
Programming Asynchronous Layers with CLARITY∗

Prakash Chandrasekaran
Chennai Mathematical

Institute
prakash@cmi.ac.in

Christopher L. Conway
New York University

cconway@cs.nyu.edu

Joseph M. Joy
Microsoft Research India

josephj@microsoft.com

Sriram K. Rajamani
Microsoft Research India

sriram@microsoft.com

ABSTRACT
Asynchronous systems components are hard to write, hard
to reason about, and (not coincidentally) hard to mechan-
ically verify. In order to achieve high performance, asyn-
chronous code is often written in an event-driven style that
introduces non-sequential control flow and persistent heap
data to track pending operations. As a result, existing se-
quential verification and static analysis tools are ineffective
on event-driven code.

We describe clarity, a programming language that en-
ables analyzable design of asynchronous components. clar-
ity has three novel features: (1) Nonblocking function calls
which allow event-driven code to be written in a sequen-
tial style. If a blocking statement is encountered during
the execution of such a call, the call returns and the re-
mainder of the operation is automatically queued for later
execution. (2) Coords, a set of high-level coordination primi-
tives, which encapsulate common interactions between asyn-
chronous components and make high-level coordination pro-
tocols explicit. (3) Linearity annotations, which delegate co-
ord protocol obligations to exactly one thread at each asyn-
chronous function call, transforming a concurrent analysis
problem into a sequential one.

We demonstrate how these language features enable both
a more intuitive expression of program logic and more effec-
tive program analysis—most checking is done using simple
sequential analysis. We describe our experience in develop-
ing a network device driver with clarity. We are able to
mechanically verify several properties of the clarity driver
that are beyond the reach of current analysis technology ap-
plied to equivalent C code.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.2.4 [Software Engineering]: Software/Program
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Verification; D.3.3 [Programming Languages]: Language
Constructs and Features

General Terms
Languages, Reliability, Verification

Keywords
Concurrency, Asynchronous components, Event-driven pro-
gramming, Static analysis, Design for analyzability

1. INTRODUCTION
High-performance systems components are often written

using asynchronous layers. Rather than waiting for a time
consuming operation to complete, a component typically
executes whatever portion of the operation it can without
blocking, records the progress of the operation, and returns
to the caller with status “pending.” The remainder of the
operation executes at a later time. When the operation is
finished—perhaps after being blocked and resumed in sev-
eral thread contexts—a callback function signals completion.

This kind of asynchronous systems programming is usu-
ally done in an event-driven style which is tailored for perfor-
mance rather than analyzability: the stages of an operation
are “manually scheduled,” often by placing them in several
different functions which are unrelated in the call graph;
asynchronous operations achieve low synchronization over-
head using low-level primitives like locks, semaphores, and
completion ports; component state is managed manually us-
ing heap-allocated data structures like queues. This style of
programming leads to efficient implementations, but is dif-
ficult and error prone.

Recently, there has been progress in using static analysis
tools for error detection [13, 4, 18, 11]. These tools can per-
form scalable whole-program inter-procedural analysis for
sequential programs on properties that do not involve rea-
soning about the heap, such as locking discipline and the safe
initialization and de-allocation of pointers from the stack.
Once an object is put into a heap data structure, such as
a linked list or queue, these techniques lose precision and
become ineffective.

Event-driven programs are non-sequential, asynchronous,
and maintain state in the heap for most operations. Thus,
most current static analysis tools can check only limited
properties of such programs. An enormous amount of re-
search effort has gone into improving the precision and scal-
ability of static analysis for concurrent programs and heap



data, but the performance of these analyses continues to be
a significant challenge. This paper approaches the problem
from another direction: Can we write event-driven programs
differently, so that they become more analyzable?

We introduce a programming language, clarity, which
enables analyzable design of asynchronous components.
clarity has three novel features: nonblocking function
calls, high-level coordination primitives, and linearity an-
notations.
Nonblocking function calls. Traditional programming
languages have two types of calls: synchronous and asyn-
chronous. In synchronous calls, the caller blocks until the
callee finishes—if the callee has to wait for resources to be-
come available, the caller waits as well. In asynchronous
calls (e.g., POSIX fork/exec), the call returns immediately
and the body of the called function runs in a separate thread.
clarity introduces a nonblocking call, a new type of asyn-
chronous call that is particularly suited for writing event
driven programs. In a nonblocking call, the caller blocks so
long as the callee does not—if the callee executes a blocking
statement, the call returns and the remaining part of the
computation is automatically queued for later execution.

The behavior of a nonblocking call can be simulated in C
by returning a special “pending” value and manually queu-
ing the remainder of the computation. This is the strategy
followed by many asynchronous components. clarity al-
lows the programmer to write each operation in a sequential
fashion and choose between blocking and non-blocking be-
havior at the call site. The programmer and analysis soft-
ware can reason about the call as though it is synchronous,
while the clarity compiler transforms the call into asyn-
chronous, event-driven code that uses queues to track the
state of pending operations.
Coords. clarity provides a set of high-level coordination
primitives, or coords, which encapsulate common interac-
tions between asynchronous components; logical operations
are defined sequentially, using coords and event-based com-
munication to indicate synchronization requirements. Each
coord has a protocol declaration defining the correct usage
of its coordination interface. A sequential static analysis en-
sures that clarity code using the coord follows the protocol
along all code paths.

Coords can be thought of as an extension of Hoare and
Brinch Hansen’s monitors [19, 8] to asynchronous programs
with nonblocking calls. Protocol information allows coords
to be used both to avoid race conditions and to check for
deadlocks.
Linearity annotations. Code annotations in clarity del-
egate protocol obligations to exactly one thread at each
asynchronous function call, making the behavior of an oper-
ation with respect to each coord effectively sequential. Using
the coord protocol, a clarity program can be analyzed us-
ing simple compositional reasoning: first, we can check that
the operation follows the protocol, using a purely sequential
analysis; then, assuming that all operations follow the pro-
tocol, we can verify that the implementation of the coord
does not have deadlocks or assertion violations.

These primitives and design decisions make clarity pro-
grams easier to analyze—we have checked properties of
clarity programs using the model checking tools slam [4]
and zing [2] that cannot be checked using existing tech-
niques directly on event-driven C programs. In addition,
we believe that easy mechanical analysis is correlated with

STATUS SendPacket(Adapter *a, Packet *p) {
if( a->AdapterState == NicPausing )

return STATUS_FAILED;
INC_REF_CNT(a);
AcquireSpinLock(&a->sendLock);
if( HW_IS_AVAIL(a->pHwCsr) ) {

Status = NICSendPacket(a, p);
ReleaseSpinLock(&a->sendLock);
CompletePacket(a, p, Status);
DEC_REF_CNT(a);

} else {
Status = STATUS_PENDING;
ListAddEnd(a->pSendList, p);
ReleaseSpinLock(&a->sendLock);

}
return Status;

}

void DoPendingSend(Adapter *a) {
assert( HW_IS_AVAIL(a->pHwCsr) );
AcquireSpinLock(&a->sendLock);
Packet *p = ListRemoveHead( a->pSendList );
Status = NICSendPacket(a, p);
ReleaseSpinLock(&a->sendLock);
CompletePacket(a, p, Status);
DEC_REF_CNT(a);

}

STATUS Pause(Adapter *a) {
if( a->AdapterState == NicPausing )

return STATUS_FAILED;
if(REF_CNT(a) == 0) {

a->AdapterState = NicPaused;
PauseComplete(a);
return STATUS_SUCCESS;

}
else {

Status = NicPausing;
return STATUS_PENDING;

}
}

void ReleaseBuffers() {
...
if ( a->AdapterState == NicPausing

&& REF_CNT(a) == 0 ) {
a->AdapterState = NicPaused;
PauseComplete(a);

}
...

}

Figure 1: Sending packets and pausing in a C driver

easy human comprehension. In our experience, we find that
clarity programs are far easier to understand than event-
driven programs written in C.

2. OVERVIEW
We illustrate the difficulties of analyzing event-driven sys-

tems code using code snippets from a network miniport
driver. The code in Figure 1 is modeled on the E100BEX
driver included in the Microsoft Windows Driver Develop-
ment Kit and demonstrates typical interactions with the
Windows network driver API. The code has been abridged
and identifiers changed to simplify the presentation.

The function SendPacket transmits the packet p via the
network adapter a. The function is able to transmit the
packet (by calling NICSendPacket) only if the hardware is
available; otherwise, it simply adds the packet to the queue
a->pSendList and returns STATUS_PENDING. It is not obvi-



STATUS SendPacket(Adapter *a, Packet *p) {
if( !(a->sendGate->Enter()) )

return STATUS_FAILED;
waitfor( HW_IS_AVAIL(a->pHwCsr), [],

STATUS_PENDING );
Status = NICSendPacket(a, p);
CompletePacket(a, p);
a->sendGate->Exit();
return Status ;

}

STATUS Pause(Adapter *a) {
if( !(a->sendGate->Close()) )

return STATUS_FAILED;
waitfor( a->sendGate->IsEmpty(), [a->sendGate->e],

STATUS_PENDING );
a->AdapterState = NicPaused;
PauseComplete(a->AdapterHandle);
return STATUS_SUCCESS;

}

Figure 2: Sending packets and pausing in clarity

ous what happens to this packet after it has been added
to this queue, since there is no control dependency between
SendPacket and the code that processes the queue. Pack-
ets from this queue are removed and transmitted at several
places in the driver code—the logical operation“send packet”
is “manually scheduled” across several functions. One such
example is shown in function DoPendingSend.

A property we might want to check is that every non-
failing call to SendPacket is followed by a matching call
to CompletePacket. In the SendPacket code, this readily
holds if the hardware is immediately available (the second
if branch). If it is not, the situation is more complicated:
the packet is put into a queue from which it is retrieved
and completed at a later time, in another function. Because
of the difficulty of tracking heap objects and non-sequential
control flow, sequential error detection tools are unable to
check if every packet is completed along all execution paths.

The function Pause in Figure 1 demonstrates another
difficulty—ad-hoc coordination between asynchronous oper-
ations. This function is the entry point for a “pause” op-
eration, which needs to wait until all outstanding sends are
finished before calling PauseComplete. The driver maintains
a reference count, REF_CNT(a), which tracks the number of
outstanding sends in progress. In several unrelated places in
the code, inside and outside the Pause function, the refer-
ence count is checked, updated, and PauseComplete is called
(e.g., in the function ReleaseBuffers). Suppose we wish to
automatically check that the pause operation coordinates
with all the other operations correctly. This is possible only
by doing a global analysis that considers all possible inter-
leavings between pause and other operations, taking into
account all of the implicit control dependencies, the refer-
ence counts, and the heap objects involved. Such a check is
beyond the reach of today’s analysis technology.

Figure 2 shows a clarity implementation of the send and
pause operations. The function SendPacket now represents
the entirety of the logical operation of sending a packet.
Inside SendPacket, clarity’s waitfor primitive is used to
logically wait until the hardware becomes ready and then
transmit the packet. Calls to the SendPacket function from
the operating system are nonblocking—if the hardware is
not ready, the caller is returned the value STATUS_PENDING

immediately (the third argument to waitfor); the remain-

coord gate
{

/* Sent when a closed gate is empty. */
event e;
/* Called by a "client" thread to enter the gate.

Returns false if the gate is closed. */
bool Enter();
/* Called by a "client" thread to exit the gate.

If the gate is closed and this is the last thread
to exit the gate, the event e is sent by Exit(). */

void Exit();
/* Called by a "control" thread to close the gate.

Returns false if the gate is already closed.
If gate is empty, event e is sent by Close(). */

bool Close();
/* Called by a "control" thread waiting

for the gate to clear. */
bool IsEmpty();

protocol{
enum state {init,s1,s2,done,final} = init;
Enter.return { /* function exit transition */

if(state==init && $ret) state = s1;
elseif (state==init && !$ret) state = done;
else abort();

}
Exit.return { /* function exit transition */

if(state==s1) state= done;
else abort();

}
Close.return { /* function exit transition */

if(state==init && $ret) state = s2;
else if(state==init && !$ret) state = done;
else abort();

}
waitfor { /* invocation transition */

if(state==s2 && $1 =~ ‘IsEmpty()‘ && $2 =~ [e])
state = done;

else abort();
}
ThreadDone { /* thread exit transition */

if (state!=done && state!=init) abort();
}

}

Figure 3: Coord for gate

der of the computation is automatically converted into a
closure and put into a queue. The semantics of the clarity
code are similar to those of the C code in Figure 1, but the
programmer does not have to manually schedule the code or
manage the persistent state. Moreover, a sequential analy-
sis tool can now easily check that every packet is completed
on all execution paths before the SendPacket function exits
without doing any heap analysis.

clarity uses higher level abstractions called coords to
express coordination between different asynchronous opera-
tions. The code in Figure 2 uses sendGate, an instance of the
gate coord, the interface of which is given in Figure 3. The
interface has four functions: the first two, Enter and Exit,
are used by “client” threads when they begin and end opera-
tions that are controlled by the gate; the second two, Close
and IsEmpty, are used by “control” threads. Close is used
to prevent new operations from beginning and IsEmpty is
used to check whether pending operations have completed.
The gate coord models the “asynchronous rundown” of a
collection of processes—a common pattern in asynchronous
systems programming.



In Figure 2, all send operations first call Enter() and
then call Exit() before returning. The function Pause calls
Close(), then waits for IsEmpty() to become true and re-
turns. Unlike Figure 1, there is only one place in the code
(inside the body of Pause) where the pause operation is com-
pleted. At runtime, Pause may need to wait asynchronously
for pending send operations to complete, but the program-
mer does not have to worry about these details.

Significantly, clarity enables the programmer to make
the high-level contract between Pause and the other opera-
tions explicit. Consequently, it is possible to perform simple
compositional analysis automatically and check that the co-
ordination has been implemented and used properly.

Each coord declaration is required to specify the sequence
of calls by which every logical thread accesses the coord.
The protocol declaration is given as a slic property [5].
The protocol declares a set of variables and then defines
transitions caused by triggers, e.g., a function call return, the
evaluation of a waitfor statement, or thread termination. A
transition may inspect and update the values of the protocol
variables. A call return transition may inspect the return
value using the $ret variable. A waitfor or call transition
may inspect the argument list using positional variables $1,
$2, etc. A transition to an error state is represented by a
call to abort.

In the case of the gate coord, the protocol declaration
(Figure 3) states that the thread either: (1) calls Enter

first and, if the call returns true, then calls Exit (a “client”
thread), or (2) calls Close first and, if the call returns true,
then waits until IsEmpty() returns true (a“control” thread).
Using the protocol specification, a gate implementation can
be compositionally checked for correct concurrent behavior:
assuming that threads using the gate obey the protocol, we
can verify that the gate implementation is deadlock-free.

We can check that the SendPacket and Pause threads
in Figure 2 satisfy the protocol for gate by using a per-
thread sequential analysis. The compositional reasoning in
this case is simplistic, since no threads are created dynam-
ically. If new threads are created, compositional analysis
of coord protocol conformance becomes more complicated.
We make a particular design choice—every coord protocol
instance in progress needs to be handed off to exactly one
of the two threads at each asynchronous call; the hand-off is
specified using linearity annotations. We illustrate this with
another example.
Network File Server. Consider the network file server
shown in Figure 4. To read and transmit a large file, the
file server launches a set of parallel thread, one to read each
block of the file. The threads coordinate to send the blocks
in sequence over the network. The code creates the “reader”
threads using a fork call to read_block. It uses fileChute,
an instance of the chute coord, to do the necessary synchro-
nization.

The interface for the coord chute is shown in Figure 5.
The protocol declaration specifies that each thread using
the chute must: first call Enter, which returns an integer
token k; then call waitfor(IsMyTurn(k),[e]), where e is
the event field of the chute; and, finally, call Exit. This
protocol can be understood as a variation of Lamport’s bak-
ery algorithm [22] where the thread may enter a non-critical
section after “taking a number” (entering the chute).

Unlike gate, there is only one correct usage pattern for a
chute—there is no distinction between“client”and“control”

void read(FILE *fp, int n) {
chute fileChute;
for(i = 0; i < n; i++) {

/* Enter the chute before spawning
thread, to ensure ordering. */

int token = fileChute.Enter();
/* The annotation @fileChute in the call below

indicates that the remainder of the
protocol in chute fileChute will be
carried over by the callee */

fork read_block(fp,i,token,&fileChute)@fileChute;
}

}

void read_block(FILE *fp, block i, int token,
chute *fileChute)

{
FileBlock fb;
fb = fs_read(fp,i);
/* Synch before sending block on the network.

We omit the return value argument, since the
return type is void. */

waitfor( fileChute->IsMyTurn(token), [fileChute->e] );
/* Send and exit. */
net_send(fb);
fileChute->Exit();

}

Figure 4: Network file server with asynchronous
reading and serialized sending

coord chute
{

/* Sent when a thread exits. */
event e;
/* Called by a thread to "get on line"

in the chute. Returns an integer token
(the thread’s "ticket"). */

int Enter();
/* Called by a thread to check if it is

"first in line" given its token. */
bool IsMyTurn(int);
/* Called by a thread to exit the chute.

Sends the event e. */
void Exit();

protocol{
enum state {init,s1,s2,done,final} = init;
int k;
Enter.return { /* function exit transition */

if(state==init) { k = $ret; state = s1; }
else abort();

}
waitfor { /* invocation transition */

if(state==s1 && $1 =~ ‘IsMyTurn(k)‘ && $2 =~ [e])
state=s2;

else abort();
}
Exit.return { /* function exit transition */

if(state==s2) state=done;
else abort();

}
ThreadDone { /* thread exit transition */

if(state!=done && state!=init) abort();
}

}

Figure 5: Coord for chute



void read(FILE *fp, int n) {
chute fileChute;
read_block(fp,0,n,&fileChute);

}

void read_block(FILE *fp, int i, int max,
chute *fileChute)

{
FileBlock fb;
if( i==max ) return;
/* Enter the chute before spawning thread, to

ensure ordering. */
int token = fileChute->Enter();
/* parallel call to the next file block reader. */
fork read_block(fp,i+1,max,fileChute);
/* asynchronous part, can execute without any

ordering */
fb = fs_read(fp,i);
/* Synch before sending block on the network. */
waitfor( fileChute->IsMyTurn(token), [fileChute->e] );
/* Send and exit. */
net_send(fb);
fileChute->Exit();

}

Figure 6: Alternate, recursive network file server

threads. Note that Exit does not take a token argument—
the protocol forbids any thread to call Exit except when
IsMyTurn returns true. Note also that the protocol forbids
a thread from trying to “spoof” a token and steal a turn—
for each thread the argument to IsMyTurn must match the
return value of Enter.

Note that the thread executing read in Figure 4 calls
Enter, but never calls IsMyTurn or Exit; likewise, each
read_block thread calls IsMyTurn and Exit without first
calling Enter. How, then, can we verify the chute protocol
using sequential reasoning?

Whenever a logical thread makes an fork call, it effec-
tively creates two logical threads of execution. We require
that each coordination protocol in progress be handed off to
exactly one of the two threads; each fork call is annotated
with those instances of the protocol that will be handled by
the callee (i.e., the new thread). Note that the fork call to
read_block in Figure 4 is annotated with @fileChute. The
annotation indicates that the callee, read_block, is respon-
sible for completing the protocol for fileChute.

Since exactly one logical thread is responsible for carrying
out the remainder of the protocol at every asynchronous
call, the sequential analysis merely follows one of the two
continuations at the call and ignores the other, depending
on which instance of the protocol is currently being analyzed
(see Section 5).
Recursive Network File Server. Our final example is
a recursive implementation of the network file server shown
in Figure 6. Instead of generating “readers” from a “master”
thread, the recursive implementation has a chain of recursive
fork calls to read_block; each new “reader” thread spawns
its own successor.

Note that the calls to Enter and Exit now always happen
in the same thread context. Note also that the fork call to
function read_block in Figure 6 does not contain the an-
notation @fileChute. This indicates that the calling thread
continues to be responsible for the protocol on fileChute.

Again, checking if each thread follows the protocol can be
done using purely sequential analysis, one thread at a time.

Separately, the correctness of the chute implementation can
be established once and for all, assuming that all the client
threads conform to the protocol.

3. RELATED WORK
The merits of the event-driven programming style have

been the subject of controversy for decades (e.g., [24, 31,
23, 37]). Recent work, e.g., the Capriccio project [38] and
Adya et al [1], has focused on capturing the performance
of the event-driven style in a more thread-like idiom. Li
and Zdancewic have demonstrated how this approach can
be incorporated into a language like Haskell [27]. Some
of the techniques presented in the above papers (e.g., [37,
38]) could be used to optimize the clarity compiler and
runtime. However, none of the above efforts address inter-
operation coordination in a way that allows for simple com-
positional reasoning.

The Message Passing Interface (MPI) is a widely used
event-driven API for parallel computing [28]. Siegel and
Avrunin [34] describe techniques for model checking MPI
programs which we believe could be applicable to verifying
coord implementations. Strout et al. [36] formulate a data-
flow analysis framework for MPI programs. Our emphasis
here is on simplifying the analysis problem for event-driven
code.

Lee [26] discusses the difficulties of writing correct con-
current software using the threaded model and calls for the
use of design patterns for concurrent computation (cf. [25,
32]). We believe coords are exactly these kinds of design pat-
terns. To our knowledge, patterns like gate and chute have
not previously been described in the literature. The coords
we present here are inspired by a concurrency library devel-
oped by one of the authors—they are design patterns derived
from the folk wisdom of systems programmers. clarity is
an attempt to give language-level support to these abstrac-
tions.

The language primitives of clarity used for sending
and waiting for events are derived from Hoare and Brinch
Hansen’s monitors [19, 8] and from process calculi such as
CCS [29], CSP [20], and the π-calculus [30]. The distinctive
feature of clarity is the compositional analysis enabled by
protocol specifications on coords and the linear hand-off at
asynchronous calls.

Coord protocols are similar to De Alfaro and Henzinger’s
interface automata [12], but are restricted to describing only
the input constraints of a single component. Halbwachs et
al. [16], Erlingsson and Schneider [14], and Sekar et al. [33]
describe protocol enforcement through runtime monitoring.
Coord protocols are intended to provide purely static check-
ing.

Simpler programming models for concurrency have been
tried before in specialized domains. In the hardware domain,
synchronous programming languages like Esterel [6] enforce
deterministic concurrency by design and statically schedule
the concurrent operations. For cache coherence protocols,
Teapot presents a domain specific high-level language that
can be both analyzed using model checking and compiled
to an implementation [9]. Languages like Cilk [7] and Mul-
tiLisp [17] include parallel execution primitives similar to
fork, but have focused primarily on efficient multiprocessor
implementations rather than analyzability.



Stmt ::= (Send | CallStmt | WaitFor) ;
Send ::= (send | sendall) EventId
CallStmt ::= Fork | NonBlock | Block
Fork ::= fork CallExpr Annot?
Nonblock ::= (Lvalue =)? nonblock CallExpr Annot?
Block ::= (Lvalue =)? block? CallExpr
CallExpr ::= FuncId ( (CExpr List)? )
Annot ::= @ ProtocolId List
WaitFor ::= waitfor( WaitCond List (, CExpr)? )
WaitCond ::= (LabelId :)? CExpr , [ (EventId List)? ]
A List ::= A (, A)∗

Figure 7: clarity syntax

4. SYNTAX AND SEMANTICS
We give the syntax and semantics for the new language

features of clarity.
Syntax. clarity is an extension of ANSI/ISO C [21].
clarity’s extensions to C syntax are given in Figure 7.
The terminal symbols EventId, FuncId, ProtocolId, and La-
belId represent alpha-numeric identifiers with event, func-
tion, protocol, and label types, respectively. The terminal
Lvalue represents a standard C lvalue expression. The ter-
minal CExpr represents a standard C expression.

A clarity Stmt may appear anywhere a statement is
allowed in standard C (e.g., in the bodies of loops and
if-then-else statements). The new statement types are
Send, CallStmt, and WaitFor. Send statements (both send

or sendall) use an event identifier. There are three types
of call statements: Fork, Nonblock, and Block. Fork and
Nonblock calls can take an optional linearity annotation.
Block and Nonblock calls can assign their return value to
an optional Lvalue. Calls not specified as fork, nonblock,
or block are understood to be blocking by default. The
WaitFor statement uses an expression (a return value) and
a (non-empty) list of WaitCond records (wait conditions).
If the return type of the function in which the statement
appears is void, the return value may be omitted. A Wait-
Cond record is tagged using an optional wait label and uses
an expression (the wait predicate) and a (possibly empty) list
of event identifiers (wait events) enclosed in square brack-
ets. The label is used by the runtime to identify the wait
condition that enabled execution.
Semantics. We give a partial operational semantics for the
new statements and expressions in clarity. We omit the
semantics for sendall and waitfor statements with more
than one wait condition for space reasons. The full semantics
are presented in a technical report [10].

We write M(e) for the value of the expression e in memory
state M , as defined by the C semantics. We write false for
the value of the integer constant 0. We use ∪ for set union,
\ for set difference, ] for multiset sum, and {{a1, . . . , an}}
for a multiset of elements a1, . . . , an. We elide braces from
singleton sets and multisets when the meaning is clear.

Semantic rules are of the form C =⇒ D, representing the
evolution of the system from configuration C to configura-
tion D. A configuration is a tuple 〈M, E, Q, P 〉 representing
a system state with memory state M , set of global events
E, multiset of blocked threads Q, and multiset of active
threads P . A blocked thread is a tuple, 〈b, E, S, K〉, repre-
senting a thread that has blocked at a waitfor statement
with wait predicate b, wait events E, next statement S, and
continuation stack K. An active thread is a tuple, 〈S, K〉,
representing a thread that is currently executing with next

statement S and continuation stack K. A continuation stack
is either • (the empty stack) or a sequence k; K, where k is a
continuation and K is a continuation stack. A continuation
is either blk x.S (a blocking continuation) or nbl x.S (a non-
blocking continuation), where x is a program variable and S
is a program statement (or statement block).

Some of the semantic rules for clarity are given in Fig-
ure 8. We make several simplifying assumptions. First,
since clarity statements require only trivial intraprocedu-
ral control flow, we assume that each statement is of the
form S1; S2, where S1 is a clarity statement and S2 is an
arbitrary C statement. Second, we treat functions as if they
have no arguments. Function arguments can be handled as
assignments from actuals to formals; we assume that rules
not shown have evaluated these assignments, leaving only
the function invocation. Finally, we assume that rules not
shown reduce the arguments to return, send, and waitfor

from syntactic expressions to values, as necessary: we write
return v, send e, and waitfor r b E, where v and r are
arbitrary values, e is an event, b is a boolean expression,
and E is a set of events (the pair (b, E) represents a single
unlabeled wait condition). Rules for C language statements
not given are as in ANSI/ISO C.

A fork call creates a new running thread descriptor and
invokes the called function (Call-Fork). A blocking call
adds a blocking continuation (blk) to the stack (Call-Blk).
A nonblocking call adds a nonblocking continuation (nbl) to
the stack (Call-Nbl). Once the stack has been updated,
a called function f is expanded into the statement repre-
senting its body (Call). The behavior of the return state-
ment is independent of whether the stack has a blocking
or nonblocking continuation (Return-Blk and Return-
Nbl, respectively). When the stack is empty, the thread
exits (Return-Empty). The statement send e results in
the event e being added to the set of global events (Send).

The waitfor statement does not block if the wait pred-
icate evaluates to true and the wait events are available
(WaitFor-Sat). If the waitfor statement blocks, the be-
havior differs depending on whether or not there is a nbl
continuation on the stack. If all continuations on the stack
are blk continuations, the next statement and the stack
are added to the blocked process list—every function in
the call stack is blocked until the wait condition is sat-
isfied (WaitFor-Blk). If there is a nbl continuation on
the stack, the next statement and portion of the stack pre-
ceding the nbl continuation (the blocking prefix) are added
to the blocked process list, but the return value argument
to waitfor is passed to the nbl continuation and the non-
blocking caller remains active—control returns to the most
recent non-blocking context (WaitFor-Nbl). Note that the
return type of all of the functions in the blocking prefix must
match—this can be checked using a simple type analysis.
When the wait condition of a blocked thread descriptor is
satisfied, the thread consumes its wait events and moves
from blocked to running (Unblock).

When an external (i.e., non-clarity) caller invokes a
clarity function f, a new thread is created for f (Call-
Ext). When the thread blocks or exits, the caller receives
a return value, as if the call was nonblocking.

The semantics are nondeterministic—if a configuration
matches the left-hand side of more than one semantic rule,
the system may evolve according to any one of the matched
rules. Semantic rules are evaluated atomically. Although



〈M, E, Q, P ] 〈fork f(); S, K〉〉 =⇒ 〈M, E, Q, P ] {{〈S, K〉, 〈f(), •〉}}〉 (Call-Fork)

〈M, E, Q, P ] 〈x = block f(); S, K〉〉 =⇒ 〈M, E, Q, P ] 〈f(), (blk x.S); K〉〉 (Call-Blk)

〈M, E, Q, P ] 〈x = nonblock f(); S, K〉〉 =⇒ 〈M, E, Q, P ] 〈f(), (nbl x.S); K〉〉 (Call-Nbl)

〈M, E, Q, P ] 〈f(), K〉〉 =⇒ 〈M, E, Q, P ] 〈S, K〉〉, where S is the body of f (Call)

〈M, E, Q, P ] 〈return v, (blk x.S); K〉〉 =⇒ 〈M, E, Q, P ] 〈x = v; S, K〉〉 (Return-Blk)

〈M, E, Q, P ] 〈return v, (nbl x.S); K〉〉 =⇒ 〈M, E, Q, P ] 〈x = v; S, K〉〉 (Return-Nbl)

〈M, E, Q, P ] 〈return v, •〉〉 =⇒ 〈M, E, Q, P 〉 (Return-Empty)

〈M, E, Q, P ] 〈send e; S, K〉〉 =⇒ 〈M, E ∪ {e}, Q, P ] 〈S, K〉〉 (Send)

〈M, E1 ∪ E2, Q, P ] 〈waitfor r b E2; S, K〉〉, when M(b) 6= false =⇒ 〈M, E1\E2, Q, P ] 〈S, K〉〉 (WaitFor-Sat)

〈M, E1, Q, P ] 〈waitfor r b E2; S, k1; . . . ; kn; •〉〉, (WaitFor-Blk)

when ki = blk xi.S
′
i for 1 ≤ i ≤ n and (M(b) = false or E2 6⊆ E1) =⇒ 〈M, E1, Q ] 〈b, E2, S, k1; . . . ; kn; •〉, P 〉

〈M, E1, Q, P ] 〈waitfor r E2 b; S1, k1; . . . ; kn; (nbl x.S2); K〉〉, (WaitFor-Nbl)

when ki = blk xi.S
′
i for 1 ≤ i ≤ n and (M(b) = false or E2 6⊆ E1) =⇒ 〈M, E1, Q ] 〈b, E2, S1, k1; . . . ; kn; •〉, P ] 〈x = r; S2, K〉〉

〈M, E1 ∪ E2, Q ] 〈b, E2, S, K〉, P 〉, when M(b) 6= false =⇒ 〈M, E1\E2, Q, P ] 〈S, K〉〉 (Unblock)

〈M, E, Q, P 〉, when f is called externally =⇒ 〈M, E, Q, P ] 〈f(), •〉〉 (Call-Ext)

Figure 8: Semantic rules for clarity programs.

more than one process may execute in parallel, the set of
global events and the blocked and active thread lists will
remain consistent. However, the memory state component
of a configuration is shared between processes: race condi-
tions can occur if processes access the same location without
using a safe coordination scheme.

We assume that the thread scheduler is fair, i.e., that a
blocked thread whose wait condition is infinitely often satis-
fied will eventually move to the active thread list (by applica-
tion of Unblock) and that every active thread will eventu-
ally execute (by evaluation of its next statement). Note that
this does not preclude threads blocking indefinitely: there
is no guarantee that a wait condition will ever be satisfied
(or, indeed, is satisfiable). It is up to the programmer to
design the clarity program in such a way that deadlock
is avoided and wait conditions are eventually satisfied. The
use of coords and clarity’s static analysis can help avoid
many concurrency errors.

5. STATIC ANALYSIS
The primary goal of clarity’s static analysis is to check

if coords are implemented and used correctly. We want to
check that assertions in the implementation of the coord
never fail during execution and that no deadlocks can occur
due to the use of coords (i.e., no thread waits for an event
that is never sent). One way to verify this is to run a model
checker on all of the threads together with the coord imple-
mentation and explore the states that arise from all possible
interleavings. This approach scales poorly. We exploit the
protocol specifications of coords to do compositional analy-
sis: (1) Using sequential analysis (ignoring concurrency), we
use the slam tool [4] to check that each thread of execution
uses coords according to each coord’s protocol; (2) Assum-
ing that each thread obeys the coord’s protocol, we use the
zing model checker [2] to check that the implementation of
the coord is correct.

5.1 Sequential analysis
Coord protocol declarations are transformed into slic

safety properties for input to slam. Recall that we require

each coordination protocol in progress to be handed off to
exactly one of the two threads at each fork call site. This
enables the static analysis to transform a clarity program
with annotations at the fork calls to a nondeterministic
sequential program. The transformation merely picks one
of the two continuations at each parallel call depending on
which protocol is currently being analyzed.

This transformation assumes that linearity annotations
are consistent with the code. We assume that the program-
mer does not continue to use a coord after a hand-off to
another thread, either explicitly or through an alias. We
can use existing techniques to enforce linearity [35, 15].

In sequential type-state analyzers such as slam, a type-
state property is checked independently on every statically
identifiable distinct instance of the given type. There is
an internal variable called curfsm that holds the current
instance being checked. curfsm is equal to NULL until an
instance is detected, e.g., at a variable declaration.

We transform a clarity program P to a sequen-
tial program C(P ) such that we can analyze C(P ) in-
stead of P for conformance to the protocol specification
ϕ. The transformation syntactically translates every call
fork foo(args)@c1, . . . , cn to the program segment shown
in Figure 9. We use if(*) to represent a nondeterministic
choice. In the if branch, the assume statement allows the
analysis to proceed only if curfsm is NULL or curfsm is equal
to one of the annotated values c1, c2, . . . , cn. Note that the
call to foo is a regular sequential call in the transformed
program and not a fork call. After the call returns, the
statement assume(false) forces the analysis to stop. In the
else branch, the assume statement allows the analysis to
proceed only if curfsm is NULL or curfsm is not equal to any
of the values c1, c2, . . . , cn.

We explain this transformation by considering three cases:

1. Suppose curfsm is equal to one of the annotated val-
ues, say c1. This means that the protocol obligations
should be satisfied by the callee. First, consider the if

branch. Here, the assume statement evaluates to true.
Thus the analysis proceeds to the call to foo. After
executing a synchronous call to foo, the transformed



if(*) {

assume( curfsm == NULL ∨
hW

1≤i≤n curfsm == ci

i
);

foo(args);
ThreadDone();
assume (false);

} else {

assume( curfsm == NULL ∨
hV

1≤i≤n curfsm != ci

i
);

}

Figure 9: Transformation for a parallel call
fork foo(args)@c1, . . . , cn.

code calls ThreadDone(), followed by assume(false).
Thus the function foo is responsible for carrying out
the remainder of the protocol on curfsm. Next con-
sider the else branch. Since curfsm == c1, the as-
sume statement evaluates to false. Thus further anal-
ysis along this path is stopped.

2. Suppose curfsm is not null, and not equal to any of the
annotated values c1, c2, . . . , cn. This means that the
protocol obligations should be satisfied by the caller.
In the if branch, the assume statement evaluates to
false, stopping the analysis. In the else branch, the
assume statement evaluates to true and the remaining
code is responsible for carrying out the protocol on
curfsm.

3. Suppose curfsm is null. Then the assume statements in
both the if and else branches evaluate to true. Thus,
foo or the remainder of the callee may initiate a new
protocol, and the analysis can track these. (Note that
any protocol initiated inside foo must also complete
before foo returns.)

We omit a similar transformation for nonblocking calls. We
present the full details of both transformations in a technical
report [10].

In addition to coords, protocols can be stated on other
objects as well. For example, we might want to check the
completion property for each packet p that is passed to Send-
Packet in the network driver shown in Figure 2. We can
check this property also using a sequential analysis, as long
as we follow the programming discipline that at each fork

only one of the continuations is responsible for completing
the protocol and use linearity annotations to guide the anal-
ysis.

5.2 Concurrency analysis
The objective of the concurrency analysis is to check

the implementation of the coords. We assume that each
thread obeys the protocol specified by the coord and use
the concurrency-aware model checker zing to check if the
implementation of the coord works correctly under these as-
sumptions.

We automatically convert the protocol specification of the
coord to generate a nondeterministic thread that exercises
the coord implementation in ways that are allowed by the
protocol. Then, we launch a number of these threads in
parallel and check the implementation for errors (assertion
violations and deadlocks) using zing.

The checks we describe here prove that the implemen-
tation of the coord is correct only with a fixed number of
threads. A more general proof is possible, e.g., using param-
eterized verification [3].

5.3 Guarantees and limitations
Our analysis offers the following guarantee.

Theorem 1. Consider any clarity program P with one
coord c. Let ϕ denote the protocol for c. Suppose each of
the threads in the transformed program C(P ) satisfies the
property ϕ using sequential analysis (as described in Section
5.1) and the implementation of the coord c satisfies the con-
currency analysis check (as described in Section 5.2). Then,
during execution of the concurrent program P , there are
guaranteed to be no assertion violations in the implementa-
tion of c and if a thread in P waits for an event e associated
with the coord c, then some thread is guaranteed to send e
before exiting.

The proof is presented in a technical report [10].
Our static analysis has two main limitations. The first

limitation is that it can detect deadlocks only in programs
that use coords for synchronization, and then only for co-
ords used independently. If the programmer uses low-level
synchronization primitives or multiple coords in the same
block of code, the order in which each thread does block-
ing waitfor operations can result in deadlocks that we will
not detect. The second limitation is that we only check
safety properties. Thus, if a thread t1 is waiting for an
event through a coord and thread t2 is obligated to send the
event, we can say only that along all code paths, before t2
exits, the event is indeed sent. We cannot guarantee that t2
exits and thus we cannot guarantee that the event will be
sent.

6. IMPLEMENTATION
We wish to demonstrate the viability of our approach in

building asynchronous system components with realistic lev-
els of complexity using clarity. Along these lines, we have
implemented prototype clarity development tools and a
clarity driver for a simple network card, which we have
tested in an emulated environment.
Compiler and runtime. The clarity compiler trans-
forms a clarity source program into C target code. The
send, sendall, and fork primitives can be implemented as
calls into a clarity coordination library. However, transla-
tion of the waitfor primitive requires more extensive com-
piler support—if a thread blocks, the clarity runtime must
be able to restart the thread at a later time, perhaps in the
context of a different physical thread, with all of its local
state preserved. The compilation uses continuation passing
style (CPS) transformations. More details can be found in
in a technical report [10].
Device driver implementation. We have written a net-
work device driver in clarity for an emulated device we call
tinynic, comprising about 1,300 lines of code. The target
C code produced by the clarity compiler is about 2,500
lines.

tinynic is closely modeled after hardware such as the Intel
E100 network card. We have preserved many of the sources
of concurrency and asynchrony, as well as some defining fea-
tures and idiosyncrasies of network hardware, such as mask-
able interrupts, memory mapped device registers, and reads
and writes via shared memory buffers. We have eliminated
most other features that are irrelevant with respect to con-
current and asynchronous behavior (e.g., tinynic does not
support multicast address filters). We have a software imple-



mentation of the tinynic hardware specification that sup-
ports concurrent behavior.
Static analysis. We were able to establish properties of the
tinynic driver by transforming it as described in Section 5.1
and running a sequential analysis on the transformed pro-
gram.

Our tinynic driver uses a gchute coord that combines the
properties of both the gate and the chute—as in Figure 2,
we support the asynchronous rundown of sending packets,
but we also use the chute protocol to ensure that pack-
ets are transmitted in the same order they were submitted.
All packets call Enter and Exit on the gchute. The pause

code closes the gate and waits for all pending sends to com-
plete. The sendpacket code uses waitfor to wait until the
hardware becomes available and uses the gchute to enforce
packet ordering.

The results for two properties are shown in Table 1. The
first property is the protocol for the gchute, which is a mix-
ture of both the gate and chute protocols. slam was able to
check the property on the the transformed clarity program
in 17.77 seconds, after 9 iterations of iterative refinement, in-
troducing 25 predicates. The second property “packet com-
pletion” states that for every packet passed to SendPacket,
the code gets the size of the packet, transmits at least one
fragment of the packet, and calls CompletePacket. (Note
that this is a weak notion of correctness for SendPacket in
that we do not require every fragment of the packet to be
transmitted, nor that the data transmitted match the packet
data.) slam was able to check this property on the trans-
formed clarity program in 6.82 seconds, after 2 iterations
of iterative refinement, introducing 5 predicates.

clarity driver
Property Time(s) Iters Preds Result

gchute protocol 17.77 9 25 PASS
packet completion 6.82 2 5 PASS

C driver
Time(s) Iters Preds Result

gchute protocol * * * *
packet completion * * * *

Table 1: Sequential checking results

For both properties, slam could not finish checking these
directly on a hand-coded event-driven C driver. The C
driver puts packets that cannot complete immediately into a
queue, implemented as a linked heap structure, making anal-
ysis difficult. However, the clarity code for the tinynic
driver does not use any queues (though the clarity target
code and runtime do). It simply keeps the packet as a lo-
cal variable in the logical thread and uses waitfor to block
in case the packet cannot be processed. Thus, using an in-
terprocedural analysis (and without reasoning about heap
structures), slam is able to prove the two properties on the
clarity code.
Concurrency analysis. We were able to verify the im-
plementations of gate, chute and gchute on small number
of threads as shown in Table 2. The coord protocols were
used to automatically derive a nondeterministic thread that
uses the coord. We ran the concurrency-aware model checker
zing using partial order reduction. In our gate implementa-
tion (code not shown), the model checker found the following
bug: if the gate is closed (by calling Close) when there are

no pending client threads that have entered, but not exited,
then the subsequent call to waitfor(IsEmpty(),[e]) dead-
locks since there is no client thread to send the event e. We
were able to fix this bug and verify the modified implemen-
tation.

coord Result num threads States explored Time(s)
gate PASS 3 9133 1
gate PASS 5 1165393 74
chute PASS 3 775 0.4
chute PASS 5 26431 2
chute PASS 7 1241923 103
gchute PASS 3 11458 1
gchute PASS 5 1827952 119

Table 2: Concurrency checking results

Table 2 shows the number of states explored by the model
checker and time taken by the model checker in each case.
For the gate and gchute, the numbers in the table were ob-
tained after fixing the bug mentioned above.
Runtime testing. We have built a virtual test environ-
ment to provide thorough runtime testing of code generated
by the compiler and the clarity runtime. Our test environ-
ment consists of a virtual network hardware implementation,
tinynic, and a runtime execution environment, tinyne-
tapi. The clarity-generated driver processes 15,000 pack-
ets per second on a 2GHz single processor Pentium machine.
The driver is able to initialize and shutdown, including ap-
propriately initializing and resetting the hardware. It is able
to handle concurrent sends and receives.

We have kept track of the bug fixes that were necessary
in order to get all tests to pass. We note that none of the
problems we encountered were concurrency or asynchrony
bugs; in most cases they were logical errors reflecting a mis-
understanding of the hardware specification.

7. CONCLUSIONS
We have presented clarity, a language that allows the

development of event-driven programs that can be efficiently
checked for violations of safety properties. This analyzabil-
ity is achieved by a careful combination of three language
features: nonblocking calls, coords with protocol specifica-
tions, and linearity annotations to delegate protocol obliga-
tions to exactly one thread at each asynchronous call. Our
emphasis to date has been on correctness; our future work
will focus on performance.
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