
FPGAS FOR TRUSTED CLOUD COMPUTING

Ken Eguro

Embedded and Reconfigurable Computing

 Microsoft Research

 Redmond, WA USA

 email: eguro@microsoft.com

Ramarathnam Venkatesan

Cryptography Security and Applied

Mathematics

 Microsoft Research

 Bangalore India and Redmond, WA USA

 email: venkie@microsoft.com

ABSTRACT

FPGA manufacturers have offered devices with bitstream

protection for a number of years. This feature is currently

primarily used to prevent IP piracy through cloning.

However, in this paper we describe how protected

bitstreams can also be used to create a root of trust for the

clients of cloud computing services. Unlike related

software-based solutions, this hardware-based approach

solves a fundamental problem that currently impedes the

greater adoption of cloud computing: how to secure client

data and computation from both potential external attackers

and an untrusted system administrator. We examine how

this approach can be applied to the specific application of

handling sensitive health data. This system maintains the

advantages of the cloud with minimal additional hardware.

We also describe how this system can be extended to

provide a more generic secure cloud architecture.

1. INTRODUCTION

Cloud computing services offer many advantages for

potential customers: low startup cost, high-availability,

instant access to massive computing power, no need for in-

house technical expertise, etc. That said, applications that

deal with sensitive data present a significant problem for

the existing cloud computing paradigm in which client

applications run within a virtual machine on public cloud

servers.

 From the client’s viewpoint, they may be hesitant to

place this type of data on a publically accessibly system to

which they do not have exclusive and ultimate

administrator control. For example, although encryption can

protect the data while in transit to the datacenter or while at

rest in cloud storage, accessing sensitive data while it is

actively being used in existing software-based cloud

machines is as simple as attaching a debugger (or

equivalent) to the process, virtual machine, or hypervisor.

While this type of behavior would not be intentionally

performed by the service provider, it is theoretically

possible. More importantly, the “access-from-anywhere”

and high-scale load balancing philosophies of the cloud

naturally subjects the machines to a multitude of potential

problems such as viruses and other malware. Thus, clients

with sensitive data need more explicit guarantees regarding

the security of their computations and data.

 Stronger guarantees are also advantageous from the

cloud operator’s standpoint because it limits their liability.

For example, even if a leak occurs on a machine outside of

the cloud, blame may be placed on some latent vulnerability

of the cloud machines or even upon a member of the cloud

administration staff – with little recourse to prove

otherwise.

 In this paper we describe a system that addresses this

problem using FPGAs. As we will discuss, due to their

fundamental characteristics, FPGAs offer a substantially

smaller and more well-defined attack surface as compared

to traditional software-based systems. This allows us to

make stronger security guarantees under more robust attack

models.

 The FPGAs are programmed to form a flexible,

independent trusted third party compute platform within the

cloud infrastructure. Since these devices run as autonomous

compute elements, the cloud administrator does not have

low-level access to computations running within the FPGA.

Clients can offload sensitive parts of their applications to

these devices. This in-cloud hardware offloading avoids

potential vulnerabilities in the software stack and eliminates

the performance and other issues associated with hosting

sensitive parts of applications in client machines outside of

the cloud.

2. CASE STUDY: MEDICAL RECORDS

To illustrate the issues that face potential cloud computing

applications, consider a system for storing and processing

medical data. Shown in Fig. 1, patient information is stored

in a database and mined for statistical information (e.g. for

a pharmaceutical drug trial). The computational

complexity of mining large databases would make this

problem well-suited to existing cloud solutions.

 However, the personal nature of the patient

information that needs to be stored creates security

concerns that are not addressed in today’s cloud systems.

These issues stem from the fact that the database must be

able to link health and personally identifiable information

(PII) for each patient (e.g. the patient name and treatment).

There are strict laws governing applications that store this

type of information together (e.g. the Health Insurance

Portability and Accountability Act, or HIPAA).

 A common way to protect this information is through

tokenization and encryption. Shown in Fig. 1a, as soon as

patient data enters the system, all PII is shunted to a

process that anonymizes it into unique tokens that are

stored in the database. This PII is also encrypted to allow

later retrieval, but most computations, such as those

needed for data mining, can be performed using just the

tokens. Only a small fraction of processing, such as bill

generation, typically needs the ciphertext or plaintext that

the tokens represent.

 Note that compliance regulations such as HIPAA only

require PII to be held securely. The rest of the data can be

held as plaintext. For example, it is acceptable to store the

fact that a patient has a particular condition as plaintext, as

long as the patient’s name is kept tokenized or encrypted.

 Also note that the tokenized and encrypted data is only

as secure as our handling of the plaintext data before it is

tokenized/encrypted and the security of the tokenization/

encryption process itself. For this reason, when patient data

is initially uploaded from patients or doctors, it will arrive

at the servers via a secure protocol (e.g. SSL). However,

this encryption only protects the data while it is in transit.

After the data arrives on the server, it is delivered as

plaintext to the tokenization and encryption process. This

plaintext input, along with the keys necessary for

encryption will be resident in the machine when the data is

tokenized and encrypted.

 As shown in Fig. 1b, the security concerns regarding

performing this operation in cloud machines may cause

clients to continue hosting part of their application in

traditional, privately-held servers. In this example,

although the client can leverage the computational and

storage power of the cloud for the database and analytics,

they must still maintain one or more local servers to

perform tokenization and encryption. Unfortunately, in this

case many of the advantages of the cloud are nullified.

Clients still need to have local technical know-how and

infrastructure. Furthermore, applications can suffer severe

performance issues because inter-site communication is

much slower than intra-site communication.

3. THE NEED FOR HARDWARE-BASED TRUSTED

COMPUTING MODULES

As shown in Fig. 1c, the security concerns surrounding the

visibility of sensitive data and the integrity of sensitive

computations to attackers can be alleviated by offering

trusted compute resources within the cloud. These discrete

trusted computing nodes will offer strong security

guarantees unavailable in normal cloud servers.

 Segregating sensitive computations not only makes

sense because it naturally reduces the likelihood for

outside interaction and interference, these nodes may need

to make design compromises in the name of security that

would not be appropriate given the high-scale requirements

of general-purpose cloud machines. For example, a server

running in single-user mode is fundamentally more secure

than one running in multi-user mode, but this drastically

reduces the utility of the machine.

 The goal here is for the cloud operator to be able to

provide security as part of a Service Level Agreement

(SLA). In today’s cloud systems, customers can be granted

SLAs with guaranteed minimum characteristics such as

network bandwidth or CPU time. These SLAs are possible

because the system can throttle other users and give

specific customers a provable amount of resources, within

a degree of mathematical certainty, assuming an

appropriate model to account for hardware failure.

 For service providers to offer SLAs for security, the

trusted compute resources must be able to offer similar

strong guarantees for security, assuming an appropriate

attack model. This can be accomplished if the trusted

computing device has certain capabilities:

a) Store a key.

b) Decrypt, authenticate and load binaries sent to the

device.

c) Decrypt and authenticate data sent to the device.

d) Perform the computations exactly as prescribed

by authenticated binaries on authenticated data.

As will be discussed in more detail in Section 5, all other

operations that trusted compute nodes need to perform can

be derived from these four base capabilities.

These capabilities are subject to the assumptions made

by the attack model. Our attack model assumes that the

following operations are sufficiently difficult that they are

effectively impossible in practice:

Tokenization &

Encryption

Personal

Info

Tokenization &

Encryption

Client Servers

Patients

0 - N Non-Sensitive Data

Database

Client Servers

Analytics

Cloud Servers

Non-Sensitive Data

Database

Analytics

Personal

Info
Patients

0 - N

Tokenization &

Encryption

Database

Analytics

Cloud Servers

Non-Sensitive Data

Personal

InfoPatients

0 - N

Secure Hardware

a)

Traditional

Local

Servers

b)

Local

Server/

Cloud

Hybrid

c)

Cloud

w/Secure

Hardware

Cloud

Fig. 1. Architectures for storing sensitive data

a) Breaking the cryptography used. Without access

to keys, we cannot decrypt encrypted and signed

binaries or data. Also, we cannot create or alter

existing encrypted and signed binaries or data.

b) Loading a binary that cannot be decrypted and

authenticated properly.

c) Retrieving binary or state information on the

device from outside the device. Unless a currently

running computation explicitly sends data out of

the device, it will remain unknown.

d) Altering the behavior of a loaded binary.

e) Altering data currently on the device.

 It is currently difficult for conventional software-based

cloud servers to offer sufficiently strong guarantees under

this security model. This is not to say that it is impossible

build a software-based system to meet an acceptable

security bar under this attack model. However, it is likely

that a hardware-based system could be designed in a more

elegant and easily verified manner, providing less

opportunity for attackers with superior performance.

 For example, conventional processors rely on a single,

physically unified memory space for both program and

data. Thus, vulnerabilities such as buffer overrun or

rootkits that can defeat memory protection can alter

program memory at runtime. This violates assumptions d

and e in this attack model.

 In contrast, FPGAs can offer highly isolated memory

spaces. For example, if a computation is directly

implemented in logic, the “program” space defining that

computation is in the configuration of the LUTs, FFs, and

routing fabric. On the other hand, the “data” space is

represented in the contents of the block memory and FFs.

Aside from well-defined structures like the Xilinx ICAP

(and possibly unusual configurations such as using a LUT

in both memory and logic modes), there is no way for

values to migrate between one memory space and the

other.

 In a similar vein, from a performance standpoint it is

highly desirable that a system concurrently handle multiple

tasks. This might be as basic as the ability to overlap I/O

and compute. Because processors fundamentally execute

sequentially, operating systems need to be relatively

complex to offer this type of feature. The operating system

must be able to timeslice multiple live processes that all

share a single physical memory.

 Customized hardware on the other hand is naturally

parallel. This functionality can be easily implemented with

independent circuits, each with their own state machines

and memories.

4. RELATED WORK

There has been a large volume of previous work in

related areas, attempting to combat the limitations of

traditional cloud servers. However, all of these approaches

either have security or practical limitations that make them

unattractive for use in the cloud.

For example, the Trusted Platform Module (TPM) [2]

offers a small suite of functionality on conventional

processor-based machines to provide features such as

authenticated boot. However, this system assumes a much

weaker attack model than we use here. For example,

although software binaries are authenticated when loaded,

this is not sufficient to defend against modifications that

might be made at runtime, such as viruses. This violates

assumptions d and e in our attack model.

Similarly, the TPM does not offer the capability to

perform encryption or decryption locally within the device.

Instead, it transfers keys stored within the device into the

machine’s main memory. At this point, it relies on the

processor to use this key to perform encryption or

decryption. Again, this relies on the BIOS or software to

protect the regions of memory that contain the key. This

protection cannot withstand attacks such as cold boot,

violating assumption c in our attack model.

The work in [4] implements a full system, including a

processor and a TPM inside an FPGA. This full integration

solves many of the problems of more traditional TPM-

based systems, including reducing the feasibility of cold-

boot attacks. This work is the most similar to the concepts

in this paper, but our focus is different. [4] focuses on

bringing the full suite of TPM functionality to a soft

processor running on the FPGA. This paper streamlines the

system, offering only the bare functionality necessary to

uniquely identify and communicate with a computation

implemented directly in the logic fabric.

Another approach that is used is to segregate sensitive

applications into special-purpose high-security servers.

These machines must be isolated, both logically (in terms of

an independently firewalled network) and physically (using

sequestered racks with security cages and cameras). Rather

than a more general-purpose operating system, these high-

security servers run small-footprint purpose-built software

stacks. However, this approach profoundly breaks the

business model of the cloud. For example, such machines

cannot scale due to the necessary physical isolation

constraints, they are not generically swappable for failover

or load balancing, and they may require external third-party

administration.

 Secure co-processor (SCP) expansion cards such as

those available from IBM [7] or smartcards [6] have also

been used to provide secure computing in untrusted servers.

These completely self-contained devices can be installed

inside existing machines, eliminate some of the problems

associated with high-security servers, such as maintaining

separate secure facilities. Unfortunately, existing SCPs and

smartcards are built for highly specific low performance

applications such as use in cash machines. This makes them

inappropriate for use in high-scale cloud systems.

Input [Input]
Encrypt

[Output]Output
Decrypt

[Compute]

Input Output
Compute

PC – User A

PC – User B

Conventional PC

Untrusted Cloud Machine

Fig. 2. Secure computation via homomorphic encryption

Input [Input]
Encrypt

[Output] Output
Encrypt

Compute

Input
Decrypt

Output

Decrypt

PC – User A

PC – User B

FPGA-Based

Trusted Computing

Device

Untrusted Cloud Machine

Fig. 3. Emulating homomorphic encryption

Hardware security modules (HSMs), such as those

produced by Thales [11], are monolithic security expansion

cards like SCPs and smartcards, but are built from

dedicated logic rather than low-frequency embedded

processors. This allows them to generally offer better

performance. At the same time, though, they are also sold

as black-box purpose-built appliances. Thus, different

applications will generally require different cards. Again,

this creates migration, scaling and failover problems.

Furthermore, since server farms generally operate lights-

out, installing new cards to support new applications

presents a serious logistical problem.

As we will discuss in Section 5, one way of looking at

the approach proposed in this paper is that FPGAs can be

used to build “virtual” HSMs. Essentially, we can install a

single programmable hardware device and dynamically

swap out encrypted and signed bitstreams to support an

unlimited number of existing and future applications

without any of the management and logistical problems of

existing HSMs.

In a completely different vein, homomorphic encryption

[1, 5] promises to circumvent these issues by pushing the

entire burden of security into the cryptography that is used.

For example, as seen in Fig. 2, a fully homomorphic

cryptographic system would allow arbitrary operations to

be performed directly on encrypted data. In this example,

there is a desired operation, Compute, that is normally

performed on plaintext input and produces plaintext output

(top of Fig. 2). This can be replaced by a homomorphic

function, [Compute], that can be executed in an untrusted

computation platform (bottom of Fig. 2). The homomorphic

function does not require any keys to perform the operation.

In this way, the risk to security can be minimized.

That said, to date, no computationally tractable

homomorphic encryption algorithm has been developed [1].

Since scalable performance is a key feature of the cloud, we

cannot use any cryptographic system that creates serious

performance issues. Furthermore, most existing

homomorphic encryption algorithms are based on relatively

new cryptographic operations (e.g. bilinear pairing or ad

hoc polynomial approaches). These have not been as well

vetted by the cryptography community as compared to the

operations used in more conventional algorithms such as

RSA, SHA, and AES.

As we will discuss in Section 5, the system we propose

in this paper effectively emulates the behavior of

homomorphic encryption by providing a protected area

within the untrusted environment in which sensitive

operations can be performed securely. As seen in Fig. 3, if

users were confident that their private data could be safely

transmitted into this cordoned-off region and manipulated

there without being observed by any other part of the

system, including the system administrator, the trusted

computing device could simply decrypt the ciphertext,

perform the conventional Compute operation, and re-

encrypt the results.

5. SYSTEM ARCHITECTURE

There are three distinct phases for using our FPGA-based

trusted compute platform: key/infrastructure setup, user

application setup/operation, and system updates.

5.1. Key and Infrastructure Setup

Deployment of the trusted computing nodes begins with a

trusted authority (TA). All potential clients and the cloud

operator trust the TA. Before the FPGA platform is

delivered to the cloud operator, as seen in Fig. 4a, the TA

generates a random symmetric encryption key, symkfb. This

symmetric key is copied into the onboard key memory of

the FPGA.

 As discussed in [3], modern FPGAs such as the Xilinx

Virtex-6 contain onboard key memory and bootstrapping

logic. The key memory can only be written from an

external port on the FPGA. Similarly, the contents can only

be read through a dedicated connection to onboard

bootstrapping logic. Thus, after the trusted authority places

a key into the onboard key memory on the device, it cannot

be read externally. The key memory may be externally

over-writable (e.g. battery-backed RAM or flash), but not

externally readable.

 Since this key is the most fundamental link in the

system and will protect all future interactions, copying the

key to the FPGA must be done in a secure location, likely

on the TA’s premises. The necessity for a private transfer

is denoted in Fig. 4a with a red arrow. After the key has

FPGA Platform Board

FPGA

Onboard

Boot. Logic

symkfb

Generate

symkfb

Trusted

Authority

PC – Client

Platform

Memory

a)

fb
fb symk

w/privatek

Bitstream

Bootstrap



















FPGA Platform Board

Untrusted Cloud Machine

FPGA

Onboard

Boot. Logic

symkfbGenerate

privatekfb

& patch

bitstream

Trusted

Authority

b)

PC – Client

been written, the FPGA can be delivered to the cloud

operator and installed. In our system, the FPGA is installed

into an 8x PCI-Express slot in a commodity cloud server.

 At this point, the FPGA can be used as a virtual HSM.

For example, if the TA is highly accessible and clients are

willing to send their applications to the TA, the TA can

simply encrypt and sign binaries with the symkfb of each

individual FPGA card. After this, these applications can be

decrypted and loaded on demand onto the reconfigurable

platform. This very simple approach is also attractive if the

set of necessary applications is relatively static (i.e. a fixed

suite of secure cloud services).

 Loading encrypted binaries is secure because, as

shown in Fig. 4, modern FPGAs contain dedicated onboard

bootstrapping logic built directly into the device by the

manufacturer. Unlike the majority of the compute

resources on the FPGA, this circuitry is not customizable.

Its sole purpose is to read an encrypted configuration

bitstream from the external platform memory module and

decrypt/verify it with AES and HMAC using symkfb stored

in the onboard key memory. If the key in the onboard key

memory and encrypted bitstream “match” (i.e. the

bitstream was encrypted with the key), the resulting

bitstream will be valid and it will be used to program the

configurable region of the FPGA. If the key and encrypted

bitstream do not “match” (i.e. the bitstream was encrypted

with a different key), the resulting bitstream will not be

valid and the FPGA will raise an error signal indicating a

problem with configuration.

 Although the basic model of virtual HSMs is useful by

itself, we would also like to support a more sophisticated

Bootstrap
Circuit

FPGA Platform Board

Untrusted Cloud Machine

FPGA

Onboard

Boot. Logic

symkfb

Trusted

Authority

Program

c)

fb
fb symk

w/privatek

Bitstream

Bootstrap



















PC – Client

FPGA Platform Board

Untrusted Cloud Machine

FPGA

Onboard

Boot. Logic

symkfb

Bootstrap
Circuit

C
o

m
p

.

Trusted

Authority

[Comp.] sessionkfb

Program

d)

fb
fb symk

w/privatek

Bitstream

Bootstrap



















PC – Client

FPGA Platform Board

Untrusted Cloud Machine

FPGA

Onboard

Boot. Logic

symkfb

Bootstrap
Circuit

C
o

m
p

.

Trusted

Authority

[Output] sessionkfb

e)

PC – Client

fb
fb symk

w/privatek

Bitstream

Bootstrap



















fbsessionk
data

Input

















Output

Requires Private Communication (unencrypted)

Does Not Require Private Communication (encrypted)
Fig. 4. System architecture, setup, operation and update

FPGA

RSA &

SHA
privatekf

sessionkf

AES
AES &

SHA

Non-Sensitive Plaintext

P
C

I-
E

xp
re

ss

C
o

n
tr

o
ll

e
r

Sensitive Plaintext

Cloud Server

Session

Key Exch.

User Data

Transfer

Encrypted & Tokenized Data

User Application

Infrastructure

AES &

SHA

App.

Transfer

ICAP

Fig. 5. FPGA system infrastructure and user application

operational model does not require direct TA involvement

for each and every bitstream. Towards that end, the TA can

produce a single generic bootstrapping binary for each

FPGA card that acts as onboard infrastructure that can

receive and load client applications directly.

 To accomplish this, as shown in Fig. 4b, the TA

generates a public/private RSA key pair unique to each

device, places the private key (privatekf) into the

bootstrapping binary, and publishes the public key via

standard public key infrastructure (PKI). As shown in Fig.

5, in our proof-of concept system, this bootstrapping

binary contains a PCI Express controller used to link the

FPGA with the host server, an RSA/SHA core to negotiate

a symmetric session key exchange with clients, and an

AES/SHA core to decrypt and authenticate communicate

with clients.

 The TA then encrypts the bootstrapping bitstream with

AES using symkfb and transfers it to the platform flash on

the FPGA board. As shown in in Fig. 4b, since the

bitstream is already encrypted, this transfer does not need

to be protected further. This is denoted with a blue arrow.

The TA can send this bootstrapping bitstream to the cloud

operator, who programs it into the platform memory. As

shown in Fig. 4c, when power is applied to the FPGA after

installation, the device enters its normal boot sequence.

5.2. User Application Setup and Operation

After the bootstrap bitstream is running on an FPGA in the

cloud, the client (or a developer that the client trusts) can

create an application for the FPGA to handle sensitive

data.

 When the client would like to perform a sensitive

operation, they request an FPGA from the cloud service.

The cloud service provisions an FPGA and the client can

connect to this device to load their application securely

using standard PKI, similar to an SSH session. The client

will use the public key of the device to exchange a

symmetric session key, sessionkf.

 In our case study, the client application performs

tokenization/encryption. As shown in Fig. 5, an AES core

in the client application decrypts incoming data with

sessionkf. Non-sensitive data is passed back to the

software-based server and sensitive data is passed to an

AES/SHA core. This core uses sessionkf to produce

encrypted and tokenized data.

 In a system with full flexibility, the client would be

able to compile their FPGA code locally and send the

partial bitstream to the FPGA directly via the secure

connection to the bootstrapping bitstream. As shown in

Fig. 4d, after a secure session is started with the

infrastructure code, the client can upload their application.

As shown in Fig. 5, the infrastructure core can receive this

partial bitstream, decrypt and authenticate the binary with

the session key and send it to the ICAP for partial

reconfiguration (checking to ensure that the bitstream only

attempts to program logic within the appropriate partial

reconfiguration region).

 However, this added flexibility also adds system

complexity and could introduce security vulnerabilities

(e.g. the ICAP is a bridge between “program” space and

“data” space). Operations such as tokenization appear in

many different applications and will likely be used by

many different clients. Such common operations can be

offered as specific secure computation service by the cloud

provider. As will be discussed in Section 7, for the moment

our proof-of-concept system only implements this “virtual

HSM” mode of operation. However, with the exception of

the ICAP and partial bitstream verification logic, all of the

infrastructure is in place to provide more extensible

functionality.

 Regardless as to whether the client directly develops

their secure computing application or merely chooses

among pre-made applications, the bitstreams representing

these computations are encrypted. Thus, the bitstreams not

only define computation, using initial values they can store

pre-set keys. Just as this worked for privatekf, to define the

device’s identity, it can also work for any application-

specific keys. Thus, the application developer could define

a static key for encrypting and tokenizing data, separate

from the session key clients use to communicate with the

system.

 Returning to our example, after the client establishes a

secure session to a device that supports their computation,

they can send sensitive input data from their local machine

(encrypting with the session key sessionkf.) and either

receive output data back in their local machine or on cloud

machines. This is shown in Fig. 4e.

5.3. System Updates

It may be necessary to perform updates to the system. Any

issues that are found in computations performed in

programmable logic are relatively easy to fix. These

include:

a) The PKI operations for session key negotiation

are compromised (i.e. new vulnerabilities are

found in RSA or SHA).

b) The private RSA key privatekf is lost (i.e. others

may be able to spoof the public identity of the

trusted node).

In this case, the trusted authority simply needs to generate

a new encrypted bootstrapping bitstream – the same

operation needed to supporting new virtual HSM

applications.

 However, this system does rely on certain immutable

logic pieces and data that is comparatively difficult to

update. For example, if a new vulnerability were found in

AES, this would not be an issue for the user application in

Fig. 5. The client application could simply change to a

different encryption algorithm or a different key length.

 On the other hand, this would be a serious problem for

the system as a whole. This is because the immutable

bootstrapping logic forms the initial “root of trust”. AES is

implemented in static gates in the bootstrapping logic

rather than programmable logic. If a vulnerability is found

in AES, the FPGA must be replaced to replace the

bootstrapping logic.

 Similarly, symkfb is also an essential part of the initial

root of trust. If the key for a given device were somehow

leaked from the TA, attackers could reverse-engineer the

encrypted bootstrap bitstream and retrieve privatekf.

 Updating this key is difficult because existing FPGAs

have no internal connection to overwrite the key memory

from the logic fabric. The external configuration memory

plus internal key memory arrangement used in most

FPGAs has only been well vetted by manufacturers for the

purpose of IP security. Because of this, the manufacturers

never intended for the contents of the onboard key memory

to be updated in the field. The only way to update the key

is via an external connection, so replacing the key requires

a secure setting. For example, the board would most likely

need to be returned to the TA for re-provisioning.

 Looking ahead, FPGA manufacturers can mitigate the

issues regarding algorithmic vulnerabilities in the

immutable bootstrapping logic. Existing bitstream

encryption is designed for IP protection for general

systems. Many of these general applications may need very

fast initialization of the device to meet system-wide power-

on timing requirements (e.g. BIOS device enumeration).

Modern FPGAs can boot from flash in less than a second.

However, in our use case, the infrastructure bitstream may

be booted once, and the system may be on for quite some

time afterwards. In this case, fast booting is not particularly

important. On the other hand, any vulnerability in the

encryption used to build the original root of trust would be

catastrophic. For these reasons, it would make sense for

FPGA manufacturers to offer higher security, but

potentially slower algorithms. For example, a larger

bitwidth key, additional rounds, or even multiple different

encryption algorithms could be implemented.

 Similarly, FPGA manufacturers can easily mitigate the

issues regarding updating the internal key memory. This

can be accomplished by simply adding a write connection

port from the programmable fabric to the key memory.

Although this may allow “rogue” bitstreams to wipe out

the key, effectively bricking the device, this is no worse

than can be done via the external write port.

6. EXPERIMENTAL RESULTS

We prototyped our proof-of-concept system using the

Xilinx ML605 board containing a Virtex-6 LX 240T. Logic

and memory utilization of our system is shown in Table 1.

 Our infrastructure and tokenization logic is largely

comprised of various cryptography circuits. Prior work has

shown that these types of operations can be very efficiently

mapped to FPGAs [8, 9, 10]. In this regard, the

performance and resource requirements of our proof-of-

concept system are no surprise.

 The amount of resources required is relatively small.

The infrastructure logic (PCIe & DDR3 controllers, and

key exchange logic) only require 14.8% of the available

LUTs, 8.6% of the available FF, 5.2% of the available

block RAMs and 0.5% of the available DSP multipliers.

Most of these resources are consumed by the PCIe and

DDR3 controllers.

 The infrastructure logic is also very fast. Our 2048-bit

RSA implementation uses a 200 MHz clock and can

perform ~13 operations per second in the worst case. It

takes 76ms to perform a session key exchange.

 The tokenization is also very small and efficient.

Tokenization with two AES cores and a SHA-256 core

only requires 3.3% of the available LUTs, 0.3% of the

available FFs, and 0.7% of the available block memories.

 Again running with a 200MHz clock, our 256-bit AES

implementation can process ~572MB/s in sustained

operation. This easily outstrips the bandwidth of the Gigabit

Ethernet link on the host server. Our SHA-256

implementation can process at ~12MB/s. For our

anticipated use-case, this also easily outstrips the bandwidth

of the host’s network link. This is because only PII is

tokenized. Even a single SHA core will be sufficient to

service the needs of a Gigabit Ethernet link if less than 10%

of the data coming into the system is PII. Adding a second

SHA core will require very little additional resources and

will allow the system to handle the needs of a Gigabit

Ethernet link if less than 20% of the data coming into the

system is PII. In the databases considered for this work,

between 1% and 10% of the information was PII.

Table 1. Resource Utilization (V6 LX240T).

 LUTs FF BRAM DSP

Full System
27237

(18.1%)

27076

(9.0%)

49

(6.9%)

4

(0.5%)

· Infrastructure
22314

(14.8%)

26030

(8.6%)

43

(5.2%)

4

(0.5%)

RSA
2149

(1.4%)

2107

(0.7%)

3

(0.4%)

4

(0.5%)

SHA-256
814

(0.5%)

697

(0.2%)

2

(0.2%)

0

(0.0%)

PCIe

Controller

13499

(9.0%)

14910

(5.0%)

38

(4.6%)

0

(0.0%)

DDR3

Controller

5556

(3.7%)

8092

(2.7%)

0

(0.00%)

0

(0.0%)

· Tokenization
4923

(3.3%)

1046

(0.3%)

6

(0.7%)

0

(0.0%)

AES x2
3662

(2.4%)

272

(0.1%)

4

(0.5%)

0

(0.0%)

SHA-256
814

(0.5%)

697

(0.2%)

2

(0.2%)

0

(0.0%)

7. FUTURE WORK

Looking ahead, there are two aspects of the system we

would like to investigate further. First, we would like to

look for additional applications that can benefit from the

scale of the cloud, but cannot migrate due to security

concerns. These include areas such as secure database

operations and handling payment card transactions.

 Second, as alluded to in Section 5.2, there are both

advantages and disadvantages of migrating from our

current compute model, where we offer secure pre-

compiled “application services”, to a more flexible one,

where clients can define their own applications without

involving the trusted authority directly.

 One problem that we currently sidestep is the

engineering effort of developing hardware applications,

particularly by cloud clients. It may be unrealistic to

assume that most cloud customers will be willing to code

their applications in Verilog or VHDL. This makes

interfacing the system with a high-level language compiler

a necessity. We would like to investigate the different

ways this integration might be performed and the practical

limitations of the various high-level language toolflows.

 Another set of issues we have not addressed are the

concerns that arise when we allow dynamic

reconfiguration. Although there are certainly sufficient

logic and memory resources on the device to implement an

ICAP, this has non-trivial security implications. The

frame-based nature of the Xilinx configuration bitstream

gives us some way of ensuring safe dynamic

reconfiguration (i.e. not allowing the reconfiguration of

frames outside of the dynamic region). However, by itself

this may not be sufficient. For example, we would like to

make the dynamic region as large as possible to make best

use of the available hardware. That said, many resources

such as I/O pins and hard macros have fixed locations.

This likely impacts the high-level design.

 Similarly, route-though wires often need to cross a

dynamic region to meet timing. Here, we would like to

investigate two issues. First, looking at the possibility of

performing on-board “deep” inspection of dynamic

bitstreams to verify that new applications do not eavesdrop

on or otherwise alter route-though wires. Second, looking

at ways of partitioning the infrastructure logic with regards

to signals that do not need to be held securely (and thus

can safely route-through a dynamic region even in the face

of potential tampering) and those that to need to be held

securely (and thus should not route through a dynamic

region if at all possible).

8. CONCLUSION

Cloud computing presents a unique security challenge. In

contrast to traditional private servers, client may not trust

system administrators or the integrity of the machines

themselves. Since many applications only perform a small

amount of processing on sensitive data, we can address

these concerns by offloading these operations to a trusted

computing platform. However, given the new security

demands placed on cloud systems, we may not be able to

build these trusted computing nodes effectively using

traditional CPU-based systems.

 In this paper, we introduce the idea of using FPGAs to

build a flexible trusted computing platform. Hardware-

based systems can solve the issues that affect traditional

software-based systems by providing a well-defined and

significantly smaller attack surface. This allows us to offer

stronger guarantees that are more robust against attack.

 Although true homomorphic encryption may be years

away for real-world use, FPGAs offer a unique practical

alternative, emulating the effective behavior.

9. REFERENCES

[1] V. Vaikuntanathan, “Computing blindfolded: New

developments in Fully Homomorphic Encryption.” IEEE

Foundations on Computer Science, 2011.

[2] Trusted Computing Group, “TPM Main Specification Level

2”, Version 1.2, Revision 116.

http://www.trustedcomputinggroup.org/resources/tpm_main

_specification

[3] Xilinx Corporation, “Virtex-6 FPGA Configuration” User

Guide UG360, v3.4, 2011

[4] T. Eisenbarth, T. Guneysu, C. Parr, A. Sadeghi, D.

Schellenkens, and M. Wolf, “Reconfigurable Trusted

Computing in Hardware,” ACM Conference on Computer

and Communications Security, 2007.

[5] C. Gentry. A fully homomorphic encryption scheme. PhD

thesis, Stanford University, 2009.

[6] L. Bouganim and P Pucheral, “Chip-Secured Data Access:

Confidental Data on Untrusted Servers,” VLDB 2002.

[7] IBM Corporation, “IBM PCIe Cryptographic Coprocessor”.

http://www-

03.ibm.com/security/cryptocards/pciecc/overhardware.shtml

[8] A. Elbirt, W. Yip, B. Chetwynd and C.Parr, “An FPGA-

based performance evaluation of the AES block cipher

cadidate algorithm finalists,” IEEE Transactions on VLSI

Systems 9(4), 2001

[9] T. Blum, C. Paar, “High-Radix Montgomery Modular

Exponentiation on Reconfigurable Hardware”, IEEE

Transaction on Computers 50(7), 2001.

[10] K. Ting, S. Yuen, K. H. Lee, P. Leong, “An FPGA Based

SHA-256 Processor”, International Conference on Field

Programmable Logic and Applications, 2002.

[11] Thales Corportation, “Hardware Security Modules”.

http://www.thales-

esecurity.com/EN/Products/Hardware%20Security%20Mod

ules.asp

