is how to 

efficiently make use of these additional resources. Most research 

focus is devoted to parallel algorithms and cache-conscious im-

plementations. However, obtaining high speedups by just using 

multicore architectures alone is difficult (Laurus 2009). In particu-

lar, the speedup that can be obtained is limited by the inherently 

sequential fraction of a program. This is known as Amdahl’s Law 

(Amdahl 1967). Its statement is the following: If by optimization 

(multicore, etc.) the parallel fraction f of a program experiences a 

speedup of S the speedup of the overall program is 

Speedup =
1

 1 − 𝑓 +
𝑓

𝑆 
 . 

Clearly, for 𝑆 → ∞ the speedup is bound to 1
1 − 𝑓  by the se-

quential fraction 1 − 𝑓.  

In practice, the sequential fraction of a program involves I/O 

operations such as disk and network access, i.e., serialization of 

data. In this work, one particular type of serialization and deseria-

lization is considered; object marshalling and unmarshalling in 

Remote Procedure Calls (RPCs). RPCs play an important role in 

modern distributed and networked systems. To that extent, mini-

mizing overhead and communication cost is crucial. Our approach 

uses an FPGA that is placed in the data path between the network 

interface and the host processors as illustrated in Figure 1. The 

sequential protocol processing is offloaded to an FPGA, reducing 

the work that needs to be executed on the CPU cores.  This divi-

sion of labor frees up valuable CPU time for the actual execution 

of the RPCs. 

 

 

Figure 1: FPGA in data path between network and CPU 

 

2. RUNNING EXAMPLE 

2.1 Expression Tree 
As a running example throughout the paper we consider deseria-

lizing a simple expression tree structure it is often encountered in 

compilers. The C++ class diagram is shown in Figure 2. 

 

Figure 2: Class diagram of serialization example 

 

The object structure can be used to represent any arithmetic integ-

er expression. An object can be either a literal representing a 

constant number or an operation, i.e., addition, subtraction, etc. 

The virtual method evaluate is used to compute the value of the 

partial expression rooted at the current object. The other methods 

are used for the serialization and deserialization and are explained 

later. The method getClassID returns a unique type ID for each 

class. Note that Node has two private members for the child ex-

pressions. It has to be emphasized that the design intentionally 

was chosen to increase the complexity in the resulting object 

layout.  
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+accept() : void

+write() : void

+read() : void

Object

+getClassID() : int

+evaluate() : int

-m_left : Node*

-m_right : Node*
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+accept() : void

+write() : void

+read() : void

+evaluate() : void
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Literal
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+evaluate() : int
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The tree structure we consider as an example is created using the 

following C++ statements: 

 

Node* l5 = new Literal(5); 

Node* l4 = new Literal(4); 

Node* l3 = new Literal(3); 

Node* mult = new Operation(Operation::eMultiplication, 

                           l5, l4); 

Node* add = new Operation(Operation::eAddition, 

                           l3, mult); 

 

Thus, the statement add->evaluate() computes the value of the 

expression 3+(5*4). The corresponding object diagram is depicted 

in Figure 3. 

 

Figure 3: Object diagram of serialization example 

 

 

2.2 Memory Layout 
Since the classes contain virtual methods each of the instances 

will contain a vtable pointer (virtual function pointer). The memo-

ry layout of object of those classes can be obtained from the com-

piler using the following command line options: 

 

GCC gcc  –fdump-class-hierachy 

Visual Studio 2008 C++ cl  /d1reportAllClassLayout 

 

In this paper we are using the Microsoft Visual Studio 2008 C++ 

compiler on a x86 32-bit architecture. The memory layout of 

Literal and Operation objects is illustrated by Figure 4. 

Each object contains a pointer to the vtable corresponding to its 

class in the first word (offset 0) followed by the super class mem-

bers and the own fields. During serialization the object structure is 

converted into a wire format. During deserialization the structure 

needs to be rebuilt including the vtable pointers. Note that the 

effective vtable addresses may depend on the software version 

and the loader.  

 

 

Figure 4: Object Layout with vtable pointers 

 

3. OBJECT SERIALIZATION 
Memory structures are converted into a serial wire format. Note 

that a simple depth-first traversal of the object graph may not 

work. Recursively traversing the graph end serializing each en-

countered object causes aliasing if an object is reachable by more 

than one object. In order to prevent this it has to be ensured that 

each object is serialized exactly once. In this paper a simple two 

pass approach is used resulting from a graph traversal in prefix 

order. 

Pass 1: The object structure is traversed recursively by a Visitor 

(Erich Gamma 1994). The structure is traversed in prefix order in 

the accept method. Each object is given a unique 32 bit ID value. 

This value is stored in a hash table that maps the object pointer to 

this ID. The hash table can also used to prevent revisiting an 

object. If a referenced object is already in the hash table it will not 

be traversed again.  

Pass 2: The object structure is traversed a second time, however, 

now the objects’ fields are serialized. Primitive members such as 

int, double, char, etc. are directly converted into a binary repre-

sentation. Object references are replaced by the corresponding 

object IDs of the hash table.  

Two passes are necessary because the object pointer-to-ID map 

needs to be created first. A prefix serialization has the advantage 

that the first object that is deserialized corresponds to the root 

object of the structure. The pseudo code of the serialization pro-

cedure is shown below: 

 

procedure serialize(Object o) 
begin 
   M  { }  

   L  [ ] 

   traverse(o, M, L) 

   write #of elements |L| 
   forall  o L  do 

     write type ID of o 
   end do 

   forall  o L  do 

m_left : Node* = NULL

m_right : Node* = NULL

m_value : int

l3 : Literal

m_left : Node* = NULL

m_right : Node* = NULL

m_value : int = 4

l4 : Literal

m_left : Node* = NULL

m_right : Node* = NULL

m_value : int = 5

l5 : Literal

m_left : Node* = l3

m_right : Node* = mult

m_eType : OperationType = eAddition

add : Operation

m_left : Node* = l5

m_right : Node* = l4

m_eType : OperationType = eMultiplication

mult : Operation

vfptr

class Object

m_left

m_right

class Node

m_value

class Literal

offset

0

4

8

12

vfptr

class Object

m_left

m_right

class Node

m_operation

class Operation

offset

0

4

8

12

vtable of class Literal

vtable of class Operation
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      forall members m of o  do 

         if  m is a primitive type 

            write m 
         else 

            id  lookup(m, M) 

            write id 
         end if 
      end do 
   end do 
end 

 

procedure traverse(Object o, Map M, List L) 
begin 

   id  lookup(o, M) 

   if id = NIL  do 

      id  next object ID  

      put(o, id, M) 

      append(o, L) 

      forall object pointer members m of o  do 

         traverse(m, M, L) 
      end do 
   end if 
end 

Listing 1: Pseudo code of serialization algorithm 

 

The serialized object structure thus consists of three parts: 

 Number of objects 

 List of Type IDs 

 List serialized objects (members) 

 

 

3.1 Expression Tree Example 
For illustration we apply the algorithm shown in Listing 1 on the 

expression tree example introduced earlier. Assuming the type 

mapping 

 

Class Type ID 

Literal 0 

Operation 1 

 

 

the serialized structure then is:  

 

Byte Offset Value Description 

0 0x00000005 Number of objects 

4 0x00000001 Obj. 0 = add (Operation) 

8 0x00000000 Obj. 1 = l3 (Literal) 

12 0x00000001 Obj. 2 = mult (Operation) 

16 0x00000000 Obj. 3 = l5 (Literal) 

20 0x00000000 Obj. 4 = l4 (Literal) 

  Obj. 0 = add (Operation) 

24 0x00000001 m_left = l3  (Obj. 1) 

28 0x00000002 m_right = mult  (Obj. 2) 

32 0x00 m_eType = 0 (eAddition) 

  Obj. 1 = l3 (Literal) 

33 0x00000003 m_value = 3 

  Obj. 2 = mult (Operation) 

37 0x00000003 m_left = l5  (Obj. 3) 

41 0x00000004 m_right = l4 (Obj. 4) 

45 0x02 m_eType = 2 (eMultiplication) 

  Obj. 3 = l5 (Literal) 

46 0x00000005 m_value = 5 

  Obj. 4 = l4 (Literal) 

50 0x00000004 m_value = 4 

 

 

4. FPGAS 
In this section we provide a short introduction into FPGAs as far 

as it is relevant for the discussion of the implementation in hard-

ware. Field-programmable Gate Arrays (FPGAs) are reconfigur-

able digital logic devices. The digital logic circuits they imple-

mented can be defined in the field when the chips are already 

integrated into an appliance. FPGAs provide a number of logic 

cells and an interconnect network between them. An FPGA can 

implement any digital circuit by configuring the logic cells and 

setting up the routing network accordingly. FPGA are increasing-

ly being used as accelerators in various areas, for example, bioin-

formatics (Tim Oliver 2005), high performance computing(Ling 

Zhuo 2005) and database processing(Abhishek Mitra 2009)(Rene 

Mueller 2009). 

 

In this work we use the Xilinx XUPV5 general purpose develop-

ment board for hardware. It contains a Xilinx Virtex-5 

XC5VLX110T FPGA chip and additional components such as a 

256 MB DDR2 memory and 1 Gb Ethernet PHY. Table 1 lists the 

key characteristics of the FPGA chip.   

 

Table 1: Selected Properties of Virtex-5 LX110T FPGA 

2D Array Configuration 160 rows × 54 columns 

Slices with each 

 6-input LUTs 

 Flip-Flops 

17,280 

 69,120 

 69,120 

On-chip Block RAM 148 × 36 kbit = 5328 kbit  

 ( 666 kB) 

DSP48 Slices with each 

 25×18 bit multiplier,  

 adder, accumulator 

64 

Clock Management Tiles 6 

Embedded PowerPC cores 0 

Embedded Ethernet MACs 4 

User I/O Pins 680 

 

 

FPGAs consist of different elements arranged in a two-

dimensional array (Figure 5). Primarily, digital circuits are im-

plemented using Configurable Logic Blocks (CLBs). Discrete 

memory units called Block RAM (BRAM) are distributed over the 

chip. Each BRAM unit can store up to 36 kbit and can be used to 

store state next to the CLBs. Digital Signal Processing Blocks 

(DSP48) contain multipliers and accumulator units in discrete 

silicon. The use of DSP48 blocks is preferred over a custom im-

plementation using CLBs as it saves chip area.  
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Figure 5: FPGA Floorplan 

 

A Configurable Logic Block (CLB) further consists of two Slices 

(shown in Figure 6). The slices are connected to Switch Boxes that 

provide links to the interconnect fabric between the CLBs. Fast 

carry-logic chains connect the slices from the bottom to the top of 

a column. These links provide low-latency daisy chain connec-

tions of the slices, used when implementing, e.g., adders or com-

parators. 

 

 

 
Figure 6: Two slices comprise a CLB (two FPGA rows and 

columns) 

 

The actual logic circuits are determined by the configuration of a 

slice. Figure 7 shows a Virtex-5 slice. It consists of four Look-up 

Tables (LUTs) and four Flip-Flops (FF). The LUTs can imple-

ment a binary valued binary function with up to 6 inputs, i.e., any 

function of the form  0,1 6  →  0,1 . The flip-flops represent 1-bit 

storage elements. A FPGA configuration includes the function 

that is implemented by the LUTs as well as the multiplexing 

elements (shaded gray in Figure 7).  

For evaluating FPGA designs different metrics are used. The most 

important metric is the chip utilization, i.e., the number of slices 

used. It has to be emphasized that the tools may not be able to use 

all LUTs and flip-flops in a slice. Thus, the total slice usage is  

 

max  #𝐿𝑈𝑇𝑠,#𝐹𝐹𝑠  

4
≤ #𝑠𝑙𝑖𝑐𝑒𝑠 ≤ #𝐿𝑈𝑇𝑠 + #𝐹𝐹, 

i.e., the lower bound is obtained when all slices are fully utilized. 

The upper bound is reached when a new slice is used for each 

LUT and flip-flop. In a high chip utilization scenario the synthesis 

tool may also decide to combine LUTs and flip-flops belonging to 

unrelated logic into the same slice. 

The second important metric is the resulting clock frequency the 

circuit can operate on. As clock frequency is limited by the delay 

of the longest signal path more complex designs, in general, result 

in lower clock frequencies. Note that the target clock frequency is 

provided as a constraint to the FPGA synthesis tool, which then 

tries to find a placement and chip routing that meet the timing 

constraints. If the timing constraint cannot be met, the computing 

effort of the tools, i.e., synthesis time, has to be increased or the 

circuit adapted accordingly, e.g., by introducing pipelining regis-

ters(Kilts 2007).  

 

 

 
Figure 7: A Virtex-5 Slice consisting of four LUTs and four 

Flip-Flops 

 

4.1 Ethernet Attachment 
Currently, we are using an Ethernet attachment to access the 

FPGA.  Request and result data are exchanged through Ethernet 

frames between a desktop PC (playing the role of a client issuing 

RPCs) and the FPGA on the XUPV5 development board (per-

forming the deserialization of the requests). 

In a complete system we would expect that the FPGA would have 

an additional link to a host server that actually executes the RPCs.  

This machine would consume the deserialized requests and, after 

executing the RPCs, provide raw results that are serialized by the 

FPGA before transmission back to the client.  However, since the 

scope of this project must be limited due to time constraints, we 

eliminate this connection.  Instead, the desktop machine plays the 

role of both client and server.  When a request is sent from the 

client machine to the FPGA, the request is deserialized.  The 

deserialized data is then simply sent back to the client machine.   

Although really only half of a complete system, we are able to 

demonstrate two important points. First, deserialization on FPGAs 

can be implemented efficiently in hardware. Second, migrating 

CLBBRAM DSP48
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the tasks of dealing with the network protocol and deserializing 

the data to an FPGA can free considerable CPU time on a host 

machine. 

For this project we make use and extend an existing system de-

veloped in the Embedded Systems Group at Microsoft Research 

Redmond. It provides a high-level of abstraction of the communi-

cation between a user-defined core on the FPGA and an applica-

tion running on the host system. Figure 8 illustrates the architec-

ture. The architecture provides a set of communication primitives 

and abstracts from the actual attachment. Currently, attachment 

through Gigabit Ethernet and PCI Express are supported. In fu-

ture, additional integration approaches such as FPGA connected 

to HyperTransport or Frontside Busses may also be supported. In 

this work we focus on Ethernet attachment only.  

 

 
Figure 8: FPGA Attachment to Host PC 

 

The architecture contains a set of 32-bit parameter registers and 

two different I/O memories. Both, registers and memories can be 

read and written from the user application. Similarly, a wire-level 

API is provided to the user core on the FPGA. The two I/O mem-

ories hold the input and the output data respectively. The follow-

ing operations are supported from the host PC side: 

 

 Parameter Read  

 Parameter Write 

 Input Memory Write 

 Output Memory Read 

 

Figure 9 shows the Ethernet attachment. In this case, the FPGA is 

placed on a board together peripheral components. The board 

contains an Ethernet connector and a Gigabit PHY chip that is 

specific to the physical layer of 1000BASE-T Ethernet (802.3ab). 

The Gigabit Media Independent Interface (GMIII, 802.3-2000) of 

the chip is directly connected to the FPGA. The Medium Access 

Control (Layer 2) is implemented in the EMAC hard IP-core on 

the FPGA. A controller has direct access to the wire data through 

an 8 bit wide Local Link interface operating at 125 MHz. The 

controller decodes the requests and performs the read/write opera-

tions to the memories and the register file. The Deserializer circuit 

is implemented as a soft-core and has direct access to both memo-

ries and the register file. The register file consists of 256 32-bit 

registers. A Control Register is used to start and stop commands 

to the Deserializer. The Control Register can also be read by the 

host application to check the state of the Deserializer. In the cur-

rent implementation the size of the input and output memories is 8 

kB each. In principle, the can be increased until all BRAM availa-

ble on the chip is used (666 kB in total).  

 

 
Figure 9: Ethernet Attachment of FPGA 

 

Processing a work unit, i.e., the deserialization a blob of binary 

data involves the following steps: 

 

1. The host application writes the serialized representation 

into the input memory of the FPGA.  

2. Processing is started by setting the ―go‖ bit in the Con-

trol Register. This operation is performed by a register 

write. 

3. Once the processing is complete the controller will clear 

the ―go‖ bit. The host application thus needs to poll the 

Control Register before it can issue a memory read re-

quest to read back the deserialized object structure. 

4. Once the ―go‖ bit is cleared the host application issues a 

memory read to receive the result data.  

 

A request therefore requires at least four interactions. As Ethernet 

frames can be lost due to data corruption each request is acknowl-

edge (including memory and register writes). The host application 

can detect lost packets using timeouts and resend the presumably 

lost frame. The four interactions result in at least 8 Ethernet 

frames being sent. This clearly contributes to a significant com-

munication overhead.  

In order to reduce communication overhead we added another 

primitive ―write&go‖ that immediately starts processing after the 

last frame containing the input data was received. No acknowled-

gement is sent. Instead, the result data is sent immediately after 

processing completes. This essentially pushes the data back to the 

host application and reduces the number of exchanged frames 

from eight down to two.  

 

5. DESERIALIZATION 
In this section we describe the serialization process. We first give 

an overview of Deserialization in Software that we use as a base-

line to compare the hardware implementation against. Section 5.2 

discusses the implications of recreating object structures outside 

the applications heap and what needs to be considered in heap 

management for external object allocation such as on the FPGA. 

The implementation of the hardware Deserializer is explained in 

Section 5.3. 

 

5.1 Deserialization in Software 
Object deserialization involves two steps during which the seria-

lized data stream read in one single pass. First the objects are 

instantiated. This is achieved by allocating the memory required 

by the type on the heap. For classes with virtual methods the 
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vtable pointers of the instances need to be set. The pseudo-code of 

object deserialization is shown below: 

 

Phase 1: 

i  0 

L  [ ] 

n  readNumObjectsFromStream( ) 

forall n objects in stream 

   t  readTypeFromStream( ) 

   o  allocateObjectOfType(t) 

   setVtablePointer(o) 

   L[i]  o 

   i  i +1 

 

 

 

Phase 2: 

forall 0 ≤ i ≤ n  

   L[i].read(stream) 

 

In a second phase the object members are initialized. Since the 

vtable pointers are already setup object deserialization can be 

done by calling a virtual method Object::read(char 

*buffer, int *pos, Serializer *s) defined in the base 

class of all objects. The actual classes implement object deseriali-

zation. The implementation for Literal class is:  

 

void Literal::read(char *buffer, int *pos,  

                   const Serializer *s) 

{ 

   m_value = *(int*)(buffer+*pos); 

   *pos += 4;  // sizeof(m_value) == 4 bytes 

} 

 

For object references the Serializer instance is used to lookup the 

object pointer for a given object ID. Here the ID corresponds to 

the index into the list L (see above). For example, for Operation 

the read method looks as follows:  

 

void Operation::read(char *buffer, int *pos,  

                     const Serializer *s) 

{ 

   int left = *(int*)(&buffer[*pos]); 

   *pos += 4;     // size of object ID on stream 

   int right = *(int*)(&buffer[*pos]); 

   *pos += 4;     // size of object ID on stream 

    

   // look-up Node for IDs 

   m_left = dynamic_cast<Node*>(s->getObject(left)); 

   m_right = dynamic_cast<Node*>(s->getObject(right)); 

    

   // set operation type (Addition, etc.) 

   m_eType = (OperationType)buffer[*pos]; 

   (*pos)++;      // sizeof(m_eType) == 1 byte 

} 

 

 

5.2 Heap Management 
When invoking the new operator the necessary bytes for the in-

stance are allocated on the heap during a call to malloc. Note that 

in general malloc is free to place object at any memory location. 

In order to simplify the write-back to main memory only one 

single memory region should be copied. Thus, the objects have to 

be allocated in a contiguous area on the FPGA.  

A second important aspect is that object pointers need to be setup 

such that they point to the appropriate memory locations after the 

deserialized structure is copied back from the network to the heap 

memory. Updating the pointers, i.e., pointer relocation after the 

write back would have a significant impact on performance.  

We address the two problems by preallocating a contiguous mem-

ory region in virtual memory space, e.g., 8 kB that can hold all 

result data. In each deserialization request we also send the start 

address of this result buffer along. This allows the FPGA to setup 

the pointers correctly such that the result structure can be trans-

ferred to the preallocated buffer using memcpy.  

It is important to point out that since these objects are allocated 

outside the usual C++ runtime special care needs to be taken when 

deleting the instances or modifying the structure, for example, by 

adding more instances.  

To this extend the standard C++ new and delete operators have to 

be overwritten such that they reflect this custom memory man-

agement. An additional possibility is to replace the delete operator 

by an empty implementation when assuming that the data struc-

ture is freed altogether, e.g., after an RPC completes. In our im-

plementation we overwrite the two operators in the Object base 

class as follows: 

 

void * Object::operator new(unsigned int size) 

{ 

   return preallocate_memory(size); 

} 

 

void Object::operator delete(void *buf) 

{ 

   // do nothing, ignore 'delete'  

} 

 

5.3 Deserialization in Hardware 
In this section we describe the Deserializer core implemented in 

Verilog HDL. The Deserializer is added as a user core to the 

Ethernet attachment architecture. Figure 10 depicts the structure 

of the Deserializer core.  
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Figure 10: Structure of Deserializer Core 

 

5.3.1 Parameter Registers 
As described in Section 5.1 when allocating objects the vtable 

pointers need to be set. The values of these pointers depend on the 

actual relocation of the table by the link-loader in the host applica-

tion. Hence, the pointer values are not known at compile time. We 

therefore have to set them after the host application was loaded. 

For this purpose we use part of the Parameter Register of the 

Ethernet attachment architecture (Figure 9). The first 253 register 

hold the vtable pointers of the up to 253 class types that can be 

handled by the current hardware implementation. These registers 

are written by the host application during a one-time configuration 

phase. The last three registers are used as Control Register, Error 

Register, and Cycle Counter Register. The Control Register is 

used the start processing and configure the hardware Deserializer. 

The Error Register contains an error code after deserialization, 

e.g., if the serialized representation contains an invalid object 

reference. The host application can read this register and identify 

the cause of the failure. The Cycle Counter Register is used to 

measure the number of 125 MHz clock cycles spent for the dese-

rialization operation. It is used to obtain the raw FPGA processing 

times for the evaluation in Section 6.  

 

5.3.2 Deserialization  
The deserialization in hardware involves the following steps. 

1. Host application sets the vtable pointer for each class 

type in the corresponding Parameter Register. 

2. Host application sends the input data through a memory 

write operation to the input memory of the Ethernet at-

tachment architecture. When the last byte is written de-

serialization is started implicitly.  

3. During deserialization the object are first allocated în 

the Output BRAM. Then the members are initialized. 

During deserialization input memory is read in a single 

pass. 

4. The content of the output memory is sent to the host ap-

plication, which then performs a memcpy from network 

buffer into the preallocated heap buffer. 

 

For the following discussion assume that 2M types can be 

processed by a given hardware deserializer. Thus, for the expres-

sion tree example consisting of a Literal and Operation type 

(M=1). Let 2N be the number of objects that can be processed by 

the Deserializer. In the current implementation N=8, i.e., struc-

tures consisting of at most 256 objects can be processed.  

Figure 10 shows additional registers that serve as a temporary 

storage area during deserialization: objPtr, objType, currHeapPtr, 

currObject, lastObject, outMemAddr. The registers objPtr and 

objType are organized as arrays. objPtr[id] stores the start address 

of the object referenced by index id. objType[id] stores the type of 

object id. The size of the object pointer array is 2N×32 bits, the 

object type array 2N×M. The 32 bit register currHeapPtr is used to 

store the current heap pointer address during object allocation. 

The M-bit registers currObject and lastObject store the object 

indices.  

Object deserialization is controlled by a Finite State Machine. The 

function of the state machine can be expressed as follows in pseu-

docode: 

 

currHeapPtr  readNext32Bits() 

lastObject  readNext32Bits() 

currObject  0 
 

Allocate objects: 

while currObject ≤ lastObject do 

   type  readNext32Bits() 

   objPtr[currObject]  currHeapPtr 

   objType[currObject]  type 

   currObject  currObject +1 

   currHeapPtr  currHeapPtr + typeSizes[type] 
done 
 

 

Set objects members: 

currObject  0 

outMemAddr  0 

while currObject ≤ lastObject do 

   switch(objType[currObject]) 

   case 0:    //  type = Literal 

      outmem[outMemAddr]  vtable[0] 

      outmem[outMemAddr+4]  0  // m_left = NULL 

      outmem[outMemAddr+8]  0  // m_right = NULL 

      outmem[outMemAddr+12]  readNext32Bits() // m_value 

      outMemAddr  outMemAddr+16 

   case 1:    //  type = Operation 

      outmem[outMemAddr]  vtable[1] 

      outmem[outMemAddr+4]   

                objPtr[readNext32Bits()] // m_left 

      outmem[outMemAddr+8]   

                objPtr[readNext32Bits()] // m_right 

      outmem[outMemAddr+12]  readNext8Bits() // m_eType 

      outMemAddr  outMemAddr+16 
   end  
done 

 

The gray shaded regions are type specific, i.e., depend on the 

types of the object structures that can be processed by the Deseria-

lizer. In this paper we show the actual implementation for the 

expression tree example. The read-only lookup table typeSiz-

es[type] stores the size of each object. Being read-only this table 

does not have to be implemented using Flip-flops, instead the 

FPGA synthesis tool can directly merge the static content of this 

table with the combinatorial logic of the state machine.  

 

5.3.3 vtable Pointers 
As shown in Figure 9 the Ethernet attachment also provides a 

register file consisting of 256 32-bit registers. The register file is 

implemented using a dual ported BRAM with 211×32 bit address-

ing on both ports. Port ―A‖ is used by the Controller while port 

―B‖ is connected to the Deserializer. Implementing the register 

file using BRAM has the advantage that it is efficient in terms of 

chip area. The entire register file can be implemented using one 

single 36 kbit BRAM block. In contrast, implementing the register 

file using flip-flops requires 256×32=8192 flip-flops, i.e., in best 
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case 2048 FPGA slices. This corresponds to 11.8% of the chip 

space on our FPGA chip. 

On the flip-side, accesses to BRAM have higher latency compared 

to flip-flop registers. Figure 11 shows the timing diagram for a 

two BRAM read operations. Assuming that the user logic decides 

to read memory location n at clock cycle k, it will set the address 

line in cycle k. The BRAM will not start reading the memory until 

the next rising edge of clock cycle k+1. Reading the memory cell 

itself has latency an additional cycle. Thus, the data mem[n] will 

not be available earlier than at the beginning cycle k+2. Hence, a 

single read has a latency of one cycle. Reading a flip-flop register 

has a latency <1 clock cycle.  

In our implementation we chose to not to use Flip-flops for all 256 

Parameter Registers. Instead, we only use Flip-flop registers for 

the 2M vtable registers. We introduce an initialization stage where 

the content of the 2M Parameter Register containing vtable poin-

ters are copied to the 2M fast Flip-flop register. Therefore, we can 

avoid the access latency of BRAM during deserialization while 

still keeping the chip utilization as low as possible. We provide a 

resource analysis in Section 5.3.6.  

  

tclock

address tn

data tmem[n] mem[n+1]

n+1

read n read n+1

BRAM 

reading

address n
 

Figure 11: Timing Diagram for BRAM Read Operation 

 

5.3.4 Input/Output Block Memories 
The Ethernet attachment provides separate memories for input and 

output data. In the current implementation the size of each memo-

ry is 8 kB and is implemented using on-chip Block RAM (BRAM). 

The memories are dual ported, i.e., they have two independent 

access ports A and B. Port A of the Input Memory is configured as 

213×8 bit memory and is connected to the Controller (Figure 9). 

Port B uses 211×32 bit addressing and is connected to the Stream 

Reader unit (explained below). The Output Memory is written 

from the Deserializer through port A using 211×32 bit addressing. 

The memory is read by the controller via port B which provides a 

213×8 bit representation. 

The controller uses 8 bit addressing because the width directly 

matches the Local Link interface (8 bit) to the EMAC core. Word-

addressing towards the Deserializer increases the throughput at 

the same system clock (125 MHz).  

 

5.3.5 Stream Reader 
In the second phase of the deserialization, i.e., the initialization of 

the object members the element size of the data read from the 

input buffer can vary. For example, in the tree example introduced 

earlier the value for Literal::m_value is a 32-bit integer 

whereas the operation type Operation::m_eType is stored as an 8-

bit value in the serialized stream. However, the memory interface 

uses 32-bit addressing.  

The Stream Reader (Figure 12) is a soft-IP core that provides 

variable length access to the input memory. In particular, the 

Stream Reader implements unaligned memory access. The user 

core (left side pins of Stream Reader in Figure 12), in this case, 

the state machine of the Deserializer, has a 32-bit data bus. The 

user core can consume a variable amount of data: 1, 2, or 4 bytes. 

The signals applied to the wordSelect lines determine the size of 

the data consumed and the amount to advance the stream for the 

next read. Data is consumed by asserting read. This signal is read 

at the beginning of each clock cycle. If it set, the 32-bit window is 

moved by the amount specified by the wordSelect signal. After 

each clock cycle the output lines data contain the content of the 

current 32-bit window on the stream.  

Consider the following content of the input memory. 

  

Address (11 bit) Data (32 bit) 

0x000 0xa3a2a1a0 

0x001 0xb3b2b1b0 

0x002 0xc3c2c1c0 

 

For the access pattern Byte, 4 Bytes, 2 Bytes the output is as fol-

lows (the table shows the state at the beginning of a clock cycle): 

Clock wordSelect read data 

k Byte 1 0xa3a2a1a0 

k+1 4 Bytes 1 0xb0a3a2a1 

k+2 2 Bytes 1 0xc0b3b2b1 

k+3  0 0xc2c1c0b3 

 

As indicated earlier when accessing BRAM the inherent latency 

of the unit has to be considered. Figure 11 illustrates the latencies 

involved in streaming access pattern for two memory locations n 

and n+1. Assume that at clock cycle k the Stream Reader decides 

to read more data and thus asserts the new address on memAddr. 

Thus, the data for address n will be available at cycle k+2. How-

ever, the reads can be pipelined, thereby hiding the access latency 

such that the data for n+1 is already available at k+3. This has an 

important effect on the consumer, when the pipeline is full a 32-

bit value can be consumed every clock cycle. However, when the 

pipeline is empty no data is available at clock cycle k+1.  

 

 

Figure 12: Stream Reader provides unaligned variable-sized 

memory access 

 

clock

data

wordSelect

read

empty

32

2

Stream Reader 

memAddr

32
memData

11
ADDRB

CLKB

DOUTB

Input Memory
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01: 2 bytes

10: 3 bytes

11: unused

reset
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One solution to prevent the user core from reading invalid data is 

to use a pushback mechanism. That is, to tell the consumer that 

the data lines contain no valid data at clock cycle k+1. This ap-

proach not only negatively effects performance as no work can be 

done in that cycle, but it also adds more complexity to the logic of 

the user component. In this paper we chose a different approach. 

We added a 96-bit buffer to the stream reader. The buffer is im-

plemented using fast flip-flop registers. It can be easily shown that 

96 bits or equivalently three 32-bit words (=12 bytes) is the mini-

mum size required to bridge the latency from starting filling up 

the pipeline until the first data item can be retrieved from the 

BRAM. Since both the output data port of the Stream Reader and 

the memory have the same size, a sustained read rate of 32 bits 

per clock cycle (=500 MB/s) can be easily achieved. The buffer is 

filled as soon as the reset signal is cleared. The empty signal 

indicates the user component that the data line is not ready. Al-

though this can be considered a pushback too, empty is only low 

after a reset until the buffer is full. Once empty is low the data 

lines stays valid until the next reset. The user component thus can 

use the empty signal together with the reset signal as a ―ready 

after reset‖ condition. After that the empty signal can be ignored.  

 

5.3.6 Resource Usage 
The resource usage of the Deserializer circuit can be expressed in 

terms of LUT and Flip-flop usage. The overall chip utilization is 

expressed in the number of used slices which consists of both 

LUTs and Flip-flops. As described in Section 4 the FPGA synthe-

sis tool performs heavy optimization which makes the number of 

used LUTs difficult to predict. Furthermore it can decide to com-

bine unrelated circuits into the same slice. Thus, we provide num-

bers for the overall chip usage of the entire FPGA circuit, i.e., the 

Deserializer as well as Ethernet attachment (Controller, etc.). 

Flip-flops representing basic bit storage elements, however, are 

easier to predict. Assuming that the Deserializer is able to process 

2M types and structures consisting of at most 2N objects the num-

ber of Flip-flops used for each register is: 

 

#size-dependent Flip-flops

=  2𝑁 ∙ 32     
objPtr

+ 2𝑁 ∙ 𝑀   
objType

+ 2𝑀 ∙ 32     
vtable

Register

+ 2𝑀 
currObject+

lastObject

 

 

This analysis only includes the Flip-flops that depend on the 

problem size, i.e., the parameters M and N. For M=1 and N=8, 

8514 Flip-flops are necessary. This corresponds to 12.3% of the 

chip resources.  Flips-flops that are independent of these parame-

ters, such as currHeapPtr and outMemAddr are accounted for the 

in the overall utilization.  

Table 2 shows the overall chip utilization of the complete FPGA 

design (Deserializer and Ethernet attachment) on our 

XC5VLX110T chip. This data is reported at the end of the design 

flow process by the Xilinx ISE 10.1.03 synthesis tool. Both the 

Flip-flop and the LUT utilization are comparatively low. The fact 

that the slice utilization is almost the sum of the register and LUT 

utilizations indicates that there is not much overlap between logic 

and registers. Nevertheless, the overall chip utilization is <25%.  

For that matter, the resource utilization could be further reduced 

by migrating the objPtr and objType storage areas into BRAM 

and eliminating the redundant vtable pointer registers.  These 

optimizations were not considered in this investigation merely to 

simplify implementation. 

As an estimate of the actual resource consumption of the Deseria-

lizer itself we also list the results from the Map Report. The Map 

stage of the FPGA design flow maps high-level primitives to 

device-primitives. This phase occurs before Place & Route and 

hence, the utilization numbers are not yet final. Nevertheless, they 

represent the last stage in the work flow where the design hie-

rarchy still exists. Table 3 shows the chip utilization after the Map 

stage. The table indicates that the Deserializer itself uses 14% of 

the chip space and together with the Stream Reader 16% of the 

chip. Considering these numbers alone it seems to be possible (in 

theory) to instantiate approximately 6 Deserializer cores on the 

currently targeted chip.  

 

Table 2: Resource Utilization of Complete Design 

 Used Chip utilization 

Flip-flop Registers 10,311 14% 

LUTs 6,463 9% 

Occupied Slices 3,874 22% 

36 kb BRAM Blocks 

Total Memory 

9 

40.5 kB 

6% 

6% 

Input/Output Blocks 30 4% 

 

Table 3: Resource Utilization of Deserializer and Stream 

Reader after Map Stage 

 Flip- 

Flops 

LUTs Slices 

Deserializer  

(without Stream Reader) 

8,714 

(13%) 

3,372 

(5%) 

2,488 

(14%) 

Stream Reader 115 

(0.2%) 

706 

(1%) 

330 

(2%) 

 

The second metric used is the clock speed the circuit can operate 

on. We have been able to synthesize and operate the circuit at the 

full 125 MHz of the Gigabit Ethernet MAC. For simplicity we 

used one single clock region whose clock is given by the Ethernet 

MAC. 1 In principle, it should be possible to operate the Deseria-

lizer, including the B port of the Input Memory and the A port of 

the Output Memory at a higher clock rate. However, this has not 

been experimentally verified yet.  

 

6. EVALUATION 
In this section we perform a performance evaluation. We compare 

the hardware implementation against a traditional software solu-

tion. We evaluate the overall end-to-end performance, as well as 

                                                                 

1 Actually, two clocks are used. Next to the 125 MHz system 

clock a 200 MHz reference clock is used for the IDELAY and 

IDELAY controller respectively. The reference clock is used to 

drive the tapped delay line for the RX clock of EMAC GMII 

interface. 
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the time spent for the deserialization alone. First, we assess the 

communication overhead of the network link between two PCs 

and between a PC and a FPGA board.  This comparison will allow 

us to quantify the time spent by a server not necessarily 

processing the request, but simply moving a request through 

various levels of the network stack and operating system.  After 

that, we will look into the execution time of the serialization and 

deserialization itself. 

 

6.1 Experimental Setup 
We use two off-the-shelf desktop computers and our Xilinx 

XUPV5 development board for all experiments. Figure 13 illu-

strates the two different configurations. The setup in Figure 13 (a) 

serves as a base system for comparison. The software implemen-

tation is running on System B (server) that is connected via a 

direct Ethernet connection to the System A that issues the re-

quests. In Figure 13 (b) System B is replaced by the XUPV5 

FPGA board. Table 4 lists the characteristic properties of the two 

desktop systems.  

 

 

Figure 13: (a) Deserializer in Software on System B, (b) FPGA 

Solution 

 

Table 4: Selected Characteristics of the Desktop Systems 

 System A 

HP xw4600 
System B 

HP xw4600 

 CPU Intel Core2Duo 

E6850 3.00 GHz 

Intel Core2Duo 

E8500, 3.167 GHz 

Memory DDR2, 4 GB  

(PC2-6400) 

DDR2, 4 GB 

(PC2-6400) 

Network  Broadcom NetXtreme 

Gigabit Ethernet 

BCM5755 (on-board) 

Broadcom NetXtreme 

Gigabit Ethernet 

BCM5755 (on-board) 

OS Windows Vista Enter-

prise SP2, 32 bit 

Windows Vista Enter-

prise SP2, 32 bit 

 

6.2 Performance of Ethernet Attachment 
In the first experiment the communication overhead from System 

A to System B and the FPGA board is measured.  We send net-

work messages to the server (requests) that are immediately sent 

back to the client (replies). We compare raw Ethernet frames, 

UDP packets, and messages sent over a TCP connection.  As 

mentioned earlier, the goal of this testing is to quantify the time 

required to move data through the various levels of the network 

stack and the operating system. 

 

 

6.2.1 Time Measurements and OS Scheduling Effects 
We measure the end-to-end or round trip time, i.e., the wall clock 

time between transmission of the request message and the recep-

tion of reply message. In order to obtain a high resolution we do 

not rely on the timing primitives provided by the operating sys-

tem. Instead, we directly use the hardware cycle counter register 

of the x86 processor architecture. We obtain the time stamps 

using the following inline assembly sequence (Visual Studio 

C++): 

 

inline UINT64 get_cyclecount(void){ 

   // read cycle counter register 

   volatile UINT32 lo, hi; 

   volatile UINT64 cycles; 

   __asm { 

      rdtsc           ; TSC register -> edx:eax 

      mov   lo, eax   ; store lower 32 bits 

      mov   hi, edx   ; store upper 32 bits 

   } 

   cycles = hi; 

   cycles <<= 32; 

   cycles |= lo;  

   return cycles; 

} 

 

This function returns the current cycle count since boot time of 

the processors. In order to relate the cycle count to time the clock 

frequency is required. We obtain the current CPU frequency by 

calling CallNtPowerInformation. The function returns a structure 

that contains a field that contains the current clock frequency 

MHz. 

Note: Special care needs to be taken when using the CPU clock 

frequency. Vista, as many other modern operating systems, uses 

sophisticated power management mechanism that include among 

others dynamic frequency scaling. In order to reduce power con-

sumption these strategies reduce the clock frequency when the 

CPU is idle or the current work load is I/O-bound. For our mea-

surements we disable frequency scaling. 

The end-to-end timing measurements are influenced by schedul-

ing effects on System A (and for the software reference setup, 

System B too). In order to capture the complete behavior we use 

multiple requests (1,000,000) for each data points. We then vi-

sualize the data in a cumulative histogram (Figure 14 and Figure 

15). We also show the median of the timing values as it is known 

to be less sensitive(Tukey 1977) to outliers than the average value 

in Table 5. 

 

6.2.2 Minimum and Maximum Frame Size 
Ethernet frames are required to have a minimum packet size of 64 

bytes, which corresponds frame with 46 bytes payload. The max-

imum size of a frame is 1500 bytes, i.e., 1486 bytes payload. We 

use minimum and maximum sized frames as the two extremal 

data points for the analysis. For UDP and TCP we choose a mes-

sage size, i.e., a payload size such that it will result in a minimum 

sized frame and a single maximum sized frame.  
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6.2.3 Ethernet Frames on Desktop Systems 
Unicast raw Ethernet frames are sent from System A to System B. 

After receiving the frame System B swaps source and destination 

address of the frame and sends it back to System A. This bench-

mark provides the baseline for the offloaded processing as it 

captures only the communication overhead.  

We send raw Ethernet frames through the Virtual Network driver 

VPCNetS2 provided by Microsoft Virtual PC 2007. This driver is 

added at the bottom of the network stack and is able create a 

virtual network interface with its own MAC address. We use this 

new virtual device to transmit and receive Ethernet frames. The 

code base for harnessing the virtual network device comes from 

Giano [10]. The code uses asynchronous calls, and makes use of 

the efficient I/O completion queues of the Windows API.  

To isolate the systems under test from external noise we discon-

nected the nodes from the corporate network and establish a direct 

connection between the nodes through a cross-over cable. Fur-

thermore we disabled the IP and Microsoft Client Protocols on 

both systems for the Broadcom network device. This suppresses 

occasional ARP requests sent by the hosts.  

6.2.4 Ethernet Frames in FPGA System 
For the FPGA setup we use a special purpose FPGA design. We 

modify the Ethernet controller (Figure 9) such that as soon as the 

frame leaves the EMAC core to the Controller (after the entire 

frame was received and the CRC verified) it is resent with the 

source and destination addresses exchanged. The Local Link 

interface of the EMAC core is 8 bit wide and streams the frame to 

the user controller. The controller waits 12 cycles until it has seen 

source and destination address. It then swaps the 6 bytes and 

sends the packet immediately back to the EMAC core through the 

transmit Local Link interface. This results in a possibly shortest 

round trip time: 

 2 ∙ #frame bytes + 12 
1

125 MHz
 

This number doubles the number of frame bytes to account for the 

fact that 1) the entire request packet is received by the FPGA 

before being sent back and 2) the entire reply packet must be 

received by the PC’s NIC before being passed up to the driver.  

This is not four times the number of frame bytes because the time 

required by the PC’s NIC to send the request packet overlaps the 

interval in which the FPGA is receiving the request packet and 

vice-versa for the reply packet.  For 64 byte Ethernet frames the 

minimum round-trip time is 1.12µs. For maximum sized 1500 

byte frames the time for the frame reflection is 24µs.  

 

6.2.5 UDP Packets 
In order evaluate the impact of the IP layer and a packet-oriented 

transport layer on the overall performance we also implement the 

ping-pong message exchange on UDP. We test this setup only 

with the desktop hosts shown in Figure 13 (a). A one byte UDP 

datagram results in a 66 byte Ethernet frame. The maximal UDP 

payload size such that no IP fragmentation occurs is 1450 bytes.  

 

6.2.6 TCP Fragments 
Messages sent over a TCP socket are used to evaluate the perfor-

mance impact of a connection oriented transport on layer 4 in the 

network stack. A one-byte send operation on a TCP socket results 

in a 78 byte Ethernet frame (after the connection has be setup). 

The payload can be increased up to 1435 bytes until IP fragmenta-

tion occurs.  

 

6.2.7  Ping/Pong Experiment – Results 
Figure 14 shows the cumulative histogram of the round trip time 

for minimum sized messages, Figure 15 for maximum messages. 

As it can be seen from the slope of the curves processing the times 

for Ethernet frames do not show much variation. On the other 

hand, variation is larger for UDP and TCP. For both message 

sizes the variation for UDP is larger than for TCP. A surprising 

finding is that the round trip time for TCP traffic is lower than for 

UDP. This is counter intuitive because UDP is essentially an 

empty wrapper that provides the functionality of IP to the applica-

tion accessing the stack on layer 4.  

 

 

Figure 14: Cumulative Histogram of Round Trip Times of 

Minimum-sized Packets 

 

Figure 15: Cumulative Histogram of Round Trip Times of 

Full-sized Packets 

We can make an interesting observation for large Ethernet frames 

in Figure 15. The curves never reach 100%, instead they seem to 

be limited to 93%. The curve will reach 100% outside the chart 

only after 420 µs. We have not been able to identify the problem 

but we believe it is related to a scheduling issue in connection 

with the Broadcom driver on Windows Vista. We have not seen 

this artifact using an Intel Gigabit 82567LM chipset on either a 

Lenovo W500 or Dell Latitude e6400 laptop computer. 
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Table 5 shows the median of the round trip times. It can be seen 

that the ―FPGA reflector‖ reduces the round trip time by 21 µs for 

small messages and 31 µs for large messages. Exchanging small 

amounts of data through UDP and TCP is approximately 2.3× 

slower than raw Ethernet frames on the desktop systems. Com-

pared to the Ethernet frames on FPGA UDP/TCP is 3.8× slower. 

The large overhead of UDP and TCP is reduced for large messag-

es to approximately 1.8× compared to raw frames on the desktop 

systems and 2.2—2.5× compared to implementation on the 

FPGA. 

An important factor when considering the Ethernet attachment is 

the processing time spent going through the driver and operating 

system.  We can estimate this in two ways.  First, we can calculate 

the time spent in the driver and operating system on the server 

(System B) by subtracting the results of the experiments with 

System B by the results from using the FPGA.  This will be the 

time required for the driver to pick up the request message from 

the NIC, queue the request for a user application, the user applica-

tion to queue the reply back to the driver and for the driver to send 

the reply to the NIC.  For minimum sized frames 55 µs34 µs = 

21 µs and for maximum sized frames 120 µs89 µs = 31 µs. 

Alternatively, we can also calculate the time spent by the client 

(System A) when communicating with the FPGA.  By subtracting 

the physical transit time calculated above from the round trip time 

measurement to the FPGA board, we can estimate the time spent 

by the user application queuing the request message for the driver, 

waiting for the driver to pick up the request, waiting for the driver 

to pick up the reply message and the time spend queuing the reply 

from the driver back to the user application.  For minimum sized 

frames 34 µs1 µs = 33 µs and for maximum sized frames 89 

µs24 µs = 65 µs. 

Both of these numbers provide some insight into the potential 

minimum difference in latency between implementing the data 

marshalling in hardware versus software implementation.  How-

ever, this does not give us a clear idea regarding the CPU load 

incurred by the server passing the data through the driver and 

operating system.  This is because this time likely includes busy 

waiting time or the time required to perform a context switch 

rather than actual computation and copying required to hand the 

request to a user application from the NIC.  This question will be 

answered in the next subsection. 

 

Table 5: Median of Round Trip Times 

 Min.-sized 

Packet 

Full-sized 

Packets 

Raw Ethernet Frames 

System B  

55 µs 120 µs 

Raw Ethernet Frames 

to FPGA Board 

34 µs 89 µs 

UDP Datagrams  

System B 

132 µs 226 µs 

TCP fragment 

System B 

128 µs 198 µs 

 

6.2.8 Multiple Ethernet Frames In-flight 
In the experiments shown in the previous section only one mes-

sage is transmitted at a time. We now look at the impact when 

sending multiple messages in a fast consecutive order. Figure 16 

shows the cumulative histogram for 1 up to 8 request frames in 

flight. As the number increases so does the variance, i.e., the slope 

of the curve decreases.  

In Figure 17 we show the median values for different number of 

in-flight frames both for FPGA and System B. As it can be seen 

that starting with an initial overhead, the round trip times scale 

linearly with respect to the number of in-flight frames. This means 

that sending more than one frame in short succession increases 

throughput.  This is to be expected since both System A and Sys-

tem B use asynchronous I/O.  Thus, when sending multiple frames 

the system pays a certain constant startup cost to do things like 

perhaps perform a context switch or begin the interrupt service 

routine, but then can devote itself to handling the requests entire-

ly.  The slope of the curve for minimum-sized frames sent to the 

FPGA is 6.6 µs/in-flight frame and 10.0 µs/in-flight frame for 

maximum sized frames (least squares). 

 

 

Figure 16: Cumulative Histogram between System A and 

FPGA for multiple outstanding transmissions (64 byte Ether-

net frames) 

 

Figure 17: Median Round Trip Time for different number of 

in-flight frames 

This testing gives us a more realistic idea of what the CPU load is 

for a machine when it must handle requests from the network.  In 

a production system in which the FPGA can write directly into the 

main memory of the host server, we expect that the FPGA would 

take care of the 6.6 – 10.0 µs of processing per frame plus startup 

overhead that would normally need to be taken care of by CPUs 

on the server to handle each request.  Notice that this contribution 

only considers the cycles needed to handle the data transfer.  This 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

20 30 40 50 60 70 80 90 100

Round Trip Time [s]

1 in-flight frame 2 in-flight frames

3 in-flight frames 4 in-flight frames

5 in-flight frames 6 in-flight frames

7 in-flight frames 8 in-flight frames

0

50

100

150

200

250

1 2 3 4 5 6 7 8

R
o

u
n

d
 T

ri
p

 T
im

e
 (

M
e

d
ia

n
) 

[
s]

Number of In-flight frames

FPGA (min. frame) FPGA (max. frame)

System B (min. frame) System B (max. frame)



14 

 

does not yet include the time required to perform the actual seria-

lization or deserialization.  This will be discussed in the next 

section. 

 

6.3 Deserialization in Hardware vs. Software 
In this section we evaluate the performance the Deserializer cir-

cuit and compare with a traditional software implementation on 

System B. We use the same setup as in the previous experiment 

(Figure 13). As explained earlier, communication is implemented 

by exchanging raw Ethernet frames. 

 

6.3.1 Workload Data Set  
For evaluating the performance of the Deserializer we are using 

the expression tree example. In particular, we use the object struc-

ture shown in Figure 18. We scale the size of the structure by the 

parameter n which corresponds to the number of Operation nodes.  

 

 

Figure 18: Object Structure used in Deserialization 

 

The number of objects hence for a given n is 2n+1. As shown in 

the object layout in Figure 4 both Operation and Literal objects 

occupy 16 bytes on the heap. Thus, the object structure occupies 

16 2𝑛 + 1 = 32𝑛 + 16 bytes on the heap. The size of the seria-

lized representation can be computed as follows:  

 

4 
heap pointer

+ 4 
#objects

+ 4 2𝑛 + 1        
object types

+ 4 𝑛 + 1        
Literal objects

+ 9𝑛 
Operation objects

 

= 21𝑛 + 12  bytes 
 

Given the constraint the of the objPtr array in the current imple-

mentation, the Deserializer can process up 256 objects. Thus, in 

the evaluation we vary n in the range 𝑛 ≤ 127. For 𝑛 = 127 the 

size on the heap is 4,080 bytes, the size of the serialized structure 

is 2,683 bytes.  

The limit of Ethernet frames to 1,486 byte requires that the seria-

lized input data is split into two Ethernet frames. For transmitting 

the result data, i.e., the object structure that lands on the heap, 

three Ethernet frames are used.  

 

6.3.2 Deserialization – Results 
Figure 19 shows the round trip times for processing a deserializa-

tion request for object structure size in the range 112—4080 

bytes. For each data point we issued 1,000,000 requests and we 

measured the round trip time. In the figure, the solid lines show 

the min/90% percentile and the median values of the end-to-end 

times both for the FPGA Deserializer and the software solution 

implemented on System B.  

 

 

Figure 19: Round Trip Times of FPGA Deserializer vs. 

Software Solution 

 
Figure 20: Speedup of FPGA Deserializer based on median 

times 

In Figure 19 it can be seen that not only the median but also the 

entire min to 90%-percentile band of the FPGA implementation is 

always below the software solution. The dashed lines in the figure 

show the time spent for the actual processing (excluding commu-

nication cost). The slopes are increasing linearly and diverging, 

hence, resulting in a constant speed up of the hardware solution as 

shown in Figure 20. The computation-only speed up is approx-

imately factor 9×. The speedup is reduced to 2.5× when also 

considering communication cost.  A quick sanity check confirms 

the measurements: The request and response can be related to the 

3 in-flight messages from Section 6.2.8 which required a round 

trip time of 115 µs for the FPGA and 158 µs for System B. Add-

ing the computation time of 10 µs and 96 µs respectively, the 

resulting estimated total time of 125 µs for the FPGA Deserializer 
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and 254 µs for software solution correspond to the data in Figure 

19.   

The linear increase of the processing time for CPU and FPGA can 

easily be explained as in both the serialized data is read in one 

single pass, hence, O(n). Also the data structure is small enough 

such that both the serialized and deserialized data can even fit into 

L1 cache (32 kB) of the CPU.   

 

6.4 Performance Implications 
In this section we provide an analysis of the performance implica-

tions of the FPGA approach. The measurements in the last section 

only considered latency. We now provide some estimates on the 

throughput characteristics. In fact, the implications are twofold. 

First, a reduced latency directly results in an increased throughput 

in a non-pipelined scenario. Second, an improvement is obtained 

as more work can be processed on the CPU due to the offloading 

of work to the FPGA. 

When assuming non-pipelined processing but a pipelined com-

munication (using multiple Input and Output Memory buffers on 

the FPGA) the throughput of a single Deserializer unit is then 

equal to the reciprocal value of the latency that is: 

 

 112 byte structure: 0.336 µs  2.977M requests/sec 

 4,080 byte structure:  10.256 µs   97,504 requests/sec 

 

6.4.1 Load-reduction 
Using the data obtained, we now try to provide a very rough 

extrapolation of the load reduction on the conventional system 

when processing RPCs. For this we boldly assume that the costs 

for serializing the result data is the same as the cost of the deseria-

lizing the input.  

The time T spent by a conventional system split as follows: 

 

𝑇 = 𝑇receive + 𝑇deserialize + 𝑇execute + 𝑇serialize + 𝑇send 

 

Here Treceive is the time spent for receiving the data from the net-

work, Tdeserialize and Tserialize correspond to the time spent for dese-

rializing the input and serializing the result. Tsend is the time used 

for sending the serialized result data.  

Now consider a system where both deserialization of the input 

data and serialization of the results are offloaded, such that the 

FPGA directly receives the requests from the clients and sends the 

results back. The time spent by the CPU is: 

 

𝑇 ′ = 𝑇′receive + 𝑇execute + 𝑇′send 

 

Here, T’receive corresponds to the time spend on the CPU for re-

ceiving the deserialized structure from the FPGA. T’rsend equals 

the time required to send the result structure back to the FPGA. 

The times Treceive and Treceive are determined by the network inter-

face and the network stack. T’receive and T’send depend on the at-

tachment of the FPGA. The reduction of CPU time is: 

 

𝑇 − 𝑇 ′ = 𝑇receive + 𝑇deserialize + 𝑇execute + 𝑇serialize + 𝑇send

− 𝑇 ′
receive − 𝑇execute − 𝑇 ′

send 

         =  𝑇receive − 𝑇 ′
receive + 𝑇deserialize + 𝑇serialize + 𝑇send − 𝑇 ′

send 

 

Assuming that the size of the serialized data is approximately 

equal to the deserialized data we have  

 

𝑇 − 𝑇 ′ =  𝑇receive − 𝑇 ′
receive           

≈0

+ 𝑇deserialize + 𝑇serialize

+ 𝑇send − 𝑇 ′
send         

≈0

  . 

 

If we further assume that 𝑇deserialize ≈ 𝑇serialize, then the time 

saved by offloading is roughly 2𝑇deserialize. The implementation of 

the Deserializer the Stream Reader provides a 32-bit wide data 

path, hence, at each clock cycles 4 bytes of the input data stream 

are consumed.2  The time for the deserialization of a structure 

containing n bytes can be approximated by  

 

𝑇deserialize ≈
𝑛

4𝑓clock
=

𝑛

4 ∙ 125 MHz
   .  

 

Hence, the time saved is roughly 

 

𝑇 − 𝑇′ ≈
𝑛

2𝑓clock
=

𝑛

2 ∙ 125 MHz
   .  

 

We can compare the CPU time of performing deserialization in 

software to the time of receiving a processed message from the 

FPGA in more concrete terms.  In a system in which we have a 

more closely-coupled FPGA that can communicate directly with 

main memory, the CPU would only need to take an interrupt and, 

possibly, perform a memcpy (although with an interface with 

hardware RDMA like Infiniband, the copy may not be necessary).  

In our testing, we found that the time required by memcpy was 

essentially constant for blocks between 112 and 4080 bytes (~7µs 

when the data must come from main memory).  Figure 21 shows 

the effective speedup when the CPU time of processing of a mes-

sage is reduced to just the time of a memory copy.  Unfortunately, 

for the purposes of this speculative work we were unable to test 

our system on a system with a tightly coupled FPGA.  More de-

tails of our attempts are discussed in Section 6.4.3. 

                                                                 

2 Note that in our example tree structure the only case where less 

than four bytes are consumed during a clock cycle occurs when 

the member m_eType of the class Object is read. 
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Figure 21: Speedup in Terms of CPU Load (assuming 7 µs 

memcpy) 

 

6.4.2 Multiple Deserializer Units 
As already pointed out in Section 5.3.6, the entire design uses 

22% of the total chip area. The synthesis tool reports an estimate 

of 16% for the Deserializer unit alone. Hence, in theory, from a 

resource perspective, 6 Deserializer units can be instantiated on 

the chip. Multiple units directly lead a linear scale out in through-

put. However, with an increased chip density it is also more diffi-

cult for the Place & Route tool to find a circuit that meets the 

given timing constraints. If synthesis fails, the timing require-

ments have to be relaxed, e.g., by reducing the clock frequency of 

the Deserializer.  

The design can also be scaled out to multiple FPGA chips on a 

multi-chip FPGA board such as the BEE3 board(John D. Davis 

2009) which features four XC5VLX110T FPGAs (the same type 

as used for this work).  

 

6.4.3 Alternative Attachments 
The FPGA access times T’receive and T’send depend on the attach-

ment of the FPGA. Besides Ethernet attachment there are also 

additional methods to connect a FPGA to an existing computer 

system. The most promising approaches connect the FPGA to the 

PCI Express (PCIe) or directly the HyperTransport or Frontside 

Bus. While these approaches may result in better performance 

numbers, i.e., lower communication overhead to the CPU through 

the tighter coupling, the complexity and the engineering effort for 

a prototype is significantly higher than for the Ethernet attach-

ment.  

For reference we compare the communication overhead of a very 

early PCIe attachment prototype with a connection through Ether-

net. As before, we measured the round trip time of a ping/pong 

request. For PCIe we model a round trip by a write operation 

followed by a read on the PCI Express Bus. For this experiment 

we use the same XUPV5 board and plug it into System A. As a 

PCI Express endpoint implemented on the FPGA we use the 

publically available soft-IP core [12] developed at Microsoft 

Research Redmond. Figure 22 shows the median value of the 

round trip times for different payload sizes. As it can be seen from 

the graph the communication overhead is more than 2× larger for 

the PCI Express attachment. The low performance is due to the 

current architecture of the device driver for Windows. In general, 

the PCI Express solutions should provide a significantly better 

performance number than the Ethernet attachment. Currently, the 

PCIe solution is only used as a working prototype that provides 

access to an FPGA via PCI Express.  

 

 

Figure 22: Comparison Round Trip Time Ethernet Attach-

ment and PCIe Prototype 

 

7. GENERATION OF DESERIALIZER 

CIRCUITS 
In this section we briefly outline how the Deserializer IP-core 

might be automatically configured for different object structures. 

We also outline how the serialization protocol for existing C++ 

code could look like.  

7.1 Type-dependent Configuration of the De-

serializer  
The pseudo code of the Finite State Machine that drives the Dese-

rializer is shown in Section 5.3.2. The type-dependent part of the 

pseudo code is shown shaded in gray. For this paper the code was 

created manually. This code clearly depends on the wire format as 

well as the object layout on the heap.  

The object layout, however, not only depends on the C++ source 

code but also on the compiler settings, e.g., command line options 

such as /ZpX, the pragma #pragma pack or compiler directives 

such as __declspec(align(X)). Thus, identifying the object 

layout needs actual support by the compiler. For example in Visu-

al Studio C++ compiler the command line option  

  

  /d1reportAllClassLayout  or 

   /d1reportSingleClassLayoutMyFooBarClass  

 

instructs the compiler to dump the class layout of all or a single 

class. It generates ASCII output that then would have to be 

parsed. For GCC a similar option –fdump-class-hierachy can be 

used. 

Once the layout, i.e., the offset and the size of the members, has 

been extracted it needs to be combined with the size and the order 

on the wiring format. For example, a character the m_eType enum 
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of the Object class is represented as 32-bit double-word in memo-

ry while the presentation in the wiring format (for efficiency 

reasons) may consist of a single byte.  

 

7.2 Object Serialization in C++ 
There are different libraries available that implement object seria-

lization for C++ structures. For example, the widely-used C++ 

Boost Library or the s11n Library that is released as Public Do-

main code. The approach chosen in those libraries is similar to the 

one shown in Section 3.1.  

Essentially, a method has to be defined for each serializable class 

that saves all (non-transient) the members, i.e., members that 

contribute to the state of the class and have to be kept. In the class 

diagram in Figure 2 this method is called write. In Boost the 

library is called serialize. In contrast to serialization in a managed 

environment such as Java or .NET explicit code for serialization 

needs to be added.  

Note that the current wire format is a simple binary format. The 

advantage is its efficiency. However, a significant disadvantage of 

the format is that it is not self describing. Hence, the serialization 

order in the manually added code has to correspond to the confi-

guration of the Finite State Machine in the Deserializer. In the 

Boost this problem can be avoided as the overloaded & operator in 

the serialize method is used for both storing and loading the class 

members. Unfortunately, this is not possible in this case as two 

different code bases are involved (C++ and HDL).  

Another approach could consist of a high level description, e.g., 

annotation in C++ comments, and a pre-processor that parses 

these annotations and creates the serialization code, i.e., the im-

plementation of the write method. Then, the order and the C++ 

types are known and together with the object layout information 

of the C++ compiler the Verilog code of the type-dependent part 

of the Deserializer Finite State Machine can be generated auto-

matically. 

In principle, it is probably also possible to modify the Deserializer 

that it can operate on a self describing wiring format. This would 

result in an additional indirection for each edge in the resulting 

automaton.  

 

 

8. CONCLUSION 
In this work we investigate whether deserialization of object 

structures can be done on FPGAs. The goal is the recreate the 

heap representation of complex object structures from the seria-

lized form in a wiring format.   The results from a simple proto-

type and an example data structure indicate that deserialization 

indeed is possible on FPGAs. We compare deserialization on an 

FPGA circuit with a traditional software implementation. For the 

actual processing we obtain a speedup factor of 9.   

We measured the overall processing time obtained when connect-

ing the FPGA board to a desktop PC through a gigabit Ethernet 

interface. Deserialization requests are sent from the desktop PC 

and deserialized objects written back to the heap memory. For 

simplicity, we implemented the communication using raw Ether-

net frames. When considering communication costs, the overhead 

further reduces the speedup to a factor 2×. 

Clearly, the Ethernet attachment is not the most efficient way to 

connect an FPGA to a host system. Alternative approaches such 

as FPGA connected to the PCI Express, HyperTransport or Front-

side Bus can reduce the communication overhead. However, these 

approaches are challenging and more involved from an engineer-

ing perspective. So far, the PCI Express attachment developed at 

Microsoft Research Redmond is far from optimal and has an even 

lower performance than the Ethernet attachment. 

The overall 9× speedup of the processing is an upper bound, i.e., 

the best achievable speedup. However, offloading deserialization 

to the FPGA can reduce the CPU load and, thus, potentially in-

crease throughput. Additionally, throughput can be further in-

creased by instantiating multiple Deserializer units multiple, either 

on the same FPGA chip or distributed over multiple chips.  

Offloading time consuming tasks such as deserialization (and 

similarly serialization) to an FPGA can provide a solution to the 

increasing costs of inter-process communication in multi-core 

systems. This becomes even more important as future massively 

parallel multi-core systems no longer provide the abstraction of a 

shared memory space and use explicit message passing instead. In 

this case, exchanging data structures require serialization. Of-

floading may allow the use of RPCs in settings where convention-

al serialization on a CPU core is prohibitive due to the overhead 

involved.  
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