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ABSTRACT 

FPGA manufacturers have offered devices with bitstream 

protection for a number of years. This feature is currently 

primarily used to prevent IP piracy through cloning. 

However, in this paper we describe how protected 

bitstreams can also be used to create a root of trust for the 

clients of cloud computing services. Unlike related 

software-based solutions, this hardware-based approach 

solves a fundamental problem that currently impedes the 

greater adoption of cloud computing: how to secure client 

data and computation from both potential external attackers 

and an untrusted system administrator. We examine how 

this approach can be applied to the specific application of 

handling sensitive health data. This system maintains the 

advantages of the cloud with minimal additional hardware. 

We also describe how this system can be extended to 

provide a more generic secure cloud architecture. 

1. INTRODUCTION 

Cloud computing services offer many advantages for 

potential customers: low startup cost, high-availability, 

instant access to massive computing power, no need for in-

house technical expertise, etc. That said, applications that 

deal with sensitive data present a significant problem for 

the existing cloud computing paradigm in which client 

applications run within a virtual machine on public cloud 

servers. 

 From the client’s viewpoint, they may be hesitant to 

place this type of data on a publically accessibly system to 

which they do not have exclusive and ultimate 

administrator control. For example, although encryption can 

protect the data while in transit to the datacenter or while at 

rest in cloud storage, accessing sensitive data while it is 

actively being used in existing software-based cloud 

machines is as simple as attaching a debugger (or 

equivalent) to the process, virtual machine, or hypervisor. 

While this type of behavior would not be intentionally 

performed by the service provider, it is theoretically 

possible. More importantly, the “access-from-anywhere” 

and high-scale load balancing philosophies of the cloud 

naturally subjects the machines to a multitude of potential 

problems such as viruses and other malware. Thus, clients 

with sensitive data need more explicit guarantees regarding 

the security of their computations and data. 

 Stronger guarantees are also advantageous from the 

cloud operator’s standpoint because it limits their liability. 

For example, even if a leak occurs on a machine outside of 

the cloud, blame may be placed on some latent vulnerability 

of the cloud machines or even upon a member of the cloud 

administration staff – with little recourse to prove 

otherwise. 

 In this paper we describe a system that addresses this 

problem using FPGAs. As we will discuss, due to their 

fundamental characteristics, FPGAs offer a substantially 

smaller and more well-defined attack surface as compared 

to traditional software-based systems. This allows us to 

make stronger security guarantees under more robust attack 

models.  

 The FPGAs are programmed to form a flexible, 

independent trusted third party compute platform within the 

cloud infrastructure. Since these devices run as autonomous 

compute elements, the cloud administrator does not have 

low-level access to computations running within the FPGA. 

Clients can offload sensitive parts of their applications to 

these devices. This in-cloud hardware offloading avoids 

potential vulnerabilities in the software stack and eliminates 

the performance and other issues associated with hosting 

sensitive parts of applications in client machines outside of 

the cloud. 

2. CASE STUDY: MEDICAL RECORDS 

To illustrate the issues that face potential cloud computing 

applications, consider a system for storing and processing 

medical data. Shown in Fig. 1, patient information is stored 

in a database and mined for statistical information (e.g. for 

a pharmaceutical drug trial). The computational 

complexity of mining large databases would make this 

problem well-suited to existing cloud solutions. 

 However, the personal nature of the patient 

information that needs to be stored creates security 

concerns that are not addressed in today’s cloud systems. 

These issues stem from the fact that the database must be 



able to link health and personally identifiable information 

(PII) for each patient (e.g. the patient name and treatment). 

There are strict laws governing applications that store this 

type of information together (e.g. the Health Insurance 

Portability and Accountability Act, or HIPAA). 

 A common way to protect this information is through 

tokenization and encryption. Shown in Fig. 1a, as soon as 

patient data enters the system, all PII is shunted to a 

process that anonymizes it into unique tokens that are 

stored in the database. This PII is also encrypted to allow 

later retrieval, but most computations, such as those 

needed for data mining, can be performed using just the 

tokens. Only a small fraction of processing, such as bill 

generation, typically needs the ciphertext or plaintext that 

the tokens represent. 

 Note that compliance regulations such as HIPAA only 

require PII to be held securely. The rest of the data can be 

held as plaintext. For example, it is acceptable to store the 

fact that a patient has a particular condition as plaintext, as 

long as the patient’s name is kept tokenized or encrypted. 

 Also note that the tokenized and encrypted data is only 

as secure as our handling of the plaintext data before it is 

tokenized/encrypted and the security of the tokenization/ 

encryption process itself. For this reason, when patient data 

is initially uploaded from patients or doctors, it will arrive 

at the servers via a secure protocol (e.g. SSL). However, 

this encryption only protects the data while it is in transit. 

After the data arrives on the server, it is delivered as 

plaintext to the tokenization and encryption process. This 

plaintext input, along with the keys necessary for 

encryption will be resident in the machine when the data is 

tokenized and encrypted. 

 As shown in Fig. 1b, the security concerns regarding 

performing this operation in cloud machines may cause 

clients to continue hosting part of their application in 

traditional, privately-held servers. In this example, 

although the client can leverage the computational and 

storage power of the cloud for the database and analytics, 

they must still maintain one or more local servers to 

perform tokenization and encryption. Unfortunately, in this 

case many of the advantages of the cloud are nullified. 

Clients still need to have local technical know-how and 

infrastructure. Furthermore, applications can suffer severe 

performance issues because inter-site communication is 

much slower than intra-site communication. 

3. THE NEED FOR HARDWARE-BASED TRUSTED 

COMPUTING MODULES 

As shown in Fig. 1c, the security concerns surrounding the 

visibility of sensitive data and the integrity of sensitive 

computations to attackers can be alleviated by offering 

trusted compute resources within the cloud. These discrete 

trusted computing nodes will offer strong security 

guarantees unavailable in normal cloud servers.  

 Segregating sensitive computations not only makes 

sense because it naturally reduces the likelihood for 

outside interaction and interference, these nodes may need 

to make design compromises in the name of security that 

would not be appropriate given the high-scale requirements 

of general-purpose cloud machines. For example, a server 

running in single-user mode is fundamentally more secure 

than one running in multi-user mode, but this drastically 

reduces the utility of the machine. 

 The goal here is for the cloud operator to be able to 

provide security as part of a Service Level Agreement 

(SLA). In today’s cloud systems, customers can be granted 

SLAs with guaranteed minimum characteristics such as 

network bandwidth or CPU time. These SLAs are possible 

because the system can throttle other users and give 

specific customers a provable amount of resources, within 

a degree of mathematical certainty, assuming an 

appropriate model to account for hardware failure. 

 For service providers to offer SLAs for security, the 

trusted compute resources must be able to offer similar 

strong guarantees for security, assuming an appropriate 

attack model. This can be accomplished if the trusted 

computing device has certain capabilities: 

a) Store a key. 

b) Decrypt, authenticate and load binaries sent to the 

device. 

c) Decrypt and authenticate data sent to the device. 

d) Perform the computations exactly as prescribed 

by authenticated binaries on authenticated data. 

 

As will be discussed in more detail in Section 5, all other 

operations that trusted compute nodes need to perform can 

be derived from these four base capabilities.  

These capabilities are subject to the assumptions made 

by the attack model. Our attack model assumes that the 

following operations are sufficiently difficult that they are 

effectively impossible in practice: 
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Fig. 1. Architectures for storing sensitive data 



a) Breaking the cryptography used. Without access 

to keys, we cannot decrypt encrypted and signed 

binaries or data. Also, we cannot create or alter 

existing encrypted and signed binaries or data. 

b) Loading a binary that cannot be decrypted and 

authenticated properly. 

c) Retrieving binary or state information on the 

device from outside the device. Unless a currently 

running computation explicitly sends data out of 

the device, it will remain unknown. 

d) Altering the behavior of a loaded binary. 

e) Altering data currently on the device. 

  

 It is currently difficult for conventional software-based 

cloud servers to offer sufficiently strong guarantees under 

this security model. This is not to say that it is impossible 

build a software-based system to meet an acceptable 

security bar under this attack model. However, it is likely 

that a hardware-based system could be designed in a more 

elegant and easily verified manner, providing less 

opportunity for attackers with superior performance. 

 For example, conventional processors rely on a single, 

physically unified memory space for both program and 

data. Thus, vulnerabilities such as buffer overrun or 

rootkits that can defeat memory protection can alter 

program memory at runtime. This violates assumptions d 

and e in this attack model. 

 In contrast, FPGAs can offer highly isolated memory 

spaces. For example, if a computation is directly 

implemented in logic, the “program” space defining that 

computation is in the configuration of the LUTs, FFs, and 

routing fabric. On the other hand, the “data” space is 

represented in the contents of the block memory and FFs. 

Aside from well-defined structures like the Xilinx ICAP 

(and possibly unusual configurations such as using a LUT 

in both memory and logic modes), there is no way for 

values to migrate between one memory space and the 

other. 

 In a similar vein, from a performance standpoint it is 

highly desirable that a system concurrently handle multiple 

tasks. This might be as basic as the ability to overlap I/O 

and compute. Because processors fundamentally execute 

sequentially, operating systems need to be relatively 

complex to offer this type of feature. The operating system 

must be able to timeslice multiple live processes that all 

share a single physical memory. 

 Customized hardware on the other hand is naturally 

parallel. This functionality can be easily implemented with 

independent circuits, each with their own state machines 

and memories. 

4. RELATED WORK 

There has been a large volume of previous work in 

related areas, attempting to combat the limitations of 

traditional cloud servers. However, all of these approaches 

either have security or practical limitations that make them 

unattractive for use in the cloud. 

For example, the Trusted Platform Module (TPM) [2] 

offers a small suite of functionality on conventional 

processor-based machines to provide features such as 

authenticated boot. However, this system assumes a much 

weaker attack model than we use here. For example, 

although software binaries are authenticated when loaded, 

this is not sufficient to defend against modifications that 

might be made at runtime, such as viruses. This violates 

assumptions d and e in our attack model. 

Similarly, the TPM does not offer the capability to 

perform encryption or decryption locally within the device. 

Instead, it transfers keys stored within the device into the 

machine’s main memory. At this point, it relies on the 

processor to use this key to perform encryption or 

decryption. Again, this relies on the BIOS or software to 

protect the regions of memory that contain the key. This 

protection cannot withstand attacks such as cold boot, 

violating assumption c in our attack model. 

The work in [4] implements a full system, including a 

processor and a TPM inside an FPGA. This full integration 

solves many of the problems of more traditional TPM-

based systems, including reducing the feasibility of cold-

boot attacks. This work is the most similar to the concepts 

in this paper, but our focus is different. [4] focuses on 

bringing the full suite of TPM functionality to a soft 

processor running on the FPGA. This paper streamlines the 

system, offering only the bare functionality necessary to 

uniquely identify and communicate with a computation 

implemented directly in the logic fabric.  

Another approach that is used is to segregate sensitive 

applications into special-purpose high-security servers. 

These machines must be isolated, both logically (in terms of 

an independently firewalled network) and physically (using 

sequestered racks with security cages and cameras). Rather 

than a more general-purpose operating system, these high-

security servers run small-footprint purpose-built software 

stacks. However, this approach profoundly breaks the 

business model of the cloud. For example, such machines 

cannot scale due to the necessary physical isolation 

constraints, they are not generically swappable for failover 

or load balancing, and they may require external third-party 

administration. 

 Secure co-processor (SCP) expansion cards such as 

those available from IBM [7] or smartcards [6] have also 

been used to provide secure computing in untrusted servers. 

These completely self-contained devices can be installed 

inside existing machines, eliminate some of the problems 

associated with high-security servers, such as maintaining 

separate secure facilities. Unfortunately, existing SCPs and 

smartcards are built for highly specific low performance 

applications such as use in cash machines. This makes them 

inappropriate for use in high-scale cloud systems. 
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Fig. 2. Secure computation via homomorphic encryption 
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Fig. 3. Emulating homomorphic encryption 

 

Hardware security modules (HSMs), such as those 

produced by Thales [11], are monolithic security expansion 

cards like SCPs and smartcards, but are built from 

dedicated logic rather than low-frequency embedded 

processors. This allows them to generally offer better 

performance. At the same time, though, they are also sold 

as black-box purpose-built appliances. Thus, different 

applications will generally require different cards. Again, 

this creates migration, scaling and failover problems. 

Furthermore, since server farms generally operate lights-

out, installing new cards to support new applications 

presents a serious logistical problem.  

As we will discuss in Section 5, one way of looking at 

the approach proposed in this paper is that FPGAs can be 

used to build “virtual” HSMs. Essentially, we can install a 

single programmable hardware device and dynamically 

swap out encrypted and signed bitstreams to support an 

unlimited number of existing and future applications 

without any of the management and logistical problems of 

existing HSMs. 

In a completely different vein, homomorphic encryption 

[1, 5] promises to circumvent these issues by pushing the 

entire burden of security into the cryptography that is used. 

For example, as seen in Fig. 2, a fully homomorphic 

cryptographic system would allow arbitrary operations to 

be performed directly on encrypted data. In this example, 

there is a desired operation, Compute, that is normally 

performed on plaintext input and produces plaintext output 

(top of Fig. 2). This can be replaced by a homomorphic 

function, [Compute], that can be executed in an untrusted 

computation platform (bottom of Fig. 2). The homomorphic 

function does not require any keys to perform the operation. 

In this way, the risk to security can be minimized. 

That said, to date, no computationally tractable 

homomorphic encryption algorithm has been developed [1]. 

Since scalable performance is a key feature of the cloud, we 

cannot use any cryptographic system that creates serious 

performance issues. Furthermore, most existing 

homomorphic encryption algorithms are based on relatively 

new cryptographic operations (e.g. bilinear pairing or ad 

hoc polynomial approaches). These have not been as well 

vetted by the cryptography community as compared to the 

operations used in more conventional algorithms such as 

RSA, SHA, and AES. 

As we will discuss in Section 5, the system we propose 

in this paper effectively emulates the behavior of 

homomorphic encryption by providing a protected area 

within the untrusted environment in which sensitive 

operations can be performed securely. As seen in Fig. 3, if 

users were confident that their private data could be safely 

transmitted into this cordoned-off region and manipulated 

there without being observed by any other part of the 

system, including the system administrator, the trusted 

computing device could simply decrypt the ciphertext, 

perform the conventional Compute operation, and re-

encrypt the results. 

5. SYSTEM ARCHITECTURE 

There are three distinct phases for using our FPGA-based 

trusted compute platform: key/infrastructure setup, user 

application setup/operation, and system updates. 

5.1. Key and Infrastructure Setup 

Deployment of the trusted computing nodes begins with a 

trusted authority (TA). All potential clients and the cloud 

operator trust the TA. Before the FPGA platform is 

delivered to the cloud operator, as seen in Fig. 4a, the TA 

generates a random symmetric encryption key, symkfb. This 

symmetric key is copied into the onboard key memory of 

the FPGA. 

 As discussed in [3], modern FPGAs such as the Xilinx 

Virtex-6 contain onboard key memory and bootstrapping 

logic. The key memory can only be written from an 

external port on the FPGA. Similarly, the contents can only 

be read through a dedicated connection to onboard 

bootstrapping logic. Thus, after the trusted authority places 

a key into the onboard key memory on the device, it cannot 

be read externally. The key memory may be externally 

over-writable (e.g. battery-backed RAM or flash), but not 

externally readable. 

 Since this key is the most fundamental link in the 

system and will protect all future interactions, copying the 

key to the FPGA must be done in a secure location, likely 

on the TA’s premises. The necessity for a private transfer 

is denoted in Fig. 4a with a red arrow. After the key has 
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been written, the FPGA can be delivered to the cloud 

operator and installed. In our system, the FPGA is installed 

into an 8x PCI-Express slot in a commodity cloud server. 

 At this point, the FPGA can be used as a virtual HSM. 

For example, if the TA is highly accessible and clients are 

willing to send their applications to the TA, the TA can 

simply encrypt and sign binaries with the symkfb of each 

individual FPGA card. After this, these applications can be 

decrypted and loaded on demand onto the reconfigurable 

platform. This very simple approach is also attractive if the 

set of necessary applications is relatively static (i.e. a fixed 

suite of secure cloud services).  

 Loading encrypted binaries is secure because, as 

shown in Fig. 4, modern FPGAs contain dedicated onboard 

bootstrapping logic built directly into the device by the 

manufacturer. Unlike the majority of the compute 

resources on the FPGA, this circuitry is not customizable. 

Its sole purpose is to read an encrypted configuration 

bitstream from the external platform memory module and 

decrypt/verify it with AES and HMAC using symkfb stored 

in the onboard key memory. If the key in the onboard key 

memory and encrypted bitstream “match” (i.e. the 

bitstream was encrypted with the key), the resulting 

bitstream will be valid and it will be used to program the 

configurable region of the FPGA. If the key and encrypted 

bitstream do not “match” (i.e. the bitstream was encrypted 

with a different key), the resulting bitstream will not be 

valid and the FPGA will raise an error signal indicating a 

problem with configuration. 

 Although the basic model of virtual HSMs is useful by 

itself, we would also like to support a more sophisticated  
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Fig. 5. FPGA system infrastructure and user application 

 

operational model does not require direct TA involvement 

for each and every bitstream. Towards that end, the TA can 

produce a single generic bootstrapping binary for each 

FPGA card that acts as onboard infrastructure that can 

receive and load client applications directly. 



 To accomplish this, as shown in Fig. 4b, the TA 

generates a public/private RSA key pair unique to each 

device, places the private key (privatekf) into the 

bootstrapping binary, and publishes the public key via 

standard public key infrastructure (PKI). As shown in Fig. 

5, in our proof-of concept system, this bootstrapping 

binary contains a PCI Express controller used to link the 

FPGA with the host server, an RSA/SHA core to negotiate 

a symmetric session key exchange with clients, and an 

AES/SHA core to decrypt and authenticate communicate 

with clients. 

 The TA then encrypts the bootstrapping bitstream with 

AES using symkfb and transfers it to the platform flash on 

the FPGA board. As shown in in Fig. 4b, since the 

bitstream is already encrypted, this transfer does not need 

to be protected further. This is denoted with a blue arrow. 

The TA can send this bootstrapping bitstream to the cloud 

operator, who programs it into the platform memory. As 

shown in Fig. 4c, when power is applied to the FPGA after 

installation, the device enters its normal boot sequence. 

5.2. User Application Setup and Operation 

After the bootstrap bitstream is running on an FPGA in the 

cloud, the client (or a developer that the client trusts) can 

create an application for the FPGA to handle sensitive 

data.  

 When the client would like to perform a sensitive 

operation, they request an FPGA from the cloud service. 

The cloud service provisions an FPGA and the client can 

connect to this device to load their application securely 

using standard PKI, similar to an SSH session. The client 

will use the public key of the device to exchange a 

symmetric session key, sessionkf. 

 In our case study, the client application performs 

tokenization/encryption. As shown in Fig. 5, an AES core 

in the client application decrypts incoming data with 

sessionkf. Non-sensitive data is passed back to the 

software-based server and sensitive data is passed to an 

AES/SHA core. This core uses sessionkf to produce 

encrypted and tokenized data. 

 In a system with full flexibility, the client would be 

able to compile their FPGA code locally and send the 

partial bitstream to the FPGA directly via the secure 

connection to the bootstrapping bitstream. As shown in 

Fig. 4d, after a secure session is started with the 

infrastructure code, the client can upload their application. 

As shown in Fig. 5, the infrastructure core can receive this 

partial bitstream, decrypt and authenticate the binary with 

the session key and send it to the ICAP for partial 

reconfiguration (checking to ensure that the bitstream only 

attempts to program logic within the appropriate partial 

reconfiguration region). 

 However, this added flexibility also adds system 

complexity and could introduce security vulnerabilities 

(e.g. the ICAP is a bridge between “program” space and 

“data” space). Operations such as tokenization appear in 

many different applications and will likely be used by 

many different clients. Such common operations can be 

offered as specific secure computation service by the cloud 

provider. As will be discussed in Section 7, for the moment 

our proof-of-concept system only implements this “virtual 

HSM” mode of operation. However, with the exception of 

the ICAP and partial bitstream verification logic, all of the 

infrastructure is in place to provide more extensible 

functionality. 

 Regardless as to whether the client directly develops 

their secure computing application or merely chooses 

among pre-made applications, the bitstreams representing 

these computations are encrypted. Thus, the bitstreams not 

only define computation, using initial values they can store 

pre-set keys. Just as this worked for privatekf, to define the 

device’s identity, it can also work for any application-

specific keys. Thus, the application developer could define 

a static key for encrypting and tokenizing data, separate 

from the session key clients use to communicate with the 

system. 

 Returning to our example, after the client establishes a 

secure session to a device that supports their computation, 

they can send sensitive input data from their local machine 

(encrypting with the session key sessionkf.) and either 

receive output data back in their local machine or on cloud 

machines. This is shown in Fig. 4e. 

5.3. System Updates 

It may be necessary to perform updates to the system. Any 

issues that are found in computations performed in 

programmable logic are relatively easy to fix. These 

include: 

a) The PKI operations for session key negotiation 

are compromised (i.e. new vulnerabilities are 

found in RSA or SHA). 

b) The private RSA key privatekf is lost (i.e. others 

may be able to spoof the public identity of the 

trusted node). 

 

In this case, the trusted authority simply needs to generate 

a new encrypted bootstrapping bitstream – the same 

operation needed to supporting new virtual HSM 

applications. 

 However, this system does rely on certain immutable 

logic pieces and data that is comparatively difficult to 

update. For example, if a new vulnerability were found in 

AES, this would not be an issue for the user application in 

Fig. 5. The client application could simply change to a 

different encryption algorithm or a different key length.  

 On the other hand, this would be a serious problem for 

the system as a whole. This is because the immutable 

bootstrapping logic forms the initial “root of trust”. AES is 



implemented in static gates in the bootstrapping logic 

rather than programmable logic. If a vulnerability is found 

in AES, the FPGA must be replaced to replace the 

bootstrapping logic. 

 Similarly, symkfb is also an essential part of the initial 

root of trust. If the key for a given device were somehow 

leaked from the TA, attackers could reverse-engineer the 

encrypted bootstrap bitstream and retrieve privatekf.  

 Updating this key is difficult because existing FPGAs 

have no internal connection to overwrite the key memory 

from the logic fabric. The external configuration memory 

plus internal key memory arrangement used in most 

FPGAs has only been well vetted by manufacturers for the 

purpose of IP security. Because of this, the manufacturers 

never intended for the contents of the onboard key memory 

to be updated in the field. The only way to update the key 

is via an external connection, so replacing the key requires 

a secure setting. For example, the board would most likely 

need to be returned to the TA for re-provisioning. 

 Looking ahead, FPGA manufacturers can mitigate the 

issues regarding algorithmic vulnerabilities in the 

immutable bootstrapping logic. Existing bitstream 

encryption is designed for IP protection for general 

systems. Many of these general applications may need very 

fast initialization of the device to meet system-wide power-

on timing requirements (e.g. BIOS device enumeration). 

Modern FPGAs can boot from flash in less than a second. 

However, in our use case, the infrastructure bitstream may 

be booted once, and the system may be on for quite some 

time afterwards. In this case, fast booting is not particularly 

important. On the other hand, any vulnerability in the 

encryption used to build the original root of trust would be 

catastrophic. For these reasons, it would make sense for 

FPGA manufacturers to offer higher security, but 

potentially slower algorithms. For example, a larger 

bitwidth key, additional rounds, or even multiple different 

encryption algorithms could be implemented. 

 Similarly, FPGA manufacturers can easily mitigate the 

issues regarding updating the internal key memory. This 

can be accomplished by simply adding a write connection 

port from the programmable fabric to the key memory. 

Although this may allow “rogue” bitstreams to wipe out 

the key, effectively bricking the device, this is no worse 

than can be done via the external write port. 

6. EXPERIMENTAL RESULTS 

We prototyped our proof-of-concept system using the 

Xilinx ML605 board containing a Virtex-6 LX 240T. Logic 

and memory utilization of our system is shown in Table 1. 

 Our infrastructure and tokenization logic is largely 

comprised of various cryptography circuits. Prior work has 

shown that these types of operations can be very efficiently 

mapped to FPGAs [8, 9, 10]. In this regard, the 

performance and resource requirements of our proof-of-

concept system are no surprise. 

 The amount of resources required is relatively small. 

The infrastructure logic (PCIe & DDR3 controllers, and 

key exchange logic) only require 14.8% of the available 

LUTs, 8.6% of the available FF, 5.2% of the available 

block RAMs and 0.5% of the available DSP multipliers. 

Most of these resources are consumed by the PCIe and 

DDR3 controllers.  

 The infrastructure logic is also very fast. Our 2048-bit 

RSA implementation uses a 200 MHz clock and can 

perform ~13 operations per second in the worst case. It 

takes 76ms to perform a session key exchange. 

 The tokenization is also very small and efficient. 

Tokenization with two AES cores and a SHA-256 core 

only requires 3.3% of the available LUTs, 0.3% of the 

available FFs, and 0.7% of the available block memories. 

 Again running with a 200MHz clock, our 256-bit AES 

implementation can process ~572MB/s in sustained 

operation. This easily outstrips the bandwidth of the Gigabit 

Ethernet link on the host server. Our SHA-256 

implementation can process at ~12MB/s. For our 

anticipated use-case, this also easily outstrips the bandwidth 

of the host’s network link. This is because only PII is 

tokenized. Even a single SHA core will be sufficient to 

service the needs of a Gigabit Ethernet link if less than 10% 

of the data coming into the system is PII. Adding a second 

SHA core will require very little additional resources and 

will allow the system to handle the needs of a Gigabit 

Ethernet link if less than 20% of the data coming into the 

system is PII. In the databases considered for this work, 

between 1% and 10% of the information was PII. 

 

 

Table 1.  Resource Utilization (V6 LX240T). 

 LUTs FF BRAM DSP 

Full System 
27237 

(18.1%) 

27076 

(9.0%) 

49 

(6.9%) 

4 

(0.5%) 

· Infrastructure 
22314 

(14.8%) 

26030 

(8.6%) 

43 

(5.2%) 

4 

(0.5%) 

RSA 
2149 

(1.4%) 

2107 

(0.7%) 

3 

(0.4%) 

4 

(0.5%) 

SHA-256 
814 

(0.5%) 

697 

(0.2%) 

2 

(0.2%) 

0 

(0.0%) 

PCIe 

Controller 

13499 

(9.0%) 

14910 

(5.0%) 

38 

(4.6%) 

0 

(0.0%) 

DDR3  

Controller 

5556 

(3.7%) 

8092 

(2.7%) 

0 

(0.00%) 

0 

(0.0%) 

· Tokenization 
4923 

(3.3%) 

1046 

(0.3%) 

6 

(0.7%) 

0 

(0.0%) 

AES x2 
3662 

(2.4%) 

272 

(0.1%) 

4 

(0.5%) 

0 

(0.0%) 

SHA-256 
814 

(0.5%) 

697 

(0.2%) 

2 

(0.2%) 

0 

(0.0%) 

     



7. FUTURE WORK 

Looking ahead, there are two aspects of the system we 

would like to investigate further. First, we would like to 

look for additional applications that can benefit from the 

scale of the cloud, but cannot migrate due to security 

concerns. These include areas such as secure database 

operations and handling payment card transactions. 

 Second, as alluded to in Section 5.2, there are both 

advantages and disadvantages of migrating from our 

current compute model, where we offer secure pre-

compiled “application services”, to a more flexible one, 

where clients can define their own applications without 

involving the trusted authority directly. 

 One problem that we currently sidestep is the 

engineering effort of developing hardware applications, 

particularly by cloud clients. It may be unrealistic to 

assume that most cloud customers will be willing to code 

their applications in Verilog or VHDL. This makes 

interfacing the system with a high-level language compiler 

a necessity. We would like to investigate the different 

ways this integration might be performed and the practical 

limitations of the various high-level language toolflows. 

 Another set of issues we have not addressed are the 

concerns that arise when we allow dynamic 

reconfiguration. Although there are certainly sufficient 

logic and memory resources on the device to implement an 

ICAP, this has non-trivial security implications. The 

frame-based nature of the Xilinx configuration bitstream 

gives us some way of ensuring safe dynamic 

reconfiguration (i.e. not allowing the reconfiguration of 

frames outside of the dynamic region). However, by itself 

this may not be sufficient. For example, we would like to 

make the dynamic region as large as possible to make best 

use of the available hardware. That said, many resources 

such as I/O pins and hard macros have fixed locations. 

This likely impacts the high-level design. 

 Similarly, route-though wires often need to cross a 

dynamic region to meet timing. Here, we would like to 

investigate two issues. First, looking at the possibility of 

performing on-board “deep” inspection of dynamic 

bitstreams to verify that new applications do not eavesdrop 

on or otherwise alter route-though wires. Second, looking 

at ways of partitioning the infrastructure logic with regards 

to signals that do not need to be held securely (and thus 

can safely route-through a dynamic region even in the face 

of potential tampering) and those that to need to be held 

securely (and thus should not route through a dynamic 

region if at all possible). 

8. CONCLUSION 

Cloud computing presents a unique security challenge. In 

contrast to traditional private servers, client may not trust 

system administrators or the integrity of the machines 

themselves. Since many applications only perform a small 

amount of processing on sensitive data, we can address 

these concerns by offloading these operations to a trusted 

computing platform. However, given the new security 

demands placed on cloud systems, we may not be able to 

build these trusted computing nodes effectively using 

traditional CPU-based systems. 

 In this paper, we introduce the idea of using FPGAs to 

build a flexible trusted computing platform. Hardware-

based systems can solve the issues that affect traditional 

software-based systems by providing a well-defined and 

significantly smaller attack surface. This allows us to offer 

stronger guarantees that are more robust against attack.

 Although true homomorphic encryption may be years 

away for real-world use, FPGAs offer a unique practical 

alternative, emulating the effective behavior.  

9. REFERENCES 

[1] V. Vaikuntanathan, “Computing blindfolded: New 

developments in Fully Homomorphic Encryption.” IEEE 

Foundations on Computer Science, 2011. 

[2] Trusted Computing Group, “TPM Main Specification Level 

2”, Version 1.2, Revision 116. 

http://www.trustedcomputinggroup.org/resources/tpm_main

_specification 

[3] Xilinx Corporation, “Virtex-6 FPGA Configuration” User 

Guide UG360, v3.4, 2011 

[4] T. Eisenbarth, T. Guneysu, C. Parr, A. Sadeghi, D. 

Schellenkens, and M. Wolf, “Reconfigurable Trusted 

Computing in Hardware,” ACM Conference on Computer 

and Communications Security, 2007. 

[5] C. Gentry. A fully homomorphic encryption scheme. PhD 

thesis, Stanford University, 2009. 

[6] L. Bouganim and P Pucheral, “Chip-Secured Data Access: 

Confidental Data on Untrusted Servers,” VLDB 2002. 

[7] IBM Corporation, “IBM PCIe Cryptographic Coprocessor”. 

http://www-

03.ibm.com/security/cryptocards/pciecc/overhardware.shtml 

[8] A. Elbirt, W. Yip, B. Chetwynd and C.Parr, “An FPGA-

based performance evaluation of the AES block cipher 

cadidate algorithm finalists,” IEEE Transactions on VLSI 

Systems 9(4), 2001 

[9] T. Blum, C. Paar, “High-Radix Montgomery Modular 

Exponentiation on Reconfigurable Hardware”, IEEE 

Transaction on Computers 50(7), 2001. 

[10] K. Ting, S. Yuen, K. H. Lee, P. Leong, “An FPGA Based 

SHA-256 Processor”, International Conference on Field 

Programmable Logic and Applications, 2002. 

[11] Thales Corportation, “Hardware Security Modules”. 

http://www.thales-

esecurity.com/EN/Products/Hardware%20Security%20Mod

ules.asp


