
Concept Expansion Using Web Tables

Chi Wang, Kaushik Chakrabarti, Yeye He,
Kris Ganjam, Zhimin Chen, Philip A. Bernstein

Microsoft Research, Redmond, WA

{chiw, kaushik, yeyehe, krisgan, zmchen, philbe}@microsoft.com

ABSTRACT
We study the following problem: given the name of an ad-hoc con-
cept as well as a few seed entities belonging to the concept, output
all entities belonging to it. Since producing the exact set of entities
is hard, we focus on returning a ranked list of entities. Previous
approaches either use seed entities as the only input, or inherently
require negative examples. They suffer from input ambiguity and
semantic drift, or are not viable options for ad-hoc tail concepts.
In this paper, we propose to leverage the millions of tables on the
web for this problem. The core technical challenge is to identify
the “exclusive” tables for a concept to prevent semantic drift; ex-
isting holistic ranking techniques like personalized PageRank are
inadequate for this purpose. We develop novel probabilistic rank-
ing methods that can model a new type of table-entity relationship.
Experiments with real-life concepts show that our proposed solu-
tion is significantly more effective than applying state-of-the-art set
expansion or holistic ranking techniques.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; H.2.8 [Database Management]: Database applica-
tions—Data mining

Keywords
Concept Expansion; Web Table; Graph-based Ranking; Entity Ex-
traction; Ontology Learning

1. INTRODUCTION
We study the following problem: given the name of a concept

as well as a few seed entities belonging to the concept, output all
entities belonging to the concept. This is referred to as the concept
expansion problem. This problem has many applications.
• Knowledgebase expansion: A knowledgebase (e.g., Freebase [7],
YAGO [25], Probase[32]) contains concepts (e.g., country), entities
belonging to those concepts (e.g., USA, China, India for the con-
cept ‘country’) and attributes of those concepts (e.g., population,
capital city for the concept ‘country’). They are used by web search

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3469-3/15/05.
http://dx.doi.org/10.1145/2736277.2741644.

engines for a variety of purposes: to answer search queries, under-
stand short texts and annotate web tables [1, 27, 28]. While these
knowledgebases have large numbers of entities for head concepts
(e.g., country, city), they have very few entities for tail concepts
(e.g., ‘low-fertility country’, ‘emerging economies’) [32, 33, 31].
There is a growing interest to extend the knowledgebase to cover
tail concepts, entities and attributes.
• Ad-hoc list creation: Users often create lists for concepts of inter-
est (e.g., dog breeds, beach vacation spots) using a spreadsheet (Ex-
cel, Google Sheets) or a note-taking application (e.g., OneNote, Ev-
ernote). Manually creating such lists is labor-intensive; approaches
that automatically populate such lists or at least suggest some lists
can be immensely beneficial.

Since producing the exact set of entities belonging to a concept
is hard, a realistic goal is to return a ranked list of entities instead.
This requires human effort to examine and admit the top-ranked
entities, but still significantly less burdensome than manual popu-
lation. Better the ranking, lower the human effort.
Prior work and limitation. Though abundant work has been done
for the general concept expansion or set expansion problem, they
either perform poorly or are not viable options for tail concepts.
Set expansion approaches take a small set of “seed entities” as in-
put, to discover ‘similar’ entities that appear in similar context [18,
29, 30, 16, 24, 21]. When expanding tail concepts, this approach
is subject to the ambiguity in the input: given the seed entities
‘Canon’, ‘Sony’ and ‘Nikon’, it is difficult to know which concept
the user has in mind, ‘camera brands’ or ‘Japanese companies’ or
something else. It tends to mix entities belonging to different con-
cepts during the expansion. This is known as the ‘semantic drift’
issue [11]. To prevent concept ambiguity and semantic drift, a
common strategy is to populate negative examples from mutually
exclusive concepts according to a reference ontology. This idea is
used by Snowball [4], KnowItAll [15], NELL [10] etc. A similar
setting is hard to set up for ad-hoc concepts. There is no refer-
ence ontology to provide comprehensive mutual-exclusiveness for
constraining most tail concepts.
Our solution. To overcome these limitations, we take both a con-
cept name and a small set of seed entities as input, but do not re-
quire negative examples or knowledge of other concepts. Further-
more, we propose to leverage both structured data and text data as-
sociated with millions of tables on the web. This setting has several
unique benefits for expansion of tail concepts. First, a web table
is often structured as rows about entities pertaining to a coherent,
fine-grained concept. Second, the text mentioned in the caption,
nearest headings etc. of a web table can help identify the tables
about the user-input concept, providing opportunities for indexing
and searching them with a web table search system (WTS) like Mi-
crosoft’s Excel Power Query [3] or Google’s Web Tables [2].

Book Price

Teach SQL in 10 mins 20.03

SQL Server for devs 38.13

Access 2013 Bible 32.17

Name Windows Linux

Oracle Yes Yes

MySQL Yes Yes

SQL Server Yes No

PostgreSQL Yes Yes

Name License

MySQL GPL

PostgreSQL PostgreSQL

Firebird IPL

Berkeley DB AGPLv3

Vendor Revenue

Oracle 11787 M

IBM 4870 M

Microsoft 4098 M

Teradata 882 M

t1

t4

t2 t3

Best selling books on
database software

Operating systems support
for top database software

Database software,
2011 revenue by vendor

List of open source
database software

Name Developer

Oracle Oracle

SQL Server Microsoft

Office Microsoft

Photoshop Adobe

Best selling
software in 2010

t6

Name
Max row

size

MySQL 64KB

Oracle 8KB

Firebird 64KB

Information about
database size limits

t5

Figure 1: Tables returned by WTS for ‘database software’. The text below
the tables represent the caption/surrounding text/nearest headings

Once we retrieve the web tables from a WTS, we have two kinds
of information at hand: (i) the seed entities and (ii) a ranked list of
tables returned by the WTS that roughly reflects their relevance to
the concept query. A viable approach of utilizing this information
is to build a bipartite graph of all retrieved tables and the entities in
them, and then run a graph-based ranking method like generalized
Co-HITS [13]. Such a method can utilize prior knowledge on both
the entity and table side, as well as the link structure. However, a
traditional ranking method may fail tail concept expansion due to
the abundance of non-exclusive tables.

EXAMPLE 1. Consider the concept ‘database software’. Fig-
ure 1 shows 6 tables returned by the WTS. The matching keywords
found in column headers, captions, surrounding text etc., are shown
in bold. The ranking order is t1, t2, t3, t4, t5, t6: t1, t2, t3 and t4
are ranked higher as they match both keywords while t5 and t6 are
ranked lower as they match with only one keyword.

Each table in such a system has a subject column. This col-
umn contains the set of entities the table is about, while the other
columns represent binary relations or attributes of those entities;
previous techniques can be used to accurately identify the subject
column (the leftmost column in all the 6 tables in this case) [27, 28].

In this paper, we refer to an entity that belongs to the concept as
relevant and others as irrelevant. A WTS returns two types of ta-
bles: those that exclusively contain relevant entities in their subject
column (t1, t2, t5) and those that do not (t3, t4, t6). We refer to the
former tables as exclusive and the latter as non-exclusive.

A bipartite graph can be built as in Figure 2. Suppose there are
4 seed entities (shown in bold). A generalized Co-HITS algorithm
ranks entities and tables in the following order: Oracle, MySQL,
SQL Server, Teradata, PostgreSQL, Firebird, Microsoft, IBM, Pho-
toshop, Office, Berkeley DB...; t3, t1, t6, t2, t5, t4. Note that irrele-
vant entities like Microsoft, IBM, Photoshop and Office are ranked
above a relevant entity like Berkeley DB.

Non-exclusive tables cause existing random-walk ranking algo-
rithms to fail. Large non-exclusive tables about overlapping con-
cepts (e.g., t6) can accumulate high scores. Irrelevant entities that
are popular in such non-exclusive tables will get higher scores than
relevant but less popular entities, such as Berkeley DB. These rele-
vant but less popular entities are often desirable for the application
of concept expansion, since popular entities have a high chance
to exist in a knowledgebase already. This analysis applies to all
graph-based ranking methods that linearly aggregate scores from
all neighboring vertices.

Our insight to resolving this semantic drift issue, is to model the
exclusivity of tables. Using only exclusive tables to find relevant

t1

t3

t6

t2

t4

t5

Entities Tables
e1

Oracle

e2
MySQL

e3
SQL Server

e4
PostgreSQL

e5
IBM

e6
Microsoft

e7
Teradata

e8
Office

e9
Photoshop

e10
Firebird

e11
Berkeley DB

e12
Teach SQL in 10 mins

e13
SQL Server for developers

e14
Access 2013 Bible

Figure 2: Bipartite graph of entities and tables. The seed entities are
shown in bold

entities vastly boosts precision, without substantial loss of recall
because: (i) it is common to retrieve from the WTS a large num-
ber of exclusive web tables for a tail concept such as t1, t2 and t5
in Example 1; and (ii) most relevant entities appear in exclusive
tables. The core technical challenge is to identify exclusive tables.

To infer exclusive tables and find relevant entities, our solution
stems from the simple yet special entity-table relationship: a table
is exclusive if and only if all its subject entities are relevant, and
an entity is relevant if it appears in at least one exclusive table.
Incorporating uncertainty, we propose a novel probabilistic model
that holistically ranks the entities and tables. Our ranking method
models the score of a table as ‘how likely the entire table is ex-
clusive’ instead of ‘the fraction of the table that is relevant,’ and
respects the asymmetric entity-table relationship: an exclusive ta-
ble must contain only relevant entities while a relevant entity can
appear in a non-exclusive table. The score from table to entity and
entity to table is propagated in an asymmetric way, and aggregated
nonlinearly to emulate taking ‘all or none’ from exclusive or non-
exclusive tables. That is a key difference of our approach.

Our contributions can be summarized as follows:
• We propose a new problem setting to address the challenges of
tail concept expansion using both the concept name and seed enti-
ties. We propose to leverage structured data and text data of mil-
lions of web tables for this problem (Section 2).
•We propose a novel holistic, probabilistic ranking model to rank
entities based on their likelihood of belonging to the concept, and
rank tables based on their likelihood of being exclusive to the con-
cept. Specifically, we present properties that the score aggregation
functions must satisfy in order to model the special table-entity re-
lationship (Section 3). We develop a novel algorithm to perform
the ranking, with guaranteed convergence for a broad class of ag-
gregation functions (Section 4). We present concrete choices of
aggregation functions and prior knowledge (Section 5).
• We perform extensive experiments on expanding a large scale
concept-entity database. Our experiments show that our method
produces significantly better quality results than three existing al-
gorithms: a competitive set expansion algorithm using web tables,
a probabilistic graphical model that propagates table scores via
column similarities, and a generalized algorithm of personalized
PageRank and Co-HITS. Our technique can increase the number
of entities per concept by 1 to 2 orders of magnitude with close to
100% precision (Section 6).

C1: Pose concept name as
keyword search to WTS

Concept
name

`database
software’

Oracle

SQL Server

MySQL

Teradata

Seed
Entities

C2: Build entity-table
bipartite graph

Ranked web tables

C3: Relevant entity and
exclusive table ranking

Ranked list of entities
& web tables

MySQL (0.994)

Oracle (0.993)

SQL Server (0.985)

Teradata (0.949)

PostgreSQL (0.931)

Firebird (0.717)

Berkeley DB (0.618)

…

t1(0.819)
t2 (0.618)
t3(0.495)
t5(0.260)
t6(0.187)

t4(0)

Figure 3: System architecture

2. PROBLEM STATEMENT AND SYSTEM
ARCHITECTURE

2.1 System task
The end-to-end system task is: given a concept name, seed enti-

ties and web tables, return a ranked list of relevant entities. Recall
that we refer to the entities belonging to the concept as relevant en-
tities, and exclusive tables are defined as tables that contain only
relevant entities in their subject columns.

This task is challenging for an ad-hoc tail concept. A tail con-
cept can be defined as concepts with web mention frequency be-
low a cut point, which partitions the sum of concept frequencies
roughly into two equal parts. For example, the most frequent 350
concepts in Probase occupy 40% of the total frequency of all con-
cepts. Any concept with lower frequency than them can be deemed
a tail concept. This definition of tail concepts is similar to that of
tail attributes by Yahya et al. [33].

Formally, we let C denote the concept name, S the set of seed
entities, T = {tj}mj=1 the set of web tables,E = {ei}ni=1 the set of
entities appearing in the subject columns of these web tables, and
{xi}ni=1 the entity ranking score indicating their relevance.

For convenience, we also useC to denote the set of relevant enti-
ties in the concept, and tj the set of entities mentioned in the subject
column of the table. The context disambiguates which meaning is
used. For example, ei ∈ C means that entity ei belongs to concept
C, ei ∈ tj means that entity ei is mentioned in tj’s subject column,
and tj ⊂ C means that tj is an exclusive table.

We assume the seed entity set S is a subset of E; we ignore any
seed entity not present in E.

2.2 System architecture
Figure 3 shows the architecture of the CONCEPTEXPAND sys-

tem. It has 3 main components, namely C1, C2 and C3.
(C1) Pose concept name to Web Table Search system: This com-
ponent retrieves the set of web tables from which the relevant enti-
ties can be identified. A quality set of retrieved tables should com-
prise (i) most of the tables containing relevant entities and (ii) few
tables that contain no relevant entities at all.

One option is to develop custom algorithms for this purpose. A
plausible algorithm is to obtain the tables whose subject column
name matches with the concept name. While this works well for
broad concepts (e.g., ‘city’, ‘country’), it misses most tables for
specific concepts. For example, we tried this algorithm for the 15
concepts shown in Table 1 (with both singular and plural variants).
In a large fraction of the web snapshot, we found only 73 tables.

We resort to the rich content signals associated with web tables.
For tables we aim to retrieve, the concept name typically appears
in captions, nearest headings (h2, h3, h4), page titles, surround-

Table 1: Example concepts and returned entities

asian country third world country trading partner
internet company multiplayer game national newspaper
adverse side effect fitness class flu-like symptom
antifungal agent bacterial species cytotoxic agent

grape variety mammal species memory card

Concept Seed entities Returned entities
adverse
side effect

addiction, headache, nausea, diarrhea,
depression insomnia, dizziness, constipation...

grape
variety

nebbiolo, ramisco, cornifesto, tinta carvalha,
barbera espadeiro, tinta barroca, tinta francisca...

ing text, incoming anchor text and queries for which the page was
clicked. These are the general criteria used by a web table search
system (WTS) to return tables by keyword queries [27, 9]. Hence,
we pose the ad-hoc concept name to a WTS and use the returned list
of tables for further investigation. To obtain a reasonable amount
of exclusive tables, we retrieve a large number of tables from WTS
(such as 1,000). WTS rank positions are based on relevance, and
they can be used as distant prior knowledge for exclusivity-aimed
ranking. In the following, we assume tj refers to the table ranked
at position j by this WTS. We assume the WTS outputs the identity
of the subject column for each returned table. All WTSs internally
identify it by certain means [27, 28].
(C2) Build an entity-table bipartite graph: The inputs to this
component are the set of seed entities and the tables returned by
component C1. It identifies the set of distinct entities among the en-
tity mentions in the subject columns of the input tables. It also iden-
tifies the seed entities among those distinct entities. In general, this
is the entity resolution problem [6]. Since this is not the focus of the
paper, we identify the distinct entities by simply grouping the entity
mentions in the subject columns using a string matching module.
We identify the seed entities amongst the distinct entities in the web
tables using the same string matching module. The output of this
component is a bipartite graph. It comprises the set of distinct en-
tities on one side (with the seed entities identified) and the set of
tables returned by WTS on the other side. An edge between an en-
tity and a table indicates that the former is mentioned in the subject
column of the latter. The bipartite graph for the example in Figure 1
is shown in Figure 2. Let T (ei) = {tj 3 ei} be the set of tables
that are linked to ei. T (ei) is referred to as support table set, and
|T (ei)| as support of ei. For example, T (e1) = {t1, t3, t5, t6}.
(C3) Relevant entity and exclusive table ranking: The input to
this component is the bipartite graph output by component C2,
with seed entities and WTS table ranking included. The output
is a ranked list of entities according to their relevance as well as
a ranked list of tables according to their exclusivity. We perform
ranking for both entities and tables because they are highly inter-
dependent, as we will discuss in Section 3. The ranked list of ta-
bles can also complement the ranked list of entities and facilitate
the investigation. Furthermore, the tables provide opportunities of
adding relational attributes to the knowledgebase or spreadsheets,
which is an important goal of knowledgebase expansion and ad-hoc
list creation. It is formally defined as follows.

DEFINITION 1. Given a concept C, ordered web tables T =
{tj}mj=1 that cover entities E = {ei}ni=1, and a seed entity set
S ⊂ E, rank these entities with score {xi}ni=1, and the tables
with score {yj}mj=1, according to entities’ relevance and tables’
exclusivity, i.e., whether ei ∈ C and tj ⊂ C.

This component is the focus of the rest of the paper.

3. RANKING MODEL
We first state the principles for entity and table ranking. We then

propose a probabilistic model following the principles.
Finding relevant entities and exclusive tables are highly interde-

pendent tasks and can mutually enhance each other. It is due to the
following relationship between them:

PRINCIPLE 1. A table tj is exclusive if and only if all the enti-
ties ei ∈ tj are relevant.

PRINCIPLE 2. An entity ei is relevant if it appears in at least
one table tj such that tj is exclusive.

Principle 2 is actually a straightforward corollary of Principle 1.
We restate it in order to emphasize the assymetric relationship: An
exclusive table must contain only relevant entities, but a relevant
entity can appear in non-exclusive tables.

If we know either the complete set of relevant entities or the com-
plete set of exclusive tables, we can leverage the two hard princi-
ples to obtain the other set. For example, if we know which entities
belong to the concept C, we can deduce which tables belong to
concept C using Principle 1. Conversely, we can deduce which en-
tities belong to concept C using Principle 2 when the knowledge
of tables is given. Note that in the latter case, false negatives are
possible because some relevant entities may only appear in non-
exclusive tables. Yet we assume this rarely happens given the large
sample size of web tables and a reasonable performance of WTS

In reality, we do not have the complete knowledge on either side.
The input provides partial prior information on both sides. If ei ∈
S is a seed entity, we have strong prior knowledge for e to belong
to the concept C. If table tj is ranked high (j is small) by WTS,
we have weak prior knowledge for tj to belong to concept C. The
table prior is weak because the WTS does not rank tables according
to their exclusivity. We can only assume that the WTS ranking is
overall positively correlated with the exclusivity.

With the unavoidable uncertainty, we model the problem as a
holistic entity and table ranking task that incorporates soft counter-
parts of the above principles.
Probabilistic ranking model: Let xi = p(ei ∈ C) ∈ (0, 1]
denote the likelihood of entity ei belonging to concept C, and
yj = p(tj ⊂ C) ∈ [0, 1] denote the likelihood of table tj belong-
ing to concept C. We let xi > 0 because we cannot assert an entity
does not belong to concept C for sure, as we do not have negative
evidence. We then model their relationship with soft counterparts
of Principle 1 and 2. According to Principle 1, we model each yj
as an aggregation function fE→T of {xi, ei ∈ tj}. According to
Principle 2, we model each xi as an aggregation function fT→E of
{yj , tj 3 ei}. Then, we solve the following equations to perform
holistic entity and table ranking.

xi = fT→E({yj , tj 3 ei})
yj = fE→T ({xi, ei ∈ tj})

(1)

It is easy to incorporate the prior knowledge on entity and table
side by adding pseudo tables and entities in the bipartite graph,
which will be discussed in Section 5.2.

As we discussed in Section 1, symmetric, linear aggregation
functions, like the random walk employed by PageRank, Co-HITS,
etc. suffer from the semantic drift issue. The reason is that they
do not consider the special relationship we are modeling between
relevant entities and exclusive tables through Principle 1 and 2. We
now discuss the design principle of the two aggregation functions
fE→T and fT→E , both of which should produce values between 0
and 1.

3.1 Entity to table aggregation function
Given xi for ei ∈ E, we model yj = p(tj ⊂ C) as an aggrega-

tion function fE→T of {xi|ei ∈ tj}. This is the soft counterpart of
the relationship expressed in Principle 1.

Principle 1 suggests that as long as one entity ei ∈ tj is not in
concept C, the whole table tj is not in concept C. In our proba-
bilistic model, we would like fE→T to reflect the likelihood that all
the entities in tj belong to C. It should produce a low value if any
xi|ei ∈ tj is low. Also, it should well distinguish tables that have
small difference. We abstract the following two axiomatic proper-
ties:

1. Consider a table tj . For any entity ei ∈ tj , its likelihood of
belonging to C is an explanatory variable of the likelihood tj
belonging to C. When it is almost certain that the entity ei does
not belong to C, the table tj is also almost certain to be non-
exclusive. In contrast, if all the entities in tj are certain to be
relevant, the table tj is also certain to be exclusive.

PROPERTY 1 (ASYMPTOTIC PRINCIPLE 1). ∀ei ∈ tj ,
limxi→0 yj = 0; Let x = [xi|ei ∈ tj], yj = 1 iff x = 1.

2. If two tables ta and tb are identical except two entities with
equal support, the table containing the entity with a higher like-
lihood should have a higher likelihood of belonging to the con-
cept (unless the likelihood for both is equal to zero).

PROPERTY 2 (MONOTONICITY). If ta = t ∪ {e1}, tb =
t∪{e2}, |T (e1)| = |T (e2)| and x1 < x2, then 0 ≤ ya ≤ yb ≤
1 (ya = yb happens only when yb = 0).

As one example, the minimum value from {xi|ei ∈ tj}, i.e.,

fE→T ({xi|ei ∈ tj}) = min
ei∈tj

xi (2)

satisfies Property 1, but not Property 2. It is determined by a single
element x∗ in the set {xi|ei ∈ tj} and insensitive to other elements
as long as they are not smaller than x∗.

EXAMPLE 2. Consider the two tables t1 and t3 in Figure 1. t1
contains 4 entities e1 = Oracle, e2 = MySQL, e3 = SQLServer
and e4 = PostgreSQL and t3 contains 4 entities e1 = Oracle,
e5 = IBM , e6 = Microsoft and e7 = Teradata. Suppose
x1 = x2 = x3 = 0.9, x4 = x5 = x6 = x7 = 0.1. Then Equa-
tion (2) produces identical yj value for these two tables. But t1
should be deemed more likely to belong to C than t3 as it has more
relevant entities.

As another example, the random walk aggregation function, i.e.,

fE→T ({xi|ei ∈ tj}) =
∑
ei∈tj

xi
|T (ei)|

(3)

violates Property 1.

3.2 Table to entity aggregation function
Given yj for tj ∈ T , we model xi = p(ei ∈ C) as an aggrega-

tion function fT→E of {yj |tj 3 ei}. This is the soft counterpart of
the relationship expressed in Principle 2.

Principle 2 suggests that if an entity appears in one exclusive
table, it is relevant. In our probabilistic model, we would like
fT→E to reflect the likelihood that at least one table tj 3 ei in
ei’s support set belongs to C. It should produce a high value if any
yj(tj 3 ei) is high. Also, it should well distinguish entities that
have slightly different support table sets. We abstract the following
two axiomatic properties:

1. Consider an entity ei and its arbitrary support table tj . When
the table tj is certain to belong to C, the entity ei is also certain
to belong to C.

PROPERTY 3 (PRINCIPLE 2). xi = 1 if ∃tj 3 ei, yj = 1.

Note that Property 3 is unlike Property 1 in two aspects: (i)
the limit (limy→0 xi = 0) is not true, because a relevant entity
could occur in non-exclusive tables; and (ii) xi = 1 if but not
only if ∃tj 3 ei, yj = 1, for the same reason.

2. If the support table sets of two entities ea and eb are identical
except two equal sized tables, the entity contained in the table
with a higher likelihood should have a higher likelihood of be-
longing to the concept (unless the likelihood for both is 1).

PROPERTY 4 (MONOTONICITY). If T (ea) = T0 ∪ {t1},
T (eb) = T0 ∪ {t2}, |t1| = |t2| and y1 < y2, then 0 < xa ≤
xb ≤ 1 (xa = xb only when xa = 1).

As one example, the maximal value from {yj |tj 3 ei}, i.e.,

fE→T ({yj |tj 3 ei}) = max
tj3ei

yj (4)

satisfies Property 3 but violates Property 4.
As another example, the random walk aggregation function, i.e.,

fT→E({yj |tj 3 ei}) =
∑
tj3ei

yj
|tj |

(5)

violates Property 3.
The concrete design of the aggregation functions following these

principles will be presented in Section 5.1.

4. RANKING ALGORITHM
Based on the model proposed in Section 3, we develop an algo-

rithm to perform joint inference for entity likelihood xi and table
likelihood yj .

A simple idea is to find a solution that satisfies Equation (1),
by iteratively applying the aggregation functions in Equation (1).
This simple algorithm may fail to rank the relevant entities and ex-
clusive tables ahead of irrelevant and non-exclusive ones when the
following are both true: (i) there are a large number of tables in our
bipartite graph that belong to a different concept C′; and (ii) these
tables contain a similar set of entities. For example, in Figure 1, if
there are many tables like t4, the entities and tables about database
books can amass high scores from each other.

To address this issue, we develop an algorithm, called CONCEP-
TEXPAND (Section 4.1). We give a formal theorem about the con-
vergence condition of our algorithm in Section 4.2.

4.1 CONCEPTEXPAND algorithm
The main idea is to perform restricted propagation on a subset

of entities and tables, instead of propagating scores among all en-
tities and tables. We consider a two-phase algorithm. In the first
phase, we identify such a subset. We begin with the seed entities,
which are most likely to be relevant. We then gradually expand
the set by iteratively adding the most plausible tables based on cur-
rent estimation. We stop adding tables when the remaining tables
all have low estimated likelihood of belonging to C. We collect
entities with enough support, and remove tables with few entities
in this collection. In the second phase, the iterative propagation
will be performed within this set. The two-staged method prevents
adding too many irrelevant tables all at once and impairing score

propagation. During the first phase, only those high-confidence ta-
bles contribute to entities’ likelihood computation. And the second
phase will have a chance to refine the earlier estimation which was
based on incomplete information.

As the starting point of the probabilistic reasoning, the score for
the seed entities can be set according to the prior knowledge (i.e.,
they are very likely to be in C). For all the other entities, xi is un-
known, and they will not be computed until a table containing them
is added to the reasoning set. To compute the score for a table tj
with missing entity score, we use the table prior πj to replace the
missing entities’ score and feed to the aggregation function fE→T .
The more knowledge we have of entities in a table, the less impor-
tant the table prior is.

Algorithm 1: CONCEPTEXPAND

Input: Entity set E, table set T , seed entity set S, table
likelihood threshold α

Output: entity score {xi|ei ∈ E}, table score {yj |tj ∈ T}
1 Initialize the support table set T0 ← ∅;
2 Initialize the excluded entity set U ← E \ S;
3 Initialize seed entity score xi using prior, for ei ∈ S;
4 repeat
5 Update

yj ← fE→T ({xi|ei ∈ tj , ei /∈ U} ∪ {πj |ei ∈ tj ∩ U})
for tj ∈ T ;

6 Choose the optimal (y∗, t∗) = maxtj /∈T0,|t\U|>0 yj ;
7 T0 ← T0 ∪ {t∗};
8 Update xi ← fT→E({yj |tj 3 ei, tj ∈ T0}) for ei ∈ t∗;
9 U ← U \ t∗;

10 until y∗ < α or T0 = T ;
11 repeat
12 T0 ← T0 \ {t ∈ T0, |t \ U | < |t ∩ U |};
13 U = U ∪ {e ∈ E \ U, |T (e) ∩ T0| ≤ 1};
14 until U stops growing;
15 repeat
16 Update yj ← fE→T ({xi|ei ∈ tj}) for tj ∈ T0;
17 Update xi ← fT→E({yj |tj 3 ei}) for ei ∈ E \ U ;
18 until xi’s converge;

We develop the CONCEPTEXPAND algorithm based on the above
intuition. The pseudocode is shown in Algorithm 1. Lines 4–14
identify the table set and entity set for reasoning, by adding the
most plausible table one by one, updating the estimation of both
tables and entities, and removing the ones with low support. When
adding a table, we require that the table contains some entity in the
reasoning set (Line 6). This reduces the chance of adding a table
simply because it has high prior. When removing tables and enti-
ties, we keep checking if any entity has no more than one support
table (Line 13), and if any table has more than half of entities miss-
ing in the reasoning set (Line 12). Lines 15–17 solves the equations
within the reasoning set, using a fixed-point iteration.

The parameter α can be set according to the precision-recall re-
quirement. Lower α leads to higher recall but lower precision in
general. When α = 0, all the tables will be added to the reasoning
set. α = 1 filters out all tables. In general, one can set α auto-
matically according to table prior scores {πj} (e.g., the median of
{πj}). See Section 6.3 for a study of its effect.

The algorithm has a complexityO(mL), wherem is the number
of tables and L the total size of tables (i.e., the number of links in
the table-entity bipartite graph). We show a running example of the
algorithm in Section 5.3.

4.2 Convergence of algorithm
Given that the CONCEPTEXPAND algorithm requires iterative

computation of yj and xi, a desirable property of the computa-
tion is that it converges after a limited number of iterations. In the
following, we provide a condition for aggregation functions fE→T
and fT→E which guarantees convergence.

PROPERTY 5 (DIMINISHING RETURN). Let x = [x1, x2, ..., xn]
be an n-dimensional vector with entity score xi as components. Let
g(x) be the entity score after one iteration of updates using fE→T
and fT→E . The aggregation generates diminishing return if (i)
there exists a compact set C ∈ [0, 1]n such that g(C) ⊆ C , and (ii)
∀x, z ∈ C (x 6= z),maxi∈[n] |xi − zi| > maxi∈[n] |g(x)i − g(z)i|.
C is called the diminishing region of g.

Discussions. The first part of Property 5 states that the aggregation
has to produce proper probabilities in a compact region in [0, 1]n

if input are proper probabilities in the same region. The compact
region can be [0, 1]n itself, or a subset of it. This is a natural re-
quirement since we want to output probabilities, and in some cases
regularize them. For example, random walk requires the probabili-
ties to be within a simplex

∑n
i=1 xi = 1.

The second part of the property states that the maximum differ-
ence of probability for the same entity in x and z always dimin-
ishes after one iteration of fE→T and fT→E . In particular, when
we boost the initial belief of one entity by δ, the new belief will in-
crease by less than δ after one iteration. Intuitively, this means that
the initial boost will be “averaged out” by other entities and tables
after iterative propagations. It is also a natural requirement because
the change of inferred confidence should not surpass the change of
original confidence.

We can in fact show that the condition holds in many common
aggregation functions, when prior knowledge is incorporated as
pseudo entities and pseudo tables. One example is to use arithmetic
mean as aggregation functions for both fE→T and fT→E , and add
a pseudo entity with likelihood πj to table tj as prior knowledge
(e.g., based on the ranking position in WTS).

PROPOSITION 1. Let fE→T ({xi|ei ∈ tj}) =
πj+

∑
ei∈tj

xi

|tj |+1
,

and fT→E({yj |tj 3 ei}) =

∑
tj3ei

yj

|T (ei)|
, i.e., both fE→T and

fT→E are arithmetic mean, then the aggregation generates dimin-
ishing return in [0, 1].

There are other combinations of common aggregation functions
that also enjoy Property 5, e.g., the random walk aggregation func-
tions as in Equations (3) and (5).

Property 5 guarantees convergence.

THEOREM 1. If aggregation functions satisfy Property 5 with
diminishing region C , then Algorithm 1 converges to the unique
solution to Equation (1) in C , with initial x ∈ C .

To prove Theorem 1, we can essentially view g(x) as a composite
function from fE→T and fT→E , and apply Banach’s Fixed Point
theorem [17] to ensure that a unique solution can be found for the
system of Equation (1) using iterative computation.

Theorem 1 requires fairly simple properties to guarantee the con-
vergence of CONCEPTEXPAND algorithm. Proposition 1 implies
that common aggregation functions, such as smoothed arithmetic
mean, guarantees convergence. Therefore, our computational frame-
work is generic – any reasonable aggregation functions satisfying
the required properties can be plugged in Equation (1) to model a
particular application, and Algorithm 1 will converge to the solu-
tion of it.

5. RANKING DESIGN
We now discuss concrete choices of aggregation functions and

prior knowledge encoding, which are functions that we plug into
the generic framework outlined in Algorithm 1. We design these
functions specifically for our problem. At the end of this section
we will also present a running example.

5.1 Aggregation function
Entity to table aggregation. As discussed in Section 3.1, we need
a function fE→T : [0, 1]n → [0, 1] that satisfies the desirable Prop-
erties 1 and 2.

Property 2 (monotonicity) requires the function to be responsive
to the change of every input element positively. Property 1 (asymp-
totic Principle 1) requires it to approach 0 when any input element
approaches 0, and to approach 1 when all input elements approach
1. The three Pythagorean means, arithmetic mean, geometric mean,
and harmonic mean satisfy the monotonicity, and the latter two sat-
isfy Principle 1 asymptotically.

Between these two, we choose the one that fits Principle 1 most
closely. We reemphasize that the table ranking score reflects whether
all entities in the subject column of a table are within the concept.
We prefer the score to be low even when there are only a small num-
ber of irrelevant entities in the table. Since the harmonic mean of a
list of numbers tends strongly toward the least elements of the list,
it tends (compared with the arithmetic and geometric mean) to mit-
igate the impact of large numbers (relevant entities) and magnify
the impact of small ones (irrelevant entities). As such, we choose
the harmonic mean as the aggregation function:

fE→T ({xi|ei ∈ tj}) =
|tj |∑
ei∈tj

1
xi

(6)

Table to entity aggregation. As discussed in Section 3.2, we need
a function fT→E : [0, 1]n → [0, 1] that satisfies the desirable Prop-
erties 3 and 4.

Property 4 (monotonicity) requires the function to be responsive
to the change of every input element positively. Property 3 (Princi-
ple 2) requires it to approach 1 when any input element approaches
1. The three Pythagorean means satisfy the monotonicity, but none
of them satisfy Principle 2.

We derive a meaningful aggregation function from the proba-
bilistic meaning of the score. If we assume the events ‘tj ⊂ C’
are independent for tables tj ∈ T (ei) in the support set of ei, we
can use the ‘noisy-or’ model for table-to-entity score aggregation:
ei /∈ C only if none of its support tables belong to C.

fT→E({yj |tj 3 ei}) = p(∨tj3eitj ⊂ C)

=1−
∏
tj3ei

p(tj 6⊂ C) = 1−
∏
tj3ei

(1− yj) (7)

The problem with this model is that it can accumulate weak ev-
idences quickly to produce false positives, as illustrated by the fol-
lowing example.

EXAMPLE 3. Consider two entities Office and Berkeley DB.
Berkeley DB appears in one table t2, with y2 = 0.9. Suppose
there are 6 other tables identical to t6 (say, t7, . . . , t12) and they
all contain Office. Suppose y6 = · · · = y12 = 0.3. This is re-
alistic because tables about popular yet non-target concepts (e.g.,
general software in this case) can dominate the WTS results. Equa-
tion (7) produces higher likelihood for Office than for Berkeley DB
(0.92 vs 0.9) which is undesirable. Note that there is no table that
strongly supports Office to be relevant; on the contrary, there is a
table (t2) that strongly supports Berkeley DB to be relevant.

A similar issue is also discussed by Downey et al. [14], in a dif-
ferent scenario. They addressed the problem that when an entity is
involved in a pattern for multiple times, the ‘noisy-or’ model will
accumulate weak evidence. They proposed a Urn model for repeti-
tive sampling of entities that allows replacement. In our case, each
entity appears once in each table, so this model does not apply to
our problem.

We propose a new heuristic solution. Given the collection of
{yj |tj 3 ei}, a few large values in it should contribute more to
the aggregated value xi than many small values. Based on that
intuition, we sort the yj’s in a descending order yj1 ≥ yj2 ≥ · · · ,
and assign a decreasing series of weights 1 ≥ w1 > w2 > . . . to
them.

fT→E({yj |tj 3 ei}) = 1−
∏

tju3ei,yju≥yju+1

(1− yju)wu (8)

So, the small values in {yj |tj ∈ T (ei)} have relatively small con-
tribution to xi. In other words, the number of support tables of e
has a diminishing marginal utility. The more support tables we ob-
serve, the less important those small values are. When wi’s are all
equal to 1, this function reduces to the ‘noisy-or’ model.

To determine wi, we introduce a notion of effective support. For
simplicity let us assume an entity appears in m tables with equal
likelihood q. Then Equation (8) becomes: fT→E({yj |tj 3 ei}) =

1 − (1 − q)
∑m

i=1 wi . We call
∑m
i=1 wi the effective support of

xi. In the ‘noisy-or’ model, the effective support is equal to the
actual support m. By assigning the decaying weight 1 ≥ w1 >
w2 > . . . , we desire the effective support to grow sublinearly with
m. The question is how slowly the effective support should grow
with respect to m. A fast growing example is Θ(m

m−1
m), which

is close to linear when m is large. A extremely slow growing ex-
ample is Θ(ln(m)), which almost does not grow in our scale with
thousands of tables. A medium example is Θ(

√
m), where sup-

port 100 is converted to effective support 10. In general, we can set
wi = 1

ip
, 0 < p < 1, to obtain a asymptotic growth rate Θ(m1−p)

of effective support (p = 0 and p = 1 correspond to linear and
logarithmic growth respectively). The sequence {wi} in this case
is referred to as p-series.

In this paper, we use the 1
2

-series as the decaying weight wi. It
resolves the issue in Example 3 to a large extent: the undesirable
accumulation is much slower, with a square root growth rate of
effective support.

PROPOSITION 2. The rectified ‘noisy-or’ function with decay-
ing weight, as in Equation (8), satisfies both Property 3 and 4.

We omit the proof due to limit of space.

5.2 Prior knowledge
Now we discuss how to incorporate prior knowledge for the spe-

cific task of concept expansion by adding pseudo entities or tables.
Prior on entity side: For seed entities, we have strong prior knowl-
edge that they belong to concept C. We add one pseudo table for
each seed entity ei ∈ S and link the pseudo table to the correspond-
ing entity. The table has a fixed confidence score 1− εi, where εi is
a small error rate depending on the source of the entities. If the enti-
ties are provided by human curators, εi should reflect the error rate
of the curators which is typically very low. If the entities come from
a non-curated database such as web-extracted concept-entity pairs,
εi should be set according to the precision of the database [32].
Furthermore, the different seed entities may have different confi-
dence of belonging to C. For example, in Probase, an entity ei has
an integer support si about its occurrence with C. The larger si is,

the more confident it is to be a correct seed entity for C. So we can
set εi = εsiC , where εC is a small constant like 0.1.
Prior on table side: All WTSs return a ranked list of tables for
a query. We assume the relevance of a table to the concept C de-
grades with their position in the ranked list returned by a WTS.
Therefore, the prior estimation of the likelihood of a top ranked ta-
ble belonging toC is higher than that of a lower ranked table. Since
we retrieve a constant number of tables from WTS, we may retrieve
tables that are partial matches to the concept name (like table t6 in
Figure 1). To account for that, we penalize tables that do not match
all the tokens in the concept name. We define the table prior πj as:

πj = (
1

2
)#missing tokens ofC in tj 1

j + 1
(9)

Recall that j is the rank position of table tj . When a table contains
all tokens in C, its prior is 1

j+1
, which decays fast as the ranking

position increases. Otherwise, its prior is penalized exponentially
with respect to the number of missing tokens. We incorporate the
prior by adding a pseudo entity with confidence πj to link to each
table tj . In this way, the prior is just one value that participates in
the aggregation function fE→T . The more knowledge of entities in
a table we have, the less we rely on the table prior.

While it is possible to design more sophisticated prior score, we
use this simple treatment that is general and easy to compute. The
imperfect but reasonable prior score tests the ability of our reason-
ing framework of handling noise. Better prior score can be deigned
in future work to exploit more information in web tables.

It can be verified that the chosen aggregation functions and prior
score satisfy the convergence condition in Theorem 1. We leave
detailed proofs to the full version of this paper.

5.3 Running example
EXAMPLE 4. Consider the example in Figure 2. The prior of

tables t1 to t6 are: 0.5, 0.33, 0.25, 0.2, 0.08, 0.07. For simplicity
we set α = 0, εi = 0.1, and skip Line 13 of entity removal because
in larger samples these entities occur more than once.

Initially, E \ U consists of e1 = Oracle, e2 = MySQL, e3 =
SQLServer and e7 = Teradata and T0 = ∅. In the first round,
y1 = 0.68, y3 = 0.35, y5 = 0.15, y6 = 0.11. t1 is selected and
added to T0. x1 to x4 are updated: x1 = 0.98, x2 = 0.972, x3 =
0.971, x4 = 0.68. e4 = PostgreSQL is removed from U . In the
second round, t2 is selected. t3 is added in round 3, and t5 in round
4. In round 5, t6 is the last table to add into T0, because t4 has no
entity in E \ U . With that we enter the second phase.

After the second phase, the scores converge to a fixed point. The
entity scores from high to low are: MySQL (0.992), Oracle (0.991),
SQL Server (0.984), Teradata (0.949), PostgreSQL (0.904), Fire-
bird (0.683), Berkeley DB (0.608), IBM (0.495), Microsoft (0.495),
Office (0.187), Photoshop (0.187). And the table scores from high
to low are: y1 = 0.814, y2 = 0.608, y3 = 0.495, y5 = 0.258, y6 =
0.187, y4 = 0. The entity ranking is desired, while the table rank-
ing has one mistake: t5 is ranked after t3. The main reason is
that the table prior plays an important role when the table is small:
π3 = 0.25 > π5 = 0.08. The real table size is typically much
larger, and therefore the table prior would not dominate the table
ranking as in this example.

6. EXPERIMENTAL EVALUATION
We present an experimental evaluation of the proposed algo-

rithm. The goals of the experimental study are (i) to compare the
ranking quality of different approaches in terms of precision and re-
call, and (ii) to understand the sensitivity of the proposed approach
to different parameter settings.

6.1 Experimental Setup

6.1.1 Dataset
We use a production web table search engine (WTS) that indexes

over 500M web tables extracted from a recent snapshot of the Mi-
crosoft Bing search engine. This is the same WTS that powers
web table search in Excel PowerQuery [3]. We use concepts in
Probase [32] as the testbed for expansion. We choose Probase in-
stead of knowledgebases like YAGO [25] or Freebase [7] for the
sake of better concept coverage, especially for tail concepts [32].

To prepare the set of concept queries, we acquired from Probase
9,926 concepts with sufficient popularity. In Probase, each concept-
entity pair has a popularity value indicating the number of different
domains it is found on the web. We chose concepts with popularity
above 150 so that the concept is not too niche and the web-extracted
concept-entity pairs are relatively reliable. Seed entities were sam-
pled based on their popularity. We retrieved 1,000 tables for each
concept, ending up with a dataset of 10M web tables.

6.1.2 Compared methods
• Number of occurrences (# Occur). In this baseline approach,
we rank entities by their number of occurrences in the top ranked
tables returned by WTS. Entities that occur more often in top tables
are ranked higher.
• Weighted number of occurrences (Weighted # Occur). This
approach enhances the previous one by weighting each occurrence
of entity using the table prior. In addition, in order to utilize seed
information, we only consider tables with 2 or more seeds. Entities
are finally ranked by their aggregate weight across these tables.
• SEISA [18]. Set expansion aims to automatically discover enti-
ties in the target concept using seed entities but not concept name
as input. We implement the Dynamic Thresholding algorithm in
the SEISA system [18], which is shown a competitive technique
for set expansion using web lists.
• Graphical Model [?]. We implement a graphical model-based
table ranking method proposed in [?]. It takes column keywords
as input and outputs a ranked list of relevant tables. The goal is
similar with our table ranking when the input is a single concept
name. We use the table prior as a feature for node potential and the
column value overlap as edge potential in this graphical model.
• Generalized Co-HITS (PageRank) [13]. Personalized PageR-
ank and its variations have been adopted in set expansion systems
like SEAL [29]. For our bipartite graph, the most appropriate vari-
ation to use is a generalized Co-HITS algorithm [13]. For brevity
we still refer to it as PageRank. We set high restart probability on
entity prior and low on table prior.
• CONCEPTEXPAND. This is our proposed method Algorithm 1,
using aggregation functions discussed in Section 5.1. The threshold
α for table filtering is simply set to 0, without any tuning.
• CONCEPTEXPAND_PageRank. To study the value of aggrega-
tion functions, we include a variation of CONCEPTEXPAND that
uses random walk aggregation functions discussed in Section 3.

6.1.3 Evaluation
Ground truth preparation. Probase has an incomplete coverage
of entities per concept, especially for tail concepts. We randomly
checked 100 fine grained concepts and found that more than 90%
of time the first relevant entity found in the web tables does not
exist in Probase. We did a study for YAGO’s fine grained concepts
and found similar results. So simply using the existing Probase
entities as ground truth leads to rather incomplete judgment. To
obtain a reliable set of ground truth, we first identified 90 concepts
for which Probase covers at least 4 entities in top-10 WTS tables.

Figure 4: Mean average precision. Methods from left to right fol-
low the order introduced in Section 6.1.2

Then we manually labeled a sample for 54 unambiguous concepts
of them. Finally, we merge our labels and Probase entities to form
a ground truth set. The final ground truth for each concept may still
be incomplete, but is largely augmented upon Probase entities. This
set has 18,232 relevant entities in total, with an average number
of 338 entities per concept. The number of Probase entities per
concept ranges from 4 to 60, with a mean of 23.

The labeled concepts span across multiple domains, such as ge-
ography, economy, business, healthcare and technology. Sample
concepts and output from the algorithm are listed in Table 1.
Metrics. We use two metrics for evaluation:
•Mean average precision (MAP). This is the standard information
retrieval measure for overall ranking performance.
• Relative recall1 at a certain precision level. This is a metric more
concerned with the practical value of the concept expansion task.
It reflects the best recall one algorithm can achieve before falling
below a precision level. Typically, the requirement for the preci-
sion in a knowledgebase is very high. Although we do not expect
the expansion algorithm to return 100% correct results to directly
populate into a knowledgebase, a high precision level such as 0.9
is helpful for easing the job of human curators in noise filtering.

6.2 Results
In this section we compare the 7 methods. Figure 4 and Figure 5

plot the mean average precision and relative recall at different pre-
cision levels. In both figures, the methods are sorted according to
the order they are introduced in Section 6.1.2.
MAP performance. The overall ranking performance measured
by MAP is consistent when using different number of seeds (Fig-
ure 4). The first six methods can be roughly partitioned into three
groups according to their MAP: (i) baseline algorithms, # Occur
and Weighted # Occur; (ii) existing methods adapted to this task,
SEISA, Graphical Model and PageRank; and (iii) our proposed
method CONCEPTEXPAND. The gap is large across groups. CON-
CEPTEXPAND outperforms existing algorithms by 20-50%. Note
that the filtering parameter α for CONCEPTEXPAND has not been
tuned in this experiment.

The last method CONCEPTEXPAND_PageRank is about halfway
between CONCEPTEXPAND and PageRank. It shows that both the
inference algorithm and the aggregation functions contribute to the
superior performance of CONCEPTEXPAND.

CONCEPTEXPAND is not sensitive to the number of seeds. With-
out parameter tuning, it achieves a mean average precision of close
to 80% with only two seeds per concept.

1 r = # returned relevant entities
seed entities

(a) Methods from left to right follow the order introduced in Section 6.1.2 (b) Scatter plot for precision level 0.98

Figure 5: Relative recall at certain precision levels (two seeds)

High precision performance. Regarding the relative recall at high
precision levels, there is an even larger gap between CONCEPTEXPAND
and competing algorithms (Figure 5). Though all methods can in-
crease the entity coverage before the precision falls below a tolera-
ble threshold, the degree of increase differs across the methods. For
example, at precision level 0.98, PageRank increases the coverage
by 20 times, SEISA does a better job and achieves 44 times expan-
sion, none of which is comparable to the 70 times gain of CONCEP-
TEXPAND (Figure 5a). Figure 5b further visualizes the individual
performance for these 54 concepts. With a few outliers, CONCEP-
TEXPAND dominates in the relative recall. When the requirement
to precision gradually lowers down, CONCEPTEXPAND achieves
even higher recall (108 times at precision level 0.8). Again, with-
out parameter tuning, CONCEPTEXPAND shows strong superiority
in its practical value.

When connecting the overall ranking performance (Figure 4) to
the performance at high precision (Figure 5), we have two interest-
ing observations.

First, CONCEPTEXPAND_PageRank improves the overall per-
formance of PageRank algorithm by removing low confidence enti-
ties and tables, but the improvement is not much on the high preci-
sion end. In Figure 5a, CONCEPTEXPAND_PageRank’s recall is as
one third to one half as CONCEPTEXPAND’s. Therefore, the high
recall at high precision of CONCEPTEXPAND is mainly attributed
to its asymmetric, non-linear score propagation following the spe-
cial entity-table relationship, rather than the filtering.

Second, there is no clear winner among the three existing algo-
rithms SEISA, Graphical Model and PageRank. Though PageRank
has a better MAP than the other two, it poorly performs at high
precision levels (lower than baseline at p-level 0.98). In contrast,
SEISA does a good job at precision levels above 0.9, but underper-
forms Graphical Model at p-level 0.8, and eventually has a lowest
MAP among the three. This observation reflects the limitations
of existing algorithms. We take the concept ‘public university’ as
an example to illustrate. The precision-recall curve is shown in
Figure 6. Set expansion techniques like SEISA find most simi-
lar entities in the beginning, yet shift to different concepts (e.g.,
from public university to other universities) without constraining
the expansion. Concept-name-based table ranking like Graphical
Model does not utilize seed entities, and suffers from imperfect ta-
ble ranking. For example, several tables about public university

Figure 6: Precision-recall curve case study

cost, programs, salaries, faculty numbers are ranked among top 20.
PageRank takes advantage of both concept names and seed infor-
mation, but it tends to select popular entities from different tables
and mix them because of the linear score aggregation. Popular ir-
relevant entities (e.g., New York University) are ranked high and
inserted between relevant ones, thus it cannot produce contiguous
high precision results.

6.3 Parameter study
In this section we study how the algorithm performs in response

to varying parameter values.
Our algorithm has only one parameter, the stopping criterion α.

Recall that this parameter controls the precision-recall trade-off, as
it determines when the core table set stops expansion. We used
α = 0 for all previous experiments, which means all tables will be
added to the table set. As we increase α, fewer tables will be added,
which helps eliminating irrelevant tables. When α is equal or larger
than 1, only one table will be added, leading to poor results.

In our experiments, we sort all table prior scores in descending
order and set α to the score at certain positions of the ranked scores.
For example, we use the lower quartile (denoted as lower 1/4), me-
dian (1/2), upper quartile (upper 1/4) and so on. Figure 7 shows
the mean average precision and relative recall at different precision
levels. It turns out that CONCEPTEXPAND works robustly in a wide
range of α. In fact, the MAP has very small change when α varies
from 0 to upper 1/16 quantile of table prior. The most sensitive met-
ric is recall at precision level 0.8. It reaches the peak around 110 at

Figure 7: Vary filtering threshold α

median and declines when α further increases, but still above 100
when α is equal to upper quartile of table prior, where other three
curves reach a high point. In the worst case in our test (α = upper
1/16 quantile), the recall at precision 0.98 is still much higher than
PageRank’s recall at precision 0.8. These results indicate a stop
criterion ranging from median to upper quartile of table prior is a
good choice, depending on the goal of precision. For higher preci-
sion a slightly higher α is preferred. As long as α is not too large
to leave enough tables, stable performance can be expected thanks
to the strong reasoning power of our method.

7. RELATED WORK
The concept expansion problem has been studied mainly in two

settings: set expansion and multi-concept expansion. The former
takes a set of seed entities as input to expand a single implicit con-
cept, and the latter takes entities in two or more mutually exclusive
concepts together and classify other entities.

Google Sets was an early set expansion system. It spawned
quite a few set expansion techniques, such as Bayesian Sets [16],
SEAL [30], SEISA [18] and others [24, 29, 21]. They mainly lever-
age the similarity between entities measured by their co-occurrences
in web text, wrappers and lists. For example, SEISA employs iter-
ative similarity aggregation and SEAL employs PageRank. Multi-
concept expansion proposes to constrain the expansion by using
negative examples from mutually exclusive concepts or type con-
straints [15, 10, 26]. This works well when expanding several
mutually exclusive concepts in a reference ontology. None of the
above methods are designed for ad-hoc tail concept expansion.

To put this problem in a broader context, the problem of knowl-
edgebase expansion or completion has attracted a bulk of interest
due to its practical value. Concept expansion is one main category,
focusing on extending the number of entities (a.k.a. instances)

belonging to each concept (a.k.a. type or class). Another main
category is attribute completion, focusing on completing attributes
(a.k.a. facts or relations) of entities. It is introduced as an annual
competition in 2008 to the Text Analysis Conference. One can refer
to Ji and Grishman [19] for an overview.

To differentiate the paradigm, West et al. [31] discusses the ‘pull’
mode and the ‘push’ mode for attribute completion. The ‘pull’
mode refers to extracting values for specific entities and attributes,
while the ‘push’ mode refers to processing a large number of doc-
uments in batch and populates whatever facts it can find. A similar
categorization applies to concept expansion. Set expansion works
in the ‘pull’ mode and multi-concept expansion works in the ‘push’
mode. The ‘pull’ mode is found to better suit tail domains and tail
entities. Our approach works in the ‘pull’ mode. Similar to West
et al. [31] that leverages a web-search based question-answering
system, we leverage a web table search system.

With regard to information source from which to harvest knowl-
edge, the most popular sources are unstructured text [15, 21, 33, 31,
19], and semi-structured web wrappers, lists and tables [26, 18, 29].
Typically, textual patterns have good coverage for head entities, and
the context helps identifying the concept. Semi-structured lists and
tables contain both head entities and tail ones. A good strategy is to
leverage both the semantics in text and the co-occurrence informa-
tion in lists. For example, NELL [10] is a system for multi-concept
expansion that combines textual signals and structure signals from
separate sources respectively. In comparison, our work proposes to
simultaneously utilizes text and structure from one source.

Our work is related to the holistic table ranking approach pro-
posed by Pimplikar and Sarawagi [22], which takes concept key-
words (column names) as input and returns relevant web tables.
Though our method can rank tables as well, the ranking criteria is
based on exclusivity rather than relevance. Other closely related
studies about web tables include table column annotation [12, 20,
23, 27], and entity attribute discovery [8, 34, 35].

There is more work to which the CONCEPTEXPAND algorithm
can be related. For example, CONCEPTEXPAND adds tables one by
one to expand the viewpoint bipartite graph of reasoning. There-
fore, techniques related to viewpoint network expansion, such as
[5], can be considered as alternative ways for extracting a relevant
viewpoint neighborhood.

8. CONCLUSION AND FUTURE WORK
In this paper, we studied the problem of finding entities belong-

ing to a concept, given an ad-hoc concept name and a few seed
entities. We resort to exclusive web tables and leverage both text
signals and structure information. We formulate the task as a holis-
tic ranking problem and develop a novel solution for probabilistic
reasoning. It is the first method addressing the challenges for ex-
pansion of tail concepts, and experiments demonstrate its superior-
ity to state-of-the-art approaches. Besides, the convergence guar-
antee of our simple unified framework works with many common
aggregation functions (including generalized PageRank as special
cases), rendering it generalizable to different problems.

This work can be extended in multiple directions. There is much
more information in the knowledgebase and web tables that can
be leveraged for concept expansion as well as attribute completion.
First, one can utilize the relational attributes in web tables; tables
belonging to the same concept often have similar attributes, and
the missing attributes in knowledgebases can be potentially popu-
lated from them. Second, we distinguish exclusive tables and non-
exclusive tables in this work since the latter is more risky to use
for expansion. In future work, one can study how to select relevant
portions in non-exclusive tables, e.g., via the attributes.

References
[1] Google Knowledge Graph.

http://www.google.com/insidesearch/
features/search/knowledge.html.

[2] Google Web Tables.
http://research.google.com/tables.

[3] Microsoft Excel Power Query.
http://office.microsoft.com/powerbi.

[4] E. Agichtein and L. Gravano. Snowball: Extracting relations
from large plain-text collections. In Proceedings of the Fifth
ACM Conference on Digital Libraries, 2000.

[5] S. Asur and S. Parthasarathy. A viewpoint-based approach
for interaction graph analysis. In KDD, 2009.

[6] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su,
S. Whang, and J. Widom. Swoosh: a generic approach to
entity resolution. PVLDB, 18(1):255–276, 2009.

[7] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor.
Freebase: a collaboratively created graph database for
structuring human knowledge. In SIGMOD, 2008.

[8] M. J. Cafarella, A. Y. Halevy, and N. Khoussainova. Data
integration for the relational web. PVLDB, 2(1):1090–1101,
2009.

[9] M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu, and
Y. Zhang. Webtables: exploring the power of tables on the
web. PVLDB, 1(1):538–549, 2008.

[10] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R.
Hruschka, and T. M. Mitchell. Toward an architecture for
never-ending language learning. In AAAI, 2010.

[11] J. R. Curran, T. Murphy, and B. Scholz. Minimising semantic
drift with mutual exclusion bootstrapping. In PAACL, 2007.

[12] D. Deng, Y. Jiang, G. Li, J. Li, and C. Yu. Scalable column
concept determination for web tables using large knowledge
bases. In PVLDB, volume 6, pages 1606–1617, Aug. 2013.

[13] H. Deng, M. R. Lyu, and I. King. A generalized co-hits
algorithm and its application to bipartite graphs. In KDD,
2009.

[14] D. Downey, O. Etzioni, and S. Soderland. Analysis of a
probabilistic model of redundancy in unsupervised
information extraction. Artif. Intell., 174(11):726–748, July
2010.

[15] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu,
T. Shaked, S. Soderland, D. S. Weld, and A. Yates.
Unsupervised named-entity extraction from the web: An
experimental study. Artificial Intelligence, 165(1):91–134,
2005.

[16] Z. Ghahramani, Z. Ghahramani, and K. A. Heller. Bayesian
sets. In NIPS, 2005.

[17] A. Granas and J. Dugundji. Fixed Point Theory.
Springer-Verlag, 2003.

[18] Y. He and D. Xin. SEISA: set expansion by iterative
similarity aggregation. In WWW, 2011.

[19] H. Ji and R. Grishman. Knowledge base population:
Successful approaches and challenges. In ACL, 2011.

[20] G. Limaye, S. Sarawagi, and S. Chakrabarti. Annotating and
searching web tables using entities, types and relationships.
In VLDB, 2010.

[21] P. Pantel, E. Crestan, A. Borkovsky, A.-M. Popescu, and
V. Vyas. Web-scale distributional similarity and entity set
expansion. In EMNLP, 2009.

[22] R. Pimplikar and S. Sarawagi. Answering table queries on
the web using column keywords. PVLDB, 5(10):908–919,
2012.

[23] G. Quercini and C. Reynaud. Entity discovery and
annotation in tables. In EDBT, 2013.

[24] L. Sarmento, V. Jijkoun, M. de Rijke, and E. Oliveira. "more
like these": growing entity classes from seeds. In CIKM,
2007.

[25] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A core
of semantic knowledge unifying wordnet and wikipedia. In
WWW, 2007.

[26] P. Talukdar and F. Pereira. Experiments in graph-based
semi-supervised learning methods for class-instance
acquisition. In ACL, 2010.

[27] P. Venetis, A. Halevy, J. Madhavan, M. Pasca, W. Shen,
F. Wu, G. Miao, and C. Wu. Recovering semantics of tables
on the web. In PVLDB, volume 4, pages 528–538, 2011.

[28] J. Wang, H. Wang, Z. Wang, and K. Zhu. Understanding
tables on the web. In International Conference on
Conceptual Modeling, 2012.

[29] R. Wang and W. Cohen. Iterative set expansion of named
entities using the web. In ICDM, 2008.

[30] R. C. Wang and W. W. Cohen. Language-independent set
expansion of named entities using the web. In ICDM, 2007.

[31] R. West, E. Gabrilovich, K. Murphy, S. Sun, R. Gupta, and
D. Lin. Knowledge base completion via search-based
question answering. In WWW, 2014.

[32] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: A
probabilistic taxonomy for text understanding. In SIGMOD,
2012.

[33] M. Yahya, S. E. Whang, R. Gupta, and A. Halevy. Renoun:
Fact extraction for nominal attributes. In EMNLP, 2014.

[34] M. Yakout, K. Ganjam, K. Chakrabarti, and S. Chaudhuri.
Infogather: entity augmentation and attribute discovery by
holistic matching with web tables. SIGMOD, 2012.

[35] M. Zhang and K. Chakrabarti. Infogather+: Semantic
matching and annotation of numeric and time-varying
attributes in web tables. In SIGMOD, 2013.

