

FPGA-Accelerated Deserialization of Object Structures

Rene Mueller, Ken Eguro

Microsoft Research

September 2009

Technical Report

MSR-TR-2009-126

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

2

FPGA-Accelerated Deserialization of Object Structures

René Müller, Ken Eguro
Microsoft Research

ABSTRACT

Emerging large scale multicore architectures provide abundant

resources for parallel computation. In practice, however, the

speedup gained by parallelization is limited by the fraction of

code that inherently needs to be executed sequentially (Amdahl’s

Law). An important example is object serialization and deseriali-

zation. As any other I/O operation, they are inherently sequential

and thus cannot immediately benefit from multicore technology.

In this work, we study acceleration by offloading this sequential

processing to a custom hardware circuit in an FPGA. The FPGA

is placed in the data path between the network interface and the

CPU.

First, we present an efficient FPGA implementation for C++

object deserialization which we compare with the traditional

approach. In the second part of the paper we describe how to

create FPGA circuits, i.e., VHDL/Verilog code for C++ object

structures based on the object layout and the serialization proce-

dure.

1. INTRODUCTION
As future system architectures will consist of multiple cores the

problem the software community is confronted with is how to

efficiently make use of these additional resources. Most research

focus is devoted to parallel algorithms and cache-conscious im-

plementations. However, obtaining high speedups by just using

multicore architectures alone is difficult (Laurus 2009). In particu-

lar, the speedup that can be obtained is limited by the inherently

sequential fraction of a program. This is known as Amdahl’s Law

(Amdahl 1967). Its statement is the following: If by optimization

(multicore, etc.) the parallel fraction f of a program experiences a

speedup of S the speedup of the overall program is

Speedup =
1

 1 − 𝑓 +
𝑓

𝑆
 .

Clearly, for 𝑆 → ∞ the speedup is bound to 1
1 − 𝑓 by the se-

quential fraction 1 − 𝑓.

In practice, the sequential fraction of a program involves I/O

operations such as disk and network access, i.e., serialization of

data. In this work, one particular type of serialization and deseria-

lization is considered; object marshalling and unmarshalling in

Remote Procedure Calls (RPCs). RPCs play an important role in

modern distributed and networked systems. To that extent, mini-

mizing overhead and communication cost is crucial. Our approach

uses an FPGA that is placed in the data path between the network

interface and the host processors as illustrated in Figure 1. The

sequential protocol processing is offloaded to an FPGA, reducing

the work that needs to be executed on the CPU cores. This divi-

sion of labor frees up valuable CPU time for the actual execution

of the RPCs.

Figure 1: FPGA in data path between network and CPU

2. RUNNING EXAMPLE

2.1 Expression Tree
As a running example throughout the paper we consider deseria-

lizing a simple expression tree structure it is often encountered in

compilers. The C++ class diagram is shown in Figure 2.

Figure 2: Class diagram of serialization example

The object structure can be used to represent any arithmetic integ-

er expression. An object can be either a literal representing a

constant number or an operation, i.e., addition, subtraction, etc.

The virtual method evaluate is used to compute the value of the

partial expression rooted at the current object. The other methods

are used for the serialization and deserialization and are explained

later. The method getClassID returns a unique type ID for each

class. Note that Node has two private members for the child ex-

pressions. It has to be emphasized that the design intentionally

was chosen to increase the complexity in the resulting object

layout.

+getClassID() : int

+accept() : void

+write() : void

+read() : void

Object

+getClassID() : int

+evaluate() : int

-m_left : Node*

-m_right : Node*

Node

+getClassID() : int

+accept() : void

+write() : void

+read() : void

+evaluate() : void

-m_value : int

Literal

+getClassID() : int

+accept() : void

+write() : void

+read() : void

+evaluate() : int

-m_eType : OperationType

Operation

+eAddition

+eSubtraction

+eMultiplication

+eDivision

«enumeration»

OperationType

3

The tree structure we consider as an example is created using the

following C++ statements:

Node* l5 = new Literal(5);

Node* l4 = new Literal(4);

Node* l3 = new Literal(3);

Node* mult = new Operation(Operation::eMultiplication,

 l5, l4);

Node* add = new Operation(Operation::eAddition,

 l3, mult);

Thus, the statement add->evaluate() computes the value of the

expression 3+(5*4). The corresponding object diagram is depicted

in Figure 3.

Figure 3: Object diagram of serialization example

2.2 Memory Layout
Since the classes contain virtual methods each of the instances

will contain a vtable pointer (virtual function pointer). The memo-

ry layout of object of those classes can be obtained from the com-

piler using the following command line options:

GCC gcc –fdump-class-hierachy

Visual Studio 2008 C++ cl /d1reportAllClassLayout

In this paper we are using the Microsoft Visual Studio 2008 C++

compiler on a x86 32-bit architecture. The memory layout of

Literal and Operation objects is illustrated by Figure 4.

Each object contains a pointer to the vtable corresponding to its

class in the first word (offset 0) followed by the super class mem-

bers and the own fields. During serialization the object structure is

converted into a wire format. During deserialization the structure

needs to be rebuilt including the vtable pointers. Note that the

effective vtable addresses may depend on the software version

and the loader.

Figure 4: Object Layout with vtable pointers

3. OBJECT SERIALIZATION
Memory structures are converted into a serial wire format. Note

that a simple depth-first traversal of the object graph may not

work. Recursively traversing the graph end serializing each en-

countered object causes aliasing if an object is reachable by more

than one object. In order to prevent this it has to be ensured that

each object is serialized exactly once. In this paper a simple two

pass approach is used resulting from a graph traversal in prefix

order.

Pass 1: The object structure is traversed recursively by a Visitor

(Erich Gamma 1994). The structure is traversed in prefix order in

the accept method. Each object is given a unique 32 bit ID value.

This value is stored in a hash table that maps the object pointer to

this ID. The hash table can also used to prevent revisiting an

object. If a referenced object is already in the hash table it will not

be traversed again.

Pass 2: The object structure is traversed a second time, however,

now the objects’ fields are serialized. Primitive members such as

int, double, char, etc. are directly converted into a binary repre-

sentation. Object references are replaced by the corresponding

object IDs of the hash table.

Two passes are necessary because the object pointer-to-ID map

needs to be created first. A prefix serialization has the advantage

that the first object that is deserialized corresponds to the root

object of the structure. The pseudo code of the serialization pro-

cedure is shown below:

procedure serialize(Object o)
begin
 M  { }

 L  []

 traverse(o, M, L)

 write #of elements |L|
 forall o L do

 write type ID of o
 end do

 forall o L do

m_left : Node* = NULL

m_right : Node* = NULL

m_value : int

l3 : Literal

m_left : Node* = NULL

m_right : Node* = NULL

m_value : int = 4

l4 : Literal

m_left : Node* = NULL

m_right : Node* = NULL

m_value : int = 5

l5 : Literal

m_left : Node* = l3

m_right : Node* = mult

m_eType : OperationType = eAddition

add : Operation

m_left : Node* = l5

m_right : Node* = l4

m_eType : OperationType = eMultiplication

mult : Operation

vfptr

class Object

m_left

m_right

class Node

m_value

class Literal

offset

0

4

8

12

vfptr

class Object

m_left

m_right

class Node

m_operation

class Operation

offset

0

4

8

12

vtable of class Literal

vtable of class Operation

4

 forall members m of o do

 if m is a primitive type

 write m
 else

 id  lookup(m, M)

 write id
 end if
 end do
 end do
end

procedure traverse(Object o, Map M, List L)
begin

 id  lookup(o, M)

 if id = NIL do

 id  next object ID

 put(o, id, M)

 append(o, L)

 forall object pointer members m of o do

 traverse(m, M, L)
 end do
 end if
end

Listing 1: Pseudo code of serialization algorithm

The serialized object structure thus consists of three parts:

 Number of objects

 List of Type IDs

 List serialized objects (members)

3.1 Expression Tree Example
For illustration we apply the algorithm shown in Listing 1 on the

expression tree example introduced earlier. Assuming the type

mapping

Class Type ID

Literal 0

Operation 1

the serialized structure then is:

Byte Offset Value Description

0 0x00000005 Number of objects

4 0x00000001 Obj. 0 = add (Operation)

8 0x00000000 Obj. 1 = l3 (Literal)

12 0x00000001 Obj. 2 = mult (Operation)

16 0x00000000 Obj. 3 = l5 (Literal)

20 0x00000000 Obj. 4 = l4 (Literal)

 Obj. 0 = add (Operation)

24 0x00000001 m_left = l3 (Obj. 1)

28 0x00000002 m_right = mult (Obj. 2)

32 0x00 m_eType = 0 (eAddition)

 Obj. 1 = l3 (Literal)

33 0x00000003 m_value = 3

 Obj. 2 = mult (Operation)

37 0x00000003 m_left = l5 (Obj. 3)

41 0x00000004 m_right = l4 (Obj. 4)

45 0x02 m_eType = 2 (eMultiplication)

 Obj. 3 = l5 (Literal)

46 0x00000005 m_value = 5

 Obj. 4 = l4 (Literal)

50 0x00000004 m_value = 4

4. FPGAS
In this section we provide a short introduction into FPGAs as far

as it is relevant for the discussion of the implementation in hard-

ware. Field-programmable Gate Arrays (FPGAs) are reconfigur-

able digital logic devices. The digital logic circuits they imple-

mented can be defined in the field when the chips are already

integrated into an appliance. FPGAs provide a number of logic

cells and an interconnect network between them. An FPGA can

implement any digital circuit by configuring the logic cells and

setting up the routing network accordingly. FPGA are increasing-

ly being used as accelerators in various areas, for example, bioin-

formatics (Tim Oliver 2005), high performance computing(Ling

Zhuo 2005) and database processing(Abhishek Mitra 2009)(Rene

Mueller 2009).

In this work we use the Xilinx XUPV5 general purpose develop-

ment board for hardware. It contains a Xilinx Virtex-5

XC5VLX110T FPGA chip and additional components such as a

256 MB DDR2 memory and 1 Gb Ethernet PHY. Table 1 lists the

key characteristics of the FPGA chip.

Table 1: Selected Properties of Virtex-5 LX110T FPGA

2D Array Configuration 160 rows × 54 columns

Slices with each

 6-input LUTs

 Flip-Flops

17,280

 69,120

 69,120

On-chip Block RAM 148 × 36 kbit = 5328 kbit

 ( 666 kB)

DSP48 Slices with each

 25×18 bit multiplier,

 adder, accumulator

64

Clock Management Tiles 6

Embedded PowerPC cores 0

Embedded Ethernet MACs 4

User I/O Pins 680

FPGAs consist of different elements arranged in a two-

dimensional array (Figure 5). Primarily, digital circuits are im-

plemented using Configurable Logic Blocks (CLBs). Discrete

memory units called Block RAM (BRAM) are distributed over the

chip. Each BRAM unit can store up to 36 kbit and can be used to

store state next to the CLBs. Digital Signal Processing Blocks

(DSP48) contain multipliers and accumulator units in discrete

silicon. The use of DSP48 blocks is preferred over a custom im-

plementation using CLBs as it saves chip area.

5

Figure 5: FPGA Floorplan

A Configurable Logic Block (CLB) further consists of two Slices

(shown in Figure 6). The slices are connected to Switch Boxes that

provide links to the interconnect fabric between the CLBs. Fast

carry-logic chains connect the slices from the bottom to the top of

a column. These links provide low-latency daisy chain connec-

tions of the slices, used when implementing, e.g., adders or com-

parators.

Figure 6: Two slices comprise a CLB (two FPGA rows and

columns)

The actual logic circuits are determined by the configuration of a

slice. Figure 7 shows a Virtex-5 slice. It consists of four Look-up

Tables (LUTs) and four Flip-Flops (FF). The LUTs can imple-

ment a binary valued binary function with up to 6 inputs, i.e., any

function of the form 0,1 6 → 0,1 . The flip-flops represent 1-bit

storage elements. A FPGA configuration includes the function

that is implemented by the LUTs as well as the multiplexing

elements (shaded gray in Figure 7).

For evaluating FPGA designs different metrics are used. The most

important metric is the chip utilization, i.e., the number of slices

used. It has to be emphasized that the tools may not be able to use

all LUTs and flip-flops in a slice. Thus, the total slice usage is

max #𝐿𝑈𝑇𝑠,#𝐹𝐹𝑠

4
≤ #𝑠𝑙𝑖𝑐𝑒𝑠 ≤ #𝐿𝑈𝑇𝑠 + #𝐹𝐹,

i.e., the lower bound is obtained when all slices are fully utilized.

The upper bound is reached when a new slice is used for each

LUT and flip-flop. In a high chip utilization scenario the synthesis

tool may also decide to combine LUTs and flip-flops belonging to

unrelated logic into the same slice.

The second important metric is the resulting clock frequency the

circuit can operate on. As clock frequency is limited by the delay

of the longest signal path more complex designs, in general, result

in lower clock frequencies. Note that the target clock frequency is

provided as a constraint to the FPGA synthesis tool, which then

tries to find a placement and chip routing that meet the timing

constraints. If the timing constraint cannot be met, the computing

effort of the tools, i.e., synthesis time, has to be increased or the

circuit adapted accordingly, e.g., by introducing pipelining regis-

ters(Kilts 2007).

Figure 7: A Virtex-5 Slice consisting of four LUTs and four

Flip-Flops

4.1 Ethernet Attachment
Currently, we are using an Ethernet attachment to access the

FPGA. Request and result data are exchanged through Ethernet

frames between a desktop PC (playing the role of a client issuing

RPCs) and the FPGA on the XUPV5 development board (per-

forming the deserialization of the requests).

In a complete system we would expect that the FPGA would have

an additional link to a host server that actually executes the RPCs.

This machine would consume the deserialized requests and, after

executing the RPCs, provide raw results that are serialized by the

FPGA before transmission back to the client. However, since the

scope of this project must be limited due to time constraints, we

eliminate this connection. Instead, the desktop machine plays the

role of both client and server. When a request is sent from the

client machine to the FPGA, the request is deserialized. The

deserialized data is then simply sent back to the client machine.

Although really only half of a complete system, we are able to

demonstrate two important points. First, deserialization on FPGAs

can be implemented efficiently in hardware. Second, migrating

CLBBRAM DSP48

Slice

X0Y1

Slice

X1Y1
Switch

Box
Slice

X2Y1

Slice

X3Y1
Switch

Box

Slice

X0Y0

Slice

X1Y0
Switch

Box
Slice

X2Y0

Slice

X3Y0
Switch

Box

CLB CLB

CLB CLB

CIN CIN

COUT COUT

LUT

D

LUT

C

LUT

B

LUT

A

FF

A

FF

B

FF

C

FF

D

FF

C

FF

D

CIN

COUT

6

the tasks of dealing with the network protocol and deserializing

the data to an FPGA can free considerable CPU time on a host

machine.

For this project we make use and extend an existing system de-

veloped in the Embedded Systems Group at Microsoft Research

Redmond. It provides a high-level of abstraction of the communi-

cation between a user-defined core on the FPGA and an applica-

tion running on the host system. Figure 8 illustrates the architec-

ture. The architecture provides a set of communication primitives

and abstracts from the actual attachment. Currently, attachment

through Gigabit Ethernet and PCI Express are supported. In fu-

ture, additional integration approaches such as FPGA connected

to HyperTransport or Frontside Busses may also be supported. In

this work we focus on Ethernet attachment only.

Figure 8: FPGA Attachment to Host PC

The architecture contains a set of 32-bit parameter registers and

two different I/O memories. Both, registers and memories can be

read and written from the user application. Similarly, a wire-level

API is provided to the user core on the FPGA. The two I/O mem-

ories hold the input and the output data respectively. The follow-

ing operations are supported from the host PC side:

 Parameter Read

 Parameter Write

 Input Memory Write

 Output Memory Read

Figure 9 shows the Ethernet attachment. In this case, the FPGA is

placed on a board together peripheral components. The board

contains an Ethernet connector and a Gigabit PHY chip that is

specific to the physical layer of 1000BASE-T Ethernet (802.3ab).

The Gigabit Media Independent Interface (GMIII, 802.3-2000) of

the chip is directly connected to the FPGA. The Medium Access

Control (Layer 2) is implemented in the EMAC hard IP-core on

the FPGA. A controller has direct access to the wire data through

an 8 bit wide Local Link interface operating at 125 MHz. The

controller decodes the requests and performs the read/write opera-

tions to the memories and the register file. The Deserializer circuit

is implemented as a soft-core and has direct access to both memo-

ries and the register file. The register file consists of 256 32-bit

registers. A Control Register is used to start and stop commands

to the Deserializer. The Control Register can also be read by the

host application to check the state of the Deserializer. In the cur-

rent implementation the size of the input and output memories is 8

kB each. In principle, the can be increased until all BRAM availa-

ble on the chip is used (666 kB in total).

Figure 9: Ethernet Attachment of FPGA

Processing a work unit, i.e., the deserialization a blob of binary

data involves the following steps:

1. The host application writes the serialized representation

into the input memory of the FPGA.

2. Processing is started by setting the ―go‖ bit in the Con-

trol Register. This operation is performed by a register

write.

3. Once the processing is complete the controller will clear

the ―go‖ bit. The host application thus needs to poll the

Control Register before it can issue a memory read re-

quest to read back the deserialized object structure.

4. Once the ―go‖ bit is cleared the host application issues a

memory read to receive the result data.

A request therefore requires at least four interactions. As Ethernet

frames can be lost due to data corruption each request is acknowl-

edge (including memory and register writes). The host application

can detect lost packets using timeouts and resend the presumably

lost frame. The four interactions result in at least 8 Ethernet

frames being sent. This clearly contributes to a significant com-

munication overhead.

In order to reduce communication overhead we added another

primitive ―write&go‖ that immediately starts processing after the

last frame containing the input data was received. No acknowled-

gement is sent. Instead, the result data is sent immediately after

processing completes. This essentially pushes the data back to the

host application and reduces the number of exchanged frames

from eight down to two.

5. DESERIALIZATION
In this section we describe the serialization process. We first give

an overview of Deserialization in Software that we use as a base-

line to compare the hardware implementation against. Section 5.2

discusses the implications of recreating object structures outside

the applications heap and what needs to be considered in heap

management for external object allocation such as on the FPGA.

The implementation of the hardware Deserializer is explained in

Section 5.3.

5.1 Deserialization in Software
Object deserialization involves two steps during which the seria-

lized data stream read in one single pass. First the objects are

instantiated. This is achieved by allocating the memory required

by the type on the heap. For classes with virtual methods the

FP
G

A
 A

ccelerato
r

H
o

st
 P

C

User C++

So
ft

w
ar

e
A

P
I

User Verilog

H
a

rd
w

are A
P

I

I/O Mems &
Param Regs

Protocol-
Specific
Driver

Configure/
SendRead/
SendWrite

Protocol-
Specific

Controller

Physical
Connection

Deserializer

Circuit
PHY

1 GbE
EMAC

GMII
Controller

Register

File

Input Memory

Output Memory

FPGA

7

vtable pointers of the instances need to be set. The pseudo-code of

object deserialization is shown below:

Phase 1:

i  0

L  []

n  readNumObjectsFromStream()

forall n objects in stream

 t  readTypeFromStream()

 o  allocateObjectOfType(t)

 setVtablePointer(o)

 L[i]  o

 i  i +1

Phase 2:

forall 0 ≤ i ≤ n

 L[i].read(stream)

In a second phase the object members are initialized. Since the

vtable pointers are already setup object deserialization can be

done by calling a virtual method Object::read(char

*buffer, int *pos, Serializer *s) defined in the base

class of all objects. The actual classes implement object deseriali-

zation. The implementation for Literal class is:

void Literal::read(char *buffer, int *pos,

 const Serializer *s)

{

 m_value = *(int*)(buffer+*pos);

 *pos += 4; // sizeof(m_value) == 4 bytes

}

For object references the Serializer instance is used to lookup the

object pointer for a given object ID. Here the ID corresponds to

the index into the list L (see above). For example, for Operation

the read method looks as follows:

void Operation::read(char *buffer, int *pos,

 const Serializer *s)

{

 int left = *(int*)(&buffer[*pos]);

 *pos += 4; // size of object ID on stream

 int right = *(int*)(&buffer[*pos]);

 *pos += 4; // size of object ID on stream

 // look-up Node for IDs

 m_left = dynamic_cast<Node*>(s->getObject(left));

 m_right = dynamic_cast<Node*>(s->getObject(right));

 // set operation type (Addition, etc.)

 m_eType = (OperationType)buffer[*pos];

 (*pos)++; // sizeof(m_eType) == 1 byte

}

5.2 Heap Management
When invoking the new operator the necessary bytes for the in-

stance are allocated on the heap during a call to malloc. Note that

in general malloc is free to place object at any memory location.

In order to simplify the write-back to main memory only one

single memory region should be copied. Thus, the objects have to

be allocated in a contiguous area on the FPGA.

A second important aspect is that object pointers need to be setup

such that they point to the appropriate memory locations after the

deserialized structure is copied back from the network to the heap

memory. Updating the pointers, i.e., pointer relocation after the

write back would have a significant impact on performance.

We address the two problems by preallocating a contiguous mem-

ory region in virtual memory space, e.g., 8 kB that can hold all

result data. In each deserialization request we also send the start

address of this result buffer along. This allows the FPGA to setup

the pointers correctly such that the result structure can be trans-

ferred to the preallocated buffer using memcpy.

It is important to point out that since these objects are allocated

outside the usual C++ runtime special care needs to be taken when

deleting the instances or modifying the structure, for example, by

adding more instances.

To this extend the standard C++ new and delete operators have to

be overwritten such that they reflect this custom memory man-

agement. An additional possibility is to replace the delete operator

by an empty implementation when assuming that the data struc-

ture is freed altogether, e.g., after an RPC completes. In our im-

plementation we overwrite the two operators in the Object base

class as follows:

void * Object::operator new(unsigned int size)

{

 return preallocate_memory(size);

}

void Object::operator delete(void *buf)

{

 // do nothing, ignore 'delete'

}

5.3 Deserialization in Hardware
In this section we describe the Deserializer core implemented in

Verilog HDL. The Deserializer is added as a user core to the

Ethernet attachment architecture. Figure 10 depicts the structure

of the Deserializer core.

Input Memory BRAM

Output Memory BRAM

Literal
Operation

objPtr

2
N

objType

2
N

currHeapPtrcurrObject

lastObject
Stream

Reader

Finite State Machine (FSM)

Cycle Ctr

Control
Error

255
254
253

Literal
Operation

vtable[2]
vtable[3]
vtable[4]

vtable[252]

0
1
2
3
4

252

P
a
ra

m
e

te
r

R
e
g

is
te

rs

Register File

copy during

initialization

BRAM

Flip-flop Register

Control Logic

Legend:

outMemAddr

8

Figure 10: Structure of Deserializer Core

5.3.1 Parameter Registers
As described in Section 5.1 when allocating objects the vtable

pointers need to be set. The values of these pointers depend on the

actual relocation of the table by the link-loader in the host applica-

tion. Hence, the pointer values are not known at compile time. We

therefore have to set them after the host application was loaded.

For this purpose we use part of the Parameter Register of the

Ethernet attachment architecture (Figure 9). The first 253 register

hold the vtable pointers of the up to 253 class types that can be

handled by the current hardware implementation. These registers

are written by the host application during a one-time configuration

phase. The last three registers are used as Control Register, Error

Register, and Cycle Counter Register. The Control Register is

used the start processing and configure the hardware Deserializer.

The Error Register contains an error code after deserialization,

e.g., if the serialized representation contains an invalid object

reference. The host application can read this register and identify

the cause of the failure. The Cycle Counter Register is used to

measure the number of 125 MHz clock cycles spent for the dese-

rialization operation. It is used to obtain the raw FPGA processing

times for the evaluation in Section 6.

5.3.2 Deserialization
The deserialization in hardware involves the following steps.

1. Host application sets the vtable pointer for each class

type in the corresponding Parameter Register.

2. Host application sends the input data through a memory

write operation to the input memory of the Ethernet at-

tachment architecture. When the last byte is written de-

serialization is started implicitly.

3. During deserialization the object are first allocated în

the Output BRAM. Then the members are initialized.

During deserialization input memory is read in a single

pass.

4. The content of the output memory is sent to the host ap-

plication, which then performs a memcpy from network

buffer into the preallocated heap buffer.

For the following discussion assume that 2M types can be

processed by a given hardware deserializer. Thus, for the expres-

sion tree example consisting of a Literal and Operation type

(M=1). Let 2N be the number of objects that can be processed by

the Deserializer. In the current implementation N=8, i.e., struc-

tures consisting of at most 256 objects can be processed.

Figure 10 shows additional registers that serve as a temporary

storage area during deserialization: objPtr, objType, currHeapPtr,

currObject, lastObject, outMemAddr. The registers objPtr and

objType are organized as arrays. objPtr[id] stores the start address

of the object referenced by index id. objType[id] stores the type of

object id. The size of the object pointer array is 2N×32 bits, the

object type array 2N×M. The 32 bit register currHeapPtr is used to

store the current heap pointer address during object allocation.

The M-bit registers currObject and lastObject store the object

indices.

Object deserialization is controlled by a Finite State Machine. The

function of the state machine can be expressed as follows in pseu-

docode:

currHeapPtr  readNext32Bits()

lastObject  readNext32Bits()

currObject  0

Allocate objects:

while currObject ≤ lastObject do

 type  readNext32Bits()

 objPtr[currObject]  currHeapPtr

 objType[currObject]  type

 currObject  currObject +1

 currHeapPtr  currHeapPtr + typeSizes[type]
done

Set objects members:

currObject  0

outMemAddr  0

while currObject ≤ lastObject do

 switch(objType[currObject])

 case 0: // type = Literal

 outmem[outMemAddr]  vtable[0]

 outmem[outMemAddr+4]  0 // m_left = NULL

 outmem[outMemAddr+8]  0 // m_right = NULL

 outmem[outMemAddr+12]  readNext32Bits() // m_value

 outMemAddr  outMemAddr+16

 case 1: // type = Operation

 outmem[outMemAddr]  vtable[1]

 outmem[outMemAddr+4] 

 objPtr[readNext32Bits()] // m_left

 outmem[outMemAddr+8] 

 objPtr[readNext32Bits()] // m_right

 outmem[outMemAddr+12]  readNext8Bits() // m_eType

 outMemAddr  outMemAddr+16
 end
done

The gray shaded regions are type specific, i.e., depend on the

types of the object structures that can be processed by the Deseria-

lizer. In this paper we show the actual implementation for the

expression tree example. The read-only lookup table typeSiz-

es[type] stores the size of each object. Being read-only this table

does not have to be implemented using Flip-flops, instead the

FPGA synthesis tool can directly merge the static content of this

table with the combinatorial logic of the state machine.

5.3.3 vtable Pointers
As shown in Figure 9 the Ethernet attachment also provides a

register file consisting of 256 32-bit registers. The register file is

implemented using a dual ported BRAM with 211×32 bit address-

ing on both ports. Port ―A‖ is used by the Controller while port

―B‖ is connected to the Deserializer. Implementing the register

file using BRAM has the advantage that it is efficient in terms of

chip area. The entire register file can be implemented using one

single 36 kbit BRAM block. In contrast, implementing the register

file using flip-flops requires 256×32=8192 flip-flops, i.e., in best

9

case 2048 FPGA slices. This corresponds to 11.8% of the chip

space on our FPGA chip.

On the flip-side, accesses to BRAM have higher latency compared

to flip-flop registers. Figure 11 shows the timing diagram for a

two BRAM read operations. Assuming that the user logic decides

to read memory location n at clock cycle k, it will set the address

line in cycle k. The BRAM will not start reading the memory until

the next rising edge of clock cycle k+1. Reading the memory cell

itself has latency an additional cycle. Thus, the data mem[n] will

not be available earlier than at the beginning cycle k+2. Hence, a

single read has a latency of one cycle. Reading a flip-flop register

has a latency <1 clock cycle.

In our implementation we chose to not to use Flip-flops for all 256

Parameter Registers. Instead, we only use Flip-flop registers for

the 2M vtable registers. We introduce an initialization stage where

the content of the 2M Parameter Register containing vtable poin-

ters are copied to the 2M fast Flip-flop register. Therefore, we can

avoid the access latency of BRAM during deserialization while

still keeping the chip utilization as low as possible. We provide a

resource analysis in Section 5.3.6.

tclock

address tn

data tmem[n] mem[n+1]

n+1

read n read n+1

BRAM

reading

address n

Figure 11: Timing Diagram for BRAM Read Operation

5.3.4 Input/Output Block Memories
The Ethernet attachment provides separate memories for input and

output data. In the current implementation the size of each memo-

ry is 8 kB and is implemented using on-chip Block RAM (BRAM).

The memories are dual ported, i.e., they have two independent

access ports A and B. Port A of the Input Memory is configured as

213×8 bit memory and is connected to the Controller (Figure 9).

Port B uses 211×32 bit addressing and is connected to the Stream

Reader unit (explained below). The Output Memory is written

from the Deserializer through port A using 211×32 bit addressing.

The memory is read by the controller via port B which provides a

213×8 bit representation.

The controller uses 8 bit addressing because the width directly

matches the Local Link interface (8 bit) to the EMAC core. Word-

addressing towards the Deserializer increases the throughput at

the same system clock (125 MHz).

5.3.5 Stream Reader
In the second phase of the deserialization, i.e., the initialization of

the object members the element size of the data read from the

input buffer can vary. For example, in the tree example introduced

earlier the value for Literal::m_value is a 32-bit integer

whereas the operation type Operation::m_eType is stored as an 8-

bit value in the serialized stream. However, the memory interface

uses 32-bit addressing.

The Stream Reader (Figure 12) is a soft-IP core that provides

variable length access to the input memory. In particular, the

Stream Reader implements unaligned memory access. The user

core (left side pins of Stream Reader in Figure 12), in this case,

the state machine of the Deserializer, has a 32-bit data bus. The

user core can consume a variable amount of data: 1, 2, or 4 bytes.

The signals applied to the wordSelect lines determine the size of

the data consumed and the amount to advance the stream for the

next read. Data is consumed by asserting read. This signal is read

at the beginning of each clock cycle. If it set, the 32-bit window is

moved by the amount specified by the wordSelect signal. After

each clock cycle the output lines data contain the content of the

current 32-bit window on the stream.

Consider the following content of the input memory.

Address (11 bit) Data (32 bit)

0x000 0xa3a2a1a0

0x001 0xb3b2b1b0

0x002 0xc3c2c1c0

For the access pattern Byte, 4 Bytes, 2 Bytes the output is as fol-

lows (the table shows the state at the beginning of a clock cycle):

Clock wordSelect read data

k Byte 1 0xa3a2a1a0

k+1 4 Bytes 1 0xb0a3a2a1

k+2 2 Bytes 1 0xc0b3b2b1

k+3 0 0xc2c1c0b3

As indicated earlier when accessing BRAM the inherent latency

of the unit has to be considered. Figure 11 illustrates the latencies

involved in streaming access pattern for two memory locations n

and n+1. Assume that at clock cycle k the Stream Reader decides

to read more data and thus asserts the new address on memAddr.

Thus, the data for address n will be available at cycle k+2. How-

ever, the reads can be pipelined, thereby hiding the access latency

such that the data for n+1 is already available at k+3. This has an

important effect on the consumer, when the pipeline is full a 32-

bit value can be consumed every clock cycle. However, when the

pipeline is empty no data is available at clock cycle k+1.

Figure 12: Stream Reader provides unaligned variable-sized

memory access

clock

data

wordSelect

read

empty

32

2

Stream Reader

memAddr

32
memData

11
ADDRB

CLKB

DOUTB

Input Memory

BRAM

00: 1 byte

01: 2 bytes

10: 3 bytes

11: unused

reset

10

One solution to prevent the user core from reading invalid data is

to use a pushback mechanism. That is, to tell the consumer that

the data lines contain no valid data at clock cycle k+1. This ap-

proach not only negatively effects performance as no work can be

done in that cycle, but it also adds more complexity to the logic of

the user component. In this paper we chose a different approach.

We added a 96-bit buffer to the stream reader. The buffer is im-

plemented using fast flip-flop registers. It can be easily shown that

96 bits or equivalently three 32-bit words (=12 bytes) is the mini-

mum size required to bridge the latency from starting filling up

the pipeline until the first data item can be retrieved from the

BRAM. Since both the output data port of the Stream Reader and

the memory have the same size, a sustained read rate of 32 bits

per clock cycle (=500 MB/s) can be easily achieved. The buffer is

filled as soon as the reset signal is cleared. The empty signal

indicates the user component that the data line is not ready. Al-

though this can be considered a pushback too, empty is only low

after a reset until the buffer is full. Once empty is low the data

lines stays valid until the next reset. The user component thus can

use the empty signal together with the reset signal as a ―ready

after reset‖ condition. After that the empty signal can be ignored.

5.3.6 Resource Usage
The resource usage of the Deserializer circuit can be expressed in

terms of LUT and Flip-flop usage. The overall chip utilization is

expressed in the number of used slices which consists of both

LUTs and Flip-flops. As described in Section 4 the FPGA synthe-

sis tool performs heavy optimization which makes the number of

used LUTs difficult to predict. Furthermore it can decide to com-

bine unrelated circuits into the same slice. Thus, we provide num-

bers for the overall chip usage of the entire FPGA circuit, i.e., the

Deserializer as well as Ethernet attachment (Controller, etc.).

Flip-flops representing basic bit storage elements, however, are

easier to predict. Assuming that the Deserializer is able to process

2M types and structures consisting of at most 2N objects the num-

ber of Flip-flops used for each register is:

#size-dependent Flip-flops

= 2𝑁 ∙ 32
objPtr

+ 2𝑁 ∙ 𝑀
objType

+ 2𝑀 ∙ 32
vtable

Register

+ 2𝑀
currObject+

lastObject

This analysis only includes the Flip-flops that depend on the

problem size, i.e., the parameters M and N. For M=1 and N=8,

8514 Flip-flops are necessary. This corresponds to 12.3% of the

chip resources. Flips-flops that are independent of these parame-

ters, such as currHeapPtr and outMemAddr are accounted for the

in the overall utilization.

Table 2 shows the overall chip utilization of the complete FPGA

design (Deserializer and Ethernet attachment) on our

XC5VLX110T chip. This data is reported at the end of the design

flow process by the Xilinx ISE 10.1.03 synthesis tool. Both the

Flip-flop and the LUT utilization are comparatively low. The fact

that the slice utilization is almost the sum of the register and LUT

utilizations indicates that there is not much overlap between logic

and registers. Nevertheless, the overall chip utilization is <25%.

For that matter, the resource utilization could be further reduced

by migrating the objPtr and objType storage areas into BRAM

and eliminating the redundant vtable pointer registers. These

optimizations were not considered in this investigation merely to

simplify implementation.

As an estimate of the actual resource consumption of the Deseria-

lizer itself we also list the results from the Map Report. The Map

stage of the FPGA design flow maps high-level primitives to

device-primitives. This phase occurs before Place & Route and

hence, the utilization numbers are not yet final. Nevertheless, they

represent the last stage in the work flow where the design hie-

rarchy still exists. Table 3 shows the chip utilization after the Map

stage. The table indicates that the Deserializer itself uses 14% of

the chip space and together with the Stream Reader 16% of the

chip. Considering these numbers alone it seems to be possible (in

theory) to instantiate approximately 6 Deserializer cores on the

currently targeted chip.

Table 2: Resource Utilization of Complete Design

 Used Chip utilization

Flip-flop Registers 10,311 14%

LUTs 6,463 9%

Occupied Slices 3,874 22%

36 kb BRAM Blocks

Total Memory

9

40.5 kB

6%

6%

Input/Output Blocks 30 4%

Table 3: Resource Utilization of Deserializer and Stream

Reader after Map Stage

 Flip-

Flops

LUTs Slices

Deserializer

(without Stream Reader)

8,714

(13%)

3,372

(5%)

2,488

(14%)

Stream Reader 115

(0.2%)

706

(1%)

330

(2%)

The second metric used is the clock speed the circuit can operate

on. We have been able to synthesize and operate the circuit at the

full 125 MHz of the Gigabit Ethernet MAC. For simplicity we

used one single clock region whose clock is given by the Ethernet

MAC. 1 In principle, it should be possible to operate the Deseria-

lizer, including the B port of the Input Memory and the A port of

the Output Memory at a higher clock rate. However, this has not

been experimentally verified yet.

6. EVALUATION
In this section we perform a performance evaluation. We compare

the hardware implementation against a traditional software solu-

tion. We evaluate the overall end-to-end performance, as well as

1 Actually, two clocks are used. Next to the 125 MHz system

clock a 200 MHz reference clock is used for the IDELAY and

IDELAY controller respectively. The reference clock is used to

drive the tapped delay line for the RX clock of EMAC GMII

interface.

11

the time spent for the deserialization alone. First, we assess the

communication overhead of the network link between two PCs

and between a PC and a FPGA board. This comparison will allow

us to quantify the time spent by a server not necessarily

processing the request, but simply moving a request through

various levels of the network stack and operating system. After

that, we will look into the execution time of the serialization and

deserialization itself.

6.1 Experimental Setup
We use two off-the-shelf desktop computers and our Xilinx

XUPV5 development board for all experiments. Figure 13 illu-

strates the two different configurations. The setup in Figure 13 (a)

serves as a base system for comparison. The software implemen-

tation is running on System B (server) that is connected via a

direct Ethernet connection to the System A that issues the re-

quests. In Figure 13 (b) System B is replaced by the XUPV5

FPGA board. Table 4 lists the characteristic properties of the two

desktop systems.

Figure 13: (a) Deserializer in Software on System B, (b) FPGA

Solution

Table 4: Selected Characteristics of the Desktop Systems

 System A

HP xw4600
System B

HP xw4600

 CPU Intel Core2Duo

E6850 3.00 GHz

Intel Core2Duo

E8500, 3.167 GHz

Memory DDR2, 4 GB

(PC2-6400)

DDR2, 4 GB

(PC2-6400)

Network Broadcom NetXtreme

Gigabit Ethernet

BCM5755 (on-board)

Broadcom NetXtreme

Gigabit Ethernet

BCM5755 (on-board)

OS Windows Vista Enter-

prise SP2, 32 bit

Windows Vista Enter-

prise SP2, 32 bit

6.2 Performance of Ethernet Attachment
In the first experiment the communication overhead from System

A to System B and the FPGA board is measured. We send net-

work messages to the server (requests) that are immediately sent

back to the client (replies). We compare raw Ethernet frames,

UDP packets, and messages sent over a TCP connection. As

mentioned earlier, the goal of this testing is to quantify the time

required to move data through the various levels of the network

stack and the operating system.

6.2.1 Time Measurements and OS Scheduling Effects
We measure the end-to-end or round trip time, i.e., the wall clock

time between transmission of the request message and the recep-

tion of reply message. In order to obtain a high resolution we do

not rely on the timing primitives provided by the operating sys-

tem. Instead, we directly use the hardware cycle counter register

of the x86 processor architecture. We obtain the time stamps

using the following inline assembly sequence (Visual Studio

C++):

inline UINT64 get_cyclecount(void){

 // read cycle counter register

 volatile UINT32 lo, hi;

 volatile UINT64 cycles;

 __asm {

 rdtsc ; TSC register -> edx:eax

 mov lo, eax ; store lower 32 bits

 mov hi, edx ; store upper 32 bits

 }

 cycles = hi;

 cycles <<= 32;

 cycles |= lo;

 return cycles;

}

This function returns the current cycle count since boot time of

the processors. In order to relate the cycle count to time the clock

frequency is required. We obtain the current CPU frequency by

calling CallNtPowerInformation. The function returns a structure

that contains a field that contains the current clock frequency

MHz.

Note: Special care needs to be taken when using the CPU clock

frequency. Vista, as many other modern operating systems, uses

sophisticated power management mechanism that include among

others dynamic frequency scaling. In order to reduce power con-

sumption these strategies reduce the clock frequency when the

CPU is idle or the current work load is I/O-bound. For our mea-

surements we disable frequency scaling.

The end-to-end timing measurements are influenced by schedul-

ing effects on System A (and for the software reference setup,

System B too). In order to capture the complete behavior we use

multiple requests (1,000,000) for each data points. We then vi-

sualize the data in a cumulative histogram (Figure 14 and Figure

15). We also show the median of the timing values as it is known

to be less sensitive(Tukey 1977) to outliers than the average value

in Table 5.

6.2.2 Minimum and Maximum Frame Size
Ethernet frames are required to have a minimum packet size of 64

bytes, which corresponds frame with 46 bytes payload. The max-

imum size of a frame is 1500 bytes, i.e., 1486 bytes payload. We

use minimum and maximum sized frames as the two extremal

data points for the analysis. For UDP and TCP we choose a mes-

sage size, i.e., a payload size such that it will result in a minimum

sized frame and a single maximum sized frame.

12

6.2.3 Ethernet Frames on Desktop Systems
Unicast raw Ethernet frames are sent from System A to System B.

After receiving the frame System B swaps source and destination

address of the frame and sends it back to System A. This bench-

mark provides the baseline for the offloaded processing as it

captures only the communication overhead.

We send raw Ethernet frames through the Virtual Network driver

VPCNetS2 provided by Microsoft Virtual PC 2007. This driver is

added at the bottom of the network stack and is able create a

virtual network interface with its own MAC address. We use this

new virtual device to transmit and receive Ethernet frames. The

code base for harnessing the virtual network device comes from

Giano [10]. The code uses asynchronous calls, and makes use of

the efficient I/O completion queues of the Windows API.

To isolate the systems under test from external noise we discon-

nected the nodes from the corporate network and establish a direct

connection between the nodes through a cross-over cable. Fur-

thermore we disabled the IP and Microsoft Client Protocols on

both systems for the Broadcom network device. This suppresses

occasional ARP requests sent by the hosts.

6.2.4 Ethernet Frames in FPGA System
For the FPGA setup we use a special purpose FPGA design. We

modify the Ethernet controller (Figure 9) such that as soon as the

frame leaves the EMAC core to the Controller (after the entire

frame was received and the CRC verified) it is resent with the

source and destination addresses exchanged. The Local Link

interface of the EMAC core is 8 bit wide and streams the frame to

the user controller. The controller waits 12 cycles until it has seen

source and destination address. It then swaps the 6 bytes and

sends the packet immediately back to the EMAC core through the

transmit Local Link interface. This results in a possibly shortest

round trip time:

 2 ∙ #frame bytes + 12
1

125 MHz

This number doubles the number of frame bytes to account for the

fact that 1) the entire request packet is received by the FPGA

before being sent back and 2) the entire reply packet must be

received by the PC’s NIC before being passed up to the driver.

This is not four times the number of frame bytes because the time

required by the PC’s NIC to send the request packet overlaps the

interval in which the FPGA is receiving the request packet and

vice-versa for the reply packet. For 64 byte Ethernet frames the

minimum round-trip time is 1.12µs. For maximum sized 1500

byte frames the time for the frame reflection is 24µs.

6.2.5 UDP Packets
In order evaluate the impact of the IP layer and a packet-oriented

transport layer on the overall performance we also implement the

ping-pong message exchange on UDP. We test this setup only

with the desktop hosts shown in Figure 13 (a). A one byte UDP

datagram results in a 66 byte Ethernet frame. The maximal UDP

payload size such that no IP fragmentation occurs is 1450 bytes.

6.2.6 TCP Fragments
Messages sent over a TCP socket are used to evaluate the perfor-

mance impact of a connection oriented transport on layer 4 in the

network stack. A one-byte send operation on a TCP socket results

in a 78 byte Ethernet frame (after the connection has be setup).

The payload can be increased up to 1435 bytes until IP fragmenta-

tion occurs.

6.2.7 Ping/Pong Experiment – Results
Figure 14 shows the cumulative histogram of the round trip time

for minimum sized messages, Figure 15 for maximum messages.

As it can be seen from the slope of the curves processing the times

for Ethernet frames do not show much variation. On the other

hand, variation is larger for UDP and TCP. For both message

sizes the variation for UDP is larger than for TCP. A surprising

finding is that the round trip time for TCP traffic is lower than for

UDP. This is counter intuitive because UDP is essentially an

empty wrapper that provides the functionality of IP to the applica-

tion accessing the stack on layer 4.

Figure 14: Cumulative Histogram of Round Trip Times of

Minimum-sized Packets

Figure 15: Cumulative Histogram of Round Trip Times of

Full-sized Packets

We can make an interesting observation for large Ethernet frames

in Figure 15. The curves never reach 100%, instead they seem to

be limited to 93%. The curve will reach 100% outside the chart

only after 420 µs. We have not been able to identify the problem

but we believe it is related to a scheduling issue in connection

with the Broadcom driver on Windows Vista. We have not seen

this artifact using an Intel Gigabit 82567LM chipset on either a

Lenovo W500 or Dell Latitude e6400 laptop computer.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

20 40 60 80 100 120 140 160

C
u

m
u

la
ti

ve
 D

e
n

si
ty

 (
C

D
F)

Round Trip Time [s]

FPGA 64 byte frame Ethernet Server 64 byte frame
UDP 1 byte packet TCP 1 byte fragment

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

80 100 120 140 160 180 200 220 240

C
u

m
u

la
ti

ve
 D

e
n

si
ty

 (
C

D
F)

Round Trip Time [s]

FPGA 1486 byte frame Ethernet Server 1486 byte frame

UDP 1450 byte packet TCP 1435 byte fragment

13

Table 5 shows the median of the round trip times. It can be seen

that the ―FPGA reflector‖ reduces the round trip time by 21 µs for

small messages and 31 µs for large messages. Exchanging small

amounts of data through UDP and TCP is approximately 2.3×

slower than raw Ethernet frames on the desktop systems. Com-

pared to the Ethernet frames on FPGA UDP/TCP is 3.8× slower.

The large overhead of UDP and TCP is reduced for large messag-

es to approximately 1.8× compared to raw frames on the desktop

systems and 2.2—2.5× compared to implementation on the

FPGA.

An important factor when considering the Ethernet attachment is

the processing time spent going through the driver and operating

system. We can estimate this in two ways. First, we can calculate

the time spent in the driver and operating system on the server

(System B) by subtracting the results of the experiments with

System B by the results from using the FPGA. This will be the

time required for the driver to pick up the request message from

the NIC, queue the request for a user application, the user applica-

tion to queue the reply back to the driver and for the driver to send

the reply to the NIC. For minimum sized frames 55 µs34 µs =

21 µs and for maximum sized frames 120 µs89 µs = 31 µs.

Alternatively, we can also calculate the time spent by the client

(System A) when communicating with the FPGA. By subtracting

the physical transit time calculated above from the round trip time

measurement to the FPGA board, we can estimate the time spent

by the user application queuing the request message for the driver,

waiting for the driver to pick up the request, waiting for the driver

to pick up the reply message and the time spend queuing the reply

from the driver back to the user application. For minimum sized

frames 34 µs1 µs = 33 µs and for maximum sized frames 89

µs24 µs = 65 µs.

Both of these numbers provide some insight into the potential

minimum difference in latency between implementing the data

marshalling in hardware versus software implementation. How-

ever, this does not give us a clear idea regarding the CPU load

incurred by the server passing the data through the driver and

operating system. This is because this time likely includes busy

waiting time or the time required to perform a context switch

rather than actual computation and copying required to hand the

request to a user application from the NIC. This question will be

answered in the next subsection.

Table 5: Median of Round Trip Times

 Min.-sized

Packet

Full-sized

Packets

Raw Ethernet Frames

System B

55 µs 120 µs

Raw Ethernet Frames

to FPGA Board

34 µs 89 µs

UDP Datagrams

System B

132 µs 226 µs

TCP fragment

System B

128 µs 198 µs

6.2.8 Multiple Ethernet Frames In-flight
In the experiments shown in the previous section only one mes-

sage is transmitted at a time. We now look at the impact when

sending multiple messages in a fast consecutive order. Figure 16

shows the cumulative histogram for 1 up to 8 request frames in

flight. As the number increases so does the variance, i.e., the slope

of the curve decreases.

In Figure 17 we show the median values for different number of

in-flight frames both for FPGA and System B. As it can be seen

that starting with an initial overhead, the round trip times scale

linearly with respect to the number of in-flight frames. This means

that sending more than one frame in short succession increases

throughput. This is to be expected since both System A and Sys-

tem B use asynchronous I/O. Thus, when sending multiple frames

the system pays a certain constant startup cost to do things like

perhaps perform a context switch or begin the interrupt service

routine, but then can devote itself to handling the requests entire-

ly. The slope of the curve for minimum-sized frames sent to the

FPGA is 6.6 µs/in-flight frame and 10.0 µs/in-flight frame for

maximum sized frames (least squares).

Figure 16: Cumulative Histogram between System A and

FPGA for multiple outstanding transmissions (64 byte Ether-

net frames)

Figure 17: Median Round Trip Time for different number of

in-flight frames

This testing gives us a more realistic idea of what the CPU load is

for a machine when it must handle requests from the network. In

a production system in which the FPGA can write directly into the

main memory of the host server, we expect that the FPGA would

take care of the 6.6 – 10.0 µs of processing per frame plus startup

overhead that would normally need to be taken care of by CPUs

on the server to handle each request. Notice that this contribution

only considers the cycles needed to handle the data transfer. This

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

20 30 40 50 60 70 80 90 100

Round Trip Time [s]

1 in-flight frame 2 in-flight frames

3 in-flight frames 4 in-flight frames

5 in-flight frames 6 in-flight frames

7 in-flight frames 8 in-flight frames

0

50

100

150

200

250

1 2 3 4 5 6 7 8

R
o

u
n

d
 T

ri
p

 T
im

e
 (

M
e

d
ia

n
)

[
s]

Number of In-flight frames

FPGA (min. frame) FPGA (max. frame)

System B (min. frame) System B (max. frame)

14

does not yet include the time required to perform the actual seria-

lization or deserialization. This will be discussed in the next

section.

6.3 Deserialization in Hardware vs. Software
In this section we evaluate the performance the Deserializer cir-

cuit and compare with a traditional software implementation on

System B. We use the same setup as in the previous experiment

(Figure 13). As explained earlier, communication is implemented

by exchanging raw Ethernet frames.

6.3.1 Workload Data Set
For evaluating the performance of the Deserializer we are using

the expression tree example. In particular, we use the object struc-

ture shown in Figure 18. We scale the size of the structure by the

parameter n which corresponds to the number of Operation nodes.

Figure 18: Object Structure used in Deserialization

The number of objects hence for a given n is 2n+1. As shown in

the object layout in Figure 4 both Operation and Literal objects

occupy 16 bytes on the heap. Thus, the object structure occupies

16 2𝑛 + 1 = 32𝑛 + 16 bytes on the heap. The size of the seria-

lized representation can be computed as follows:

4
heap pointer

+ 4
#objects

+ 4 2𝑛 + 1
object types

+ 4 𝑛 + 1
Literal objects

+ 9𝑛
Operation objects

= 21𝑛 + 12 bytes

Given the constraint the of the objPtr array in the current imple-

mentation, the Deserializer can process up 256 objects. Thus, in

the evaluation we vary n in the range 𝑛 ≤ 127. For 𝑛 = 127 the

size on the heap is 4,080 bytes, the size of the serialized structure

is 2,683 bytes.

The limit of Ethernet frames to 1,486 byte requires that the seria-

lized input data is split into two Ethernet frames. For transmitting

the result data, i.e., the object structure that lands on the heap,

three Ethernet frames are used.

6.3.2 Deserialization – Results
Figure 19 shows the round trip times for processing a deserializa-

tion request for object structure size in the range 112—4080

bytes. For each data point we issued 1,000,000 requests and we

measured the round trip time. In the figure, the solid lines show

the min/90% percentile and the median values of the end-to-end

times both for the FPGA Deserializer and the software solution

implemented on System B.

Figure 19: Round Trip Times of FPGA Deserializer vs.

Software Solution

Figure 20: Speedup of FPGA Deserializer based on median

times

In Figure 19 it can be seen that not only the median but also the

entire min to 90%-percentile band of the FPGA implementation is

always below the software solution. The dashed lines in the figure

show the time spent for the actual processing (excluding commu-

nication cost). The slopes are increasing linearly and diverging,

hence, resulting in a constant speed up of the hardware solution as

shown in Figure 20. The computation-only speed up is approx-

imately factor 9×. The speedup is reduced to 2.5× when also

considering communication cost. A quick sanity check confirms

the measurements: The request and response can be related to the

3 in-flight messages from Section 6.2.8 which required a round

trip time of 115 µs for the FPGA and 158 µs for System B. Add-

ing the computation time of 10 µs and 96 µs respectively, the

resulting estimated total time of 125 µs for the FPGA Deserializer

+

+

+

+

+

1

2

3

n-1

n n+1

0.00

50.00

100.00

150.00

200.00

250.00

300.00

0 500 1000 1500 2000 2500 3000 3500 4000

R
o

u
n

d
 T

ri
p

 T
im

e
 [


s]

Size of object structure on heap [bytes]

CPU 90% percentile CPU median
computing only min CPU min
FPGA min FPGA median
FPGA computing only min FPGA 90% percentile

0
1
2
3
4
5
6
7
8
9

10

0 500 1000 1500 2000 2500 3000 3500 4000

Size of object structure on heap [bytes]

Overall Speedup
Computation-only Speedup

15

and 254 µs for software solution correspond to the data in Figure

19.

The linear increase of the processing time for CPU and FPGA can

easily be explained as in both the serialized data is read in one

single pass, hence, O(n). Also the data structure is small enough

such that both the serialized and deserialized data can even fit into

L1 cache (32 kB) of the CPU.

6.4 Performance Implications
In this section we provide an analysis of the performance implica-

tions of the FPGA approach. The measurements in the last section

only considered latency. We now provide some estimates on the

throughput characteristics. In fact, the implications are twofold.

First, a reduced latency directly results in an increased throughput

in a non-pipelined scenario. Second, an improvement is obtained

as more work can be processed on the CPU due to the offloading

of work to the FPGA.

When assuming non-pipelined processing but a pipelined com-

munication (using multiple Input and Output Memory buffers on

the FPGA) the throughput of a single Deserializer unit is then

equal to the reciprocal value of the latency that is:

 112 byte structure: 0.336 µs  2.977M requests/sec

 4,080 byte structure: 10.256 µs  97,504 requests/sec

6.4.1 Load-reduction
Using the data obtained, we now try to provide a very rough

extrapolation of the load reduction on the conventional system

when processing RPCs. For this we boldly assume that the costs

for serializing the result data is the same as the cost of the deseria-

lizing the input.

The time T spent by a conventional system split as follows:

𝑇 = 𝑇receive + 𝑇deserialize + 𝑇execute + 𝑇serialize + 𝑇send

Here Treceive is the time spent for receiving the data from the net-

work, Tdeserialize and Tserialize correspond to the time spent for dese-

rializing the input and serializing the result. Tsend is the time used

for sending the serialized result data.

Now consider a system where both deserialization of the input

data and serialization of the results are offloaded, such that the

FPGA directly receives the requests from the clients and sends the

results back. The time spent by the CPU is:

𝑇 ′ = 𝑇′receive + 𝑇execute + 𝑇′send

Here, T’receive corresponds to the time spend on the CPU for re-

ceiving the deserialized structure from the FPGA. T’rsend equals

the time required to send the result structure back to the FPGA.

The times Treceive and Treceive are determined by the network inter-

face and the network stack. T’receive and T’send depend on the at-

tachment of the FPGA. The reduction of CPU time is:

𝑇 − 𝑇 ′ = 𝑇receive + 𝑇deserialize + 𝑇execute + 𝑇serialize + 𝑇send

− 𝑇 ′
receive − 𝑇execute − 𝑇 ′

send

 = 𝑇receive − 𝑇 ′
receive + 𝑇deserialize + 𝑇serialize + 𝑇send − 𝑇 ′

send

Assuming that the size of the serialized data is approximately

equal to the deserialized data we have

𝑇 − 𝑇 ′ = 𝑇receive − 𝑇 ′
receive

≈0

+ 𝑇deserialize + 𝑇serialize

+ 𝑇send − 𝑇 ′
send

≈0

 .

If we further assume that 𝑇deserialize ≈ 𝑇serialize, then the time

saved by offloading is roughly 2𝑇deserialize. The implementation of

the Deserializer the Stream Reader provides a 32-bit wide data

path, hence, at each clock cycles 4 bytes of the input data stream

are consumed.2 The time for the deserialization of a structure

containing n bytes can be approximated by

𝑇deserialize ≈
𝑛

4𝑓clock
=

𝑛

4 ∙ 125 MHz
 .

Hence, the time saved is roughly

𝑇 − 𝑇′ ≈
𝑛

2𝑓clock
=

𝑛

2 ∙ 125 MHz
 .

We can compare the CPU time of performing deserialization in

software to the time of receiving a processed message from the

FPGA in more concrete terms. In a system in which we have a

more closely-coupled FPGA that can communicate directly with

main memory, the CPU would only need to take an interrupt and,

possibly, perform a memcpy (although with an interface with

hardware RDMA like Infiniband, the copy may not be necessary).

In our testing, we found that the time required by memcpy was

essentially constant for blocks between 112 and 4080 bytes (~7µs

when the data must come from main memory). Figure 21 shows

the effective speedup when the CPU time of processing of a mes-

sage is reduced to just the time of a memory copy. Unfortunately,

for the purposes of this speculative work we were unable to test

our system on a system with a tightly coupled FPGA. More de-

tails of our attempts are discussed in Section 6.4.3.

2 Note that in our example tree structure the only case where less

than four bytes are consumed during a clock cycle occurs when

the member m_eType of the class Object is read.

16

Figure 21: Speedup in Terms of CPU Load (assuming 7 µs

memcpy)

6.4.2 Multiple Deserializer Units
As already pointed out in Section 5.3.6, the entire design uses

22% of the total chip area. The synthesis tool reports an estimate

of 16% for the Deserializer unit alone. Hence, in theory, from a

resource perspective, 6 Deserializer units can be instantiated on

the chip. Multiple units directly lead a linear scale out in through-

put. However, with an increased chip density it is also more diffi-

cult for the Place & Route tool to find a circuit that meets the

given timing constraints. If synthesis fails, the timing require-

ments have to be relaxed, e.g., by reducing the clock frequency of

the Deserializer.

The design can also be scaled out to multiple FPGA chips on a

multi-chip FPGA board such as the BEE3 board(John D. Davis

2009) which features four XC5VLX110T FPGAs (the same type

as used for this work).

6.4.3 Alternative Attachments
The FPGA access times T’receive and T’send depend on the attach-

ment of the FPGA. Besides Ethernet attachment there are also

additional methods to connect a FPGA to an existing computer

system. The most promising approaches connect the FPGA to the

PCI Express (PCIe) or directly the HyperTransport or Frontside

Bus. While these approaches may result in better performance

numbers, i.e., lower communication overhead to the CPU through

the tighter coupling, the complexity and the engineering effort for

a prototype is significantly higher than for the Ethernet attach-

ment.

For reference we compare the communication overhead of a very

early PCIe attachment prototype with a connection through Ether-

net. As before, we measured the round trip time of a ping/pong

request. For PCIe we model a round trip by a write operation

followed by a read on the PCI Express Bus. For this experiment

we use the same XUPV5 board and plug it into System A. As a

PCI Express endpoint implemented on the FPGA we use the

publically available soft-IP core [12] developed at Microsoft

Research Redmond. Figure 22 shows the median value of the

round trip times for different payload sizes. As it can be seen from

the graph the communication overhead is more than 2× larger for

the PCI Express attachment. The low performance is due to the

current architecture of the device driver for Windows. In general,

the PCI Express solutions should provide a significantly better

performance number than the Ethernet attachment. Currently, the

PCIe solution is only used as a working prototype that provides

access to an FPGA via PCI Express.

Figure 22: Comparison Round Trip Time Ethernet Attach-

ment and PCIe Prototype

7. GENERATION OF DESERIALIZER

CIRCUITS
In this section we briefly outline how the Deserializer IP-core

might be automatically configured for different object structures.

We also outline how the serialization protocol for existing C++

code could look like.

7.1 Type-dependent Configuration of the De-

serializer
The pseudo code of the Finite State Machine that drives the Dese-

rializer is shown in Section 5.3.2. The type-dependent part of the

pseudo code is shown shaded in gray. For this paper the code was

created manually. This code clearly depends on the wire format as

well as the object layout on the heap.

The object layout, however, not only depends on the C++ source

code but also on the compiler settings, e.g., command line options

such as /ZpX, the pragma #pragma pack or compiler directives

such as __declspec(align(X)). Thus, identifying the object

layout needs actual support by the compiler. For example in Visu-

al Studio C++ compiler the command line option

 /d1reportAllClassLayout or

 /d1reportSingleClassLayoutMyFooBarClass

instructs the compiler to dump the class layout of all or a single

class. It generates ASCII output that then would have to be

parsed. For GCC a similar option –fdump-class-hierachy can be

used.

Once the layout, i.e., the offset and the size of the members, has

been extracted it needs to be combined with the size and the order

on the wiring format. For example, a character the m_eType enum

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000

Size of object structure on heap [bytes]

Overall Speedup
0

50

100

150

200

250

300

350

400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000R
o

u
n

d
 T

ri
p

 T
im

e
 (

m
e

d
ia

n
)

[
s]

Payload Size [bytes]

FPGA through Ethernet [ms]
FPGA through PCIe [ms]

17

of the Object class is represented as 32-bit double-word in memo-

ry while the presentation in the wiring format (for efficiency

reasons) may consist of a single byte.

7.2 Object Serialization in C++
There are different libraries available that implement object seria-

lization for C++ structures. For example, the widely-used C++

Boost Library or the s11n Library that is released as Public Do-

main code. The approach chosen in those libraries is similar to the

one shown in Section 3.1.

Essentially, a method has to be defined for each serializable class

that saves all (non-transient) the members, i.e., members that

contribute to the state of the class and have to be kept. In the class

diagram in Figure 2 this method is called write. In Boost the

library is called serialize. In contrast to serialization in a managed

environment such as Java or .NET explicit code for serialization

needs to be added.

Note that the current wire format is a simple binary format. The

advantage is its efficiency. However, a significant disadvantage of

the format is that it is not self describing. Hence, the serialization

order in the manually added code has to correspond to the confi-

guration of the Finite State Machine in the Deserializer. In the

Boost this problem can be avoided as the overloaded & operator in

the serialize method is used for both storing and loading the class

members. Unfortunately, this is not possible in this case as two

different code bases are involved (C++ and HDL).

Another approach could consist of a high level description, e.g.,

annotation in C++ comments, and a pre-processor that parses

these annotations and creates the serialization code, i.e., the im-

plementation of the write method. Then, the order and the C++

types are known and together with the object layout information

of the C++ compiler the Verilog code of the type-dependent part

of the Deserializer Finite State Machine can be generated auto-

matically.

In principle, it is probably also possible to modify the Deserializer

that it can operate on a self describing wiring format. This would

result in an additional indirection for each edge in the resulting

automaton.

8. CONCLUSION
In this work we investigate whether deserialization of object

structures can be done on FPGAs. The goal is the recreate the

heap representation of complex object structures from the seria-

lized form in a wiring format. The results from a simple proto-

type and an example data structure indicate that deserialization

indeed is possible on FPGAs. We compare deserialization on an

FPGA circuit with a traditional software implementation. For the

actual processing we obtain a speedup factor of 9.

We measured the overall processing time obtained when connect-

ing the FPGA board to a desktop PC through a gigabit Ethernet

interface. Deserialization requests are sent from the desktop PC

and deserialized objects written back to the heap memory. For

simplicity, we implemented the communication using raw Ether-

net frames. When considering communication costs, the overhead

further reduces the speedup to a factor 2×.

Clearly, the Ethernet attachment is not the most efficient way to

connect an FPGA to a host system. Alternative approaches such

as FPGA connected to the PCI Express, HyperTransport or Front-

side Bus can reduce the communication overhead. However, these

approaches are challenging and more involved from an engineer-

ing perspective. So far, the PCI Express attachment developed at

Microsoft Research Redmond is far from optimal and has an even

lower performance than the Ethernet attachment.

The overall 9× speedup of the processing is an upper bound, i.e.,

the best achievable speedup. However, offloading deserialization

to the FPGA can reduce the CPU load and, thus, potentially in-

crease throughput. Additionally, throughput can be further in-

creased by instantiating multiple Deserializer units multiple, either

on the same FPGA chip or distributed over multiple chips.

Offloading time consuming tasks such as deserialization (and

similarly serialization) to an FPGA can provide a solution to the

increasing costs of inter-process communication in multi-core

systems. This becomes even more important as future massively

parallel multi-core systems no longer provide the abstraction of a

shared memory space and use explicit message passing instead. In

this case, exchanging data structures require serialization. Of-

floading may allow the use of RPCs in settings where convention-

al serialization on a CPU core is prohibitive due to the overhead

involved.

9. BIBLIOGRAPHY
Abhishek Mitra, Marcos R. Vieira, Petko Bakalov, Walid Najjar,

Vassilis J. Tsotras. "Booting XML Filtering with a Scalable

FPGA-based Architecture." CIDR. Monterey, CA, 2009.

Alessandro Forin, Behnam Neekzad, Nathaniel L. Lynch. "Giano:

The Two-Headed System Simulator." Microsoft Research,

Redmond, 2006.

Amdahl, Gene. "Validity of the Single Processor Approach to

Achieving Large-Scale Computing Capabilities." AFIPS

Conference Proceedings. 1967. 483-485.

Bittner, Ray. "Bus Mastering PCI Express in an FPGA."

FPGA'09. Monterey, CA, 2009.

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.

Design Patterns: Elements of Reusable Object-Oriented Software

. Addison-Wesley, 1994.

John D. Davis, Charles P. Thacker, Chen Chang. "BEE3:

Revitalizing Computer Architecture Research." Microsoft

Research, Mountain View, 2009.

Kilts, Steve. Advanced FPGA Design: Architecture,

Implementation, and Optimization. Wiley-IEEE Press, 2007.

Laurus, James. "Spending Moore's Dividend." Communications of

the ACM 5(52), 2009: 62-69.

Ling Zhuo, Viktor K. Prasanna. "High Performance Linear

Algebra Operations on Reconfigurable Systems."

Supercomputing. Seattle, WA, 2005.

Olaf O. Storaasli, Dave Strenski. "Exploring Accelerating Science

Applications with FPGAs." RSSI. Urbana, IL, 2008.

Rene Mueller, Jens Teubner, Gustavo Alonso. "Streams on Wires

- A Query Compiler for FPGAs." VLDB. Lyon, France, 2009.

18

Tim Oliver, Bertil Schmidt, Douglas Maskel. "Hyper Customized

Processor for Bio-Sequence Database Scanning on FPGAs."

FPGA. Monterey, CA, 2005.

Tom van Court, Yongfeng Gu, Martin C. Herbordt. "FPGA

Acceleration of Rigit Molecule Interactions." FCCM. Napa, CA,

2004.

Tukey, John Wilder. Exploratory Data Analysis. Addison-Wesley,

1977.

