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ABSTRACT 

Random decision tree classification is used in a variety of 

applications, from speech recognition to Web search 

engines. Decision trees are used in the Microsoft Kinect 

vision pipeline to recognize human body parts and gestures 

for a more natural computer-user interface. Tree-based 

classification can be taxing, both in terms of computational 

load and memory bandwidth. This makes highly-optimized 

hardware implementations attractive, particularly given the 

strict power and form factor limitations of embedded or 

mobile platforms. In this paper we present a complete 

architecture that interfaces the Kinect depth-image sensor to 

an FPGA-based implementation of the Forest Fire pixel 

classification algorithm. Key performance parameters, 

algorithmic improvements and design trade-off are 

discussed. 

1. INTRODUCTION 

A hallmark of the Microsoft Kinect system is its high-

quality vision-based object recognition. An important and 

computationally-intensive part of this processing is pixel 

classification using random decision trees [6, 7]. In the 

existing implementation, the camera is simply a sensor and 

classification is performed entirely in software. On a 

standard PC, classification can fully occupy a modern CPU 

in order to maintain the desired 30 frames per second. 

 As the use of vision-based systems becomes more 

ubiquitous (e.g. as a generic natural user interface with 

more sophisticated processing, etc.), software-based 

classification may not be sufficient. This is certainly a 

problem for low-end embedded platforms. 

 Specifically, we need to consider two aspects of the 

random decision tree processing: 

 Efficiency – Constant active use means that the 

computation must be efficient. This is both in terms of 

power consumption and in terms of the use of shared 

resources, particularly bandwidth to external memory. 

 Performance – Fast computation with guaranteed 

worst-case performance can improve interactive 

experiences and allows more time for other processing. 

 These considerations make it attractive to implement 

decision tree processing directly in hardware. Towards this 

end, FPGAs are an ideal computational platform. The 

flexibility of FPGAs gives us two advantages. First, we can 

update the classification algorithm itself to accommodate 

new innovations or to deal with different use cases. This 

flexibility is particularly important since we are just 

beginning to understand the real-world demands on, and 

applications of, a practical consumer-grade vision system. 

 Second, modern FPGAs are large enough that they can 

encapsulate full systems. The remaining portions of the 

vision pipeline and the ultimate consumer of the data (end-

user applications) can be placed alongside the decision tree 

processing and gain the power/performance advantages of 

direct hardware implementation. 

 The main contributions of this paper are: 

• The first Verilog implementation of the Kinect 

decision tree pixel classification algorithm (Forest Fire). 

• Novel algorithmic and architectural optimizations for 

processing randomized decision trees that account for the 

limitations of real-world memory systems. 

• A framework for developing and debugging vision 

algorithms on the Xilinx ML605 board. This system can 

interface with the Microsoft Kinect SDK using live or 

stored Kinect camera images. 

2. FOREST FIRE BACKGROUND 

The Forest Fire algorithm uses random decision trees and 

forests [4, 8] to classify pixels from the Kinect depth 

camera into parts of the human body.  

 Shown in Fig. 1, every pixel in the input frame 

traverses several binary trees. Starting at the root of a given 

tree, a decision is made to proceed to either the left or right 

child, based on an evaluation function: 

(a) does a target pixel in the image surrounding the 

current pixel belong to the same player object? 

(the relative position of this target pixel is defined 

by the tree node the current pixel is visiting) 

(b) if so, is the distance in depth between these two 

pixels above a threshold? (again, defined by the 

current tree node)  

(c) if so, move to the right child, else to the left child. 



 
Fig. 1. Decision tree/forest structure 

 

 
Fig. 2. Forest Fire algorithm 

 

 Eventually, this traversal will reach a leaf node. A leaf 

node contains the probability that any pixel reaching that 

leaf belongs to a particular human feature, such as a head or 

foot. The pixels are classified by every tree and the 

probabilities for each pixel are aggregated across all trees in 

the forest. 

 More formally, decision tree processing is summarized 

in Fig. 2. Note that the decision procedure f, the number of 

trees, and the database structure and values (interior nodes 

and leaf probabilities P) are determined a priori and are 

application dependent. Determining these factors is part of 

the training process for the decision tree and is outside the 

scope of this paper. For more information the reader is 

referred to [4].  

 Because the structure of the system is use-dependent, 

the flexibility of an FPGA implementation is an important 

advantage over an ASIC. Applications in vision, speech, or 

web search engines would all require different databases 

and procedures. Even if we were to take one application, in 

this case computer vision, and retrain the database for 

detection of a different object, the decision procedure and 

database structure may be different, even if the basic 

algorithm operates in a similar manner.  

3. RELATED WORK 

To the best of our knowledge, hardware systems for 

classification using randomized decision trees have 

received minimal attention. Most related work from the 

computer vision community is specific to software and does 

not consider the issues and advantages of implementing it 

in hardware. 

 One work by Narayanan et al. [1] uses FPGAs to 

accelerate the construction of decision trees. Their hardware 

implementation focuses on calculating the Gini Score – a 

quantity used to calculate thresholds in the decision tree. As 

mentioned earlier, this is part of the training process. While 

a required complement to using the decision trees for 

classifying data, it is not the focus of this paper.  

 Recent work by Becker et al. [2] uses decision trees to 

accelerate object tracking on FPGAs. This work is the most 

similar to ours, but there are significant differences in the 

algorithms used in the two works. Specifically, the decision 

computation used in [2] is more complex than ours, while 

the trees are much simpler. Thus, [2] focuses heavily on 

parallelizing the classifier decision computation (and 

converting the input data into a more efficient internal 

representation), while this paper focuses on the efficiency 

of data movement and the traversing the trees themselves.  

 Other high-performance computing devices, such as 

graphics processing units (GPUs), have also been used to 

accelerate the evaluation of decision trees. Specifically, a 

paper by Sharp [3] describes how to parallelize the 

evaluation of decision trees using a GPU to achieve a 

~100x speedup over conventional CPU versions. However, 

our main goal is to perform the computation directly in 

hardware to produce a fast, yet low-power embedded 

system. This type of direct hardware implementation is 

necessary for platforms where a power-hungry GPU with 

hundreds of stream processors would not be practical. 

 Decision trees have also been implemented in FPGAs 

for other applications such as Internet Protocol (IP) lookup. 

For example, Hoang Le et al. [5] presents an architecture 

for quick packet routing. They heavily pipeline the packet 

traversal through the binary tree and take advantage of dual 

ported Block RAM (BRAM) and caching to optimize 

performance. Our architecture is quite different, since our 

database is much larger and, thus, greatly exceeds the 

capacity of on-chip BRAM and must reside in external 

DDR. This fundamental architectural difference means that 

our work focuses heavily on minimizing and maintaining 

sequential access to the DDR to optimize throughput. As 

will be discussed later, we accomplish this by introducing a 

new computation and storage element – a continuously 

sorted FIFO. 

4. FOREST FIRE MEMORY OPTIMIZATIONS 

As described in Section 2, the number of steps required to 

process a frame is the product N*T*L, where N is the 

number of pixels to be classified, T is the number of trees, 

and L is the number levels in each tree (assuming all trees 

are of identical depth). In the Kinect system, N is between 0  
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Fig. 3. Memory layout of tree database in DDR 

 

and 19,200 (as will be discussed in Section 5, the 160x120 

input image is filtered prior to classification), T equals 3, 

and L equals 20. Among these steps, the traversal of each 

pixel through any given tree is independent. Thus, the 

algorithm can theoretically be parallelized N*T ways. 

 However, looking at the evaluation function described 

in Section 2, there are two critical memory accesses that 

need to be made at each step. These memory accesses will 

bottleneck a realistic physical implementation in which the 

memories have finite bandwidth. The first memory access 

is to the current tree node in the database. This database 

lookup retrieves two values: a pixel offset and a comparison 

threshold. The second memory access is to the original 

depth image at an address based on the pixel offset obtained 

from the database lookup. 

 The input depth image is relatively small (~38KB) and 

thus can be held in BRAM within the FPGA. However, the 

database for the Forest Fire algorithm is comparatively 

large (25MB) and thus must be held in an external memory, 

such as DDR. As these are random decision trees, there is 

little to no a priori discernible correlation or pattern in 

either the offset or threshold values in the database. 

Because of this, the prescribed tree node must be directly 

consulted for every decision. 

 Since bandwidth to external DDR is a limited resource, 

the achievable performance of the algorithm is heavily 

bounded by the number of lookups made to the database. 

Furthermore, in the case of a System-On-Chip, the pixel 

classification will be merely one component that must share 

access to the DDR with other computations. For these 

reasons, we took a close look at ways to minimize the 

number of external database memory accesses. 

4.1. Traversal Order 

While the algorithm specifies that all trees in the forest 

must be traversed to collect the probability distribution, as 

mentioned earlier, each pixel proceeds independently of all 

other pixels for all trees. Consequently, the order of 

traversal can be changed without affecting the results.  

 Depth-first traversal, where a single pixel is processed 

completely from root to leaf for a given tree before the next 

pixel is processed, can be attractive for light-weight 

implementations. This is because very little state needs to 

be stored (i.e. if we have one in-flight pixel, we only need a 

single pointer to its current tree node). However, this 

algorithmic decision has an impact on the number of 

external memory accesses that are required, along with the 

amount of memory bandwidth consumed. 

 For example, DDR modules are organized into 

“pages”. Consecutive accesses within a page are much 

faster and, thus, consume less bandwidth than accesses that 

cross a page. In the case of the DDR3 DIMM on the Xilinx 

ML605 board (Micron MT4JSF12864HZ-1G4D1) mated 

with Xilinx’s Memory Interface Generator version 3.61 

controller used in our experiments, we observe that fully 

pipelined in-page reads can be serviced at a rate of one read 

every other cycle. Conversely, each read request that 

crosses an 8KB page boundary creates a 10 cycle bubble in 

the pipeline to account for the latency associated with 

opening a new page. 

 Since any given tree is large and spans many pages, 

depth-first traversal guarantees page misses during the 

processing of every pixel. Consider the simple example in 

Fig. 3. Here, each level of the database is held on a unique 

page (the actual database used is densely packed – this 

arrangement is used merely for illustrative purposes). In 

this case, each depth-first traversal will send three read 

requests, forcing three page changes: the level 0 node, the 

level 1 node and the level 2 node. Processing all pixels 

completely will require N*T*L read requests which will 

generate N*T*L page changes. 

 As an alternative, we can traverse the tree in a breadth-

first manner. In this case, anywhere between two and N 

pixels can be batched together, processing all pixels in the 

batch at a single tree level before proceeding to the next 

tree level. The rationale behind this change is that, 

regardless as to their specific traversal paths, pixels that are 

at the same level in the tree will need to access database 

nodes with addresses that are near one another (this is more 

true in earlier levels, where the tree is narrow, and less true 

in later levels, where the tree is very wide). Thus, traversing 

breadth-first can amortize read requests and page changes 

among the computations for multiple pixels. 

 If we assume maximum breadth-first traversal, 

batching all N pixels together, the example in Fig. 3 will 

create at most one read request and one page miss at level 0 

(all pixels start at the root, so after we read node 0 once, we 

do not need to read it again), at most N read requests and 

one page miss at level 1 (in the worst case consecutive 

pixels alternately traverse to node 1 and node 2, requiring a 

unique read request, but both nodes are on the same page) 

and at most N read requests and one page miss at level 2 

(similarly, consecutive pixels may traverse to different 

nodes, but all nodes at this level are on the same page). To 

process all pixels in a maximal breadth-first manner will 

require at most N*((T*L) – 1) read requests (and likely far 

fewer) but only T*L*A page changes, where A is the 

average number of pages required to hold the nodes on a 



given level.  A will be less than one towards the top of the 

tree and greater than one towards the bottom of a large tree. 

 Although breadth-first traversal reduces the number of 

memory transactions considerably, this approach also 

requires more intermediate state (i.e. we must keep separate 

current tree node pointers for each pixel in the batch). 

Keeping the full 19,200 pointers needed for maximal 

breadth-first traversal of the entire image requires ~57KB. 

As we will show in Section 6, this is well within the 

capabilities of onboard BRAM for our hardware 

implementation. Thus, this hardware investment is 

worthwhile considering the bandwidth savings to the 

external DDR. Furthermore, as we will discuss in Section 7, 

the batch size can be reduced without affecting nominal 

performance to lower the onboard memory requirements. 

 That said, storing this table can have performance 

implications for a software implementation running on a 

traditional CPU. Unlike the hardware-based computation 

where we can have highly customized memories, this 

approach does not improve performance for our software 

implementation. This is likely because the additional 

memory traffic created by the pointer table accesses offsets 

savings in database lookups. 

4.2. Pixel Sorting 

As shown in our discussion in the previous section, 

although breadth-first traversal can reduce the number of 

read requests and page changes, the same address can be 

requested multiple times, resulting in unnecessary memory 

transactions (e.g. alternating between node 1 and node 2). 

By extension, this means that the same page can be opened 

multiple times when the nodes for a tree level span more 

than one page. In the database used in our system, this 

begins in the trees at level 10 (of 20 total). 

 Ideally, each time we request a given database node, 

we would like to process all of the pixels that require that 

node consecutively, reading the node once, using it to 

process as many pixels as we can, and never requesting it 

again until the next complete iteration through the tree. In 

our example from Fig. 3, this would mean somehow 

bundling all of the pixels that traverse to node 1 into one 

group and all the pixels that traverse to node 2 into another, 

before we begin processing the pixels through the tree at 

level 1. Similarly, each time that we open a new page, we 

would ideally like to process all of the pixels that need 

database nodes from that page consecutively. In this way, 

each unique page would get opened once, as many same-

page accesses would be made as possible, and when we 

move to a new page, the previous page would not get 

opened again until the next iteration through the tree. 

 This can be accomplished by traversing the tree in a 

breadth-first manner while also keeping the pixels sorted as 

they are processed – ordered by their respective current tree 

node from smallest to largest. With this sorting, each time 

we attempt to process a pixel we know that it will either 

require the same database node as the previous pixel or a 

database node at a higher address. Similarly, if this pixel 

requires a database node on a new page, we are guaranteed 

that all future accesses during this iteration will be to 

database nodes on the same page (at a higher address) or a 

different page (also with a higher address). 

 Fig. 4 shows a simple example with four pixels of how 

this sorting can be accomplished. Note that for clarity, we 

depict the list of pixel tree node pointers as a linear FIFO 

that is much larger than the nominal size. In our actual 

implementation, a circular FIFO of size N is used. The 

process for level 0 begins in Fig. 4a with four pixels at the 

root, node 0.  

 Fig. 4 also shows three pointers, indicating the head of 

the list (denoting the next pixel to be processed in the 

current level), the left (denoting the space just beyond the 

last computed pixel that traversed to its left child), and the 

right (denoting the space just beyond the last computed 

pixel that traversed to its right child). As processing has not 

yet begun in Fig. 4a, the left and right both point to the first 

available space in the FIFO. 

 In Fig. 4b, we show that the first pixel traverses the tree 

right to node 2. This pixel is pushed to the right and the 

pointer is incremented. Shown in Fig. 4c, the next pixel also 

traverses the tree to its right child. Shown in Fig. 4d, the 

third pixel traverses to its left child, node 1. To maintain 

proper sorting, the existing pixel at the left pointer is evicted 

to the right and the new pixel is inserted at the left. As both 

the left and right were written, both pointers are 

incremented. This is shown in Fig. 4e. 

 A single read-modify-write insertion sort operation is 

sufficient to always keep the pixels fully ordered, but this 

requires one additional consideration when managing the 

left pointer – each time the head pointer encounters a new 

tree node (when the current head node is greater than the 
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Fig. 4. Basic sorting 
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previous head node), we must reset left to right. Consider 

the situation in Fig. 5. In Fig. 5a, we have begun processing 

pixels at node 1, producing children at node 3 or node 4. In 

Fig. 5b, we discover we have processed all of the pixels that 

were at node 1 and we have begun processing those at node 

2. Since the children of pixels at node 2 will be either node 

5 or node 6, any children from this point forward must enter 

the FIFO behind all existing pixels. Thus, as shown in Fig. 

5c, the left pointer must be reset to the right pointer. 

 This sorted breadth-first traversal only requires one 

additional pointer (left) on top of the intermediate storage 

that is needed to perform unsorted breadth-first traversal. 

However, it also requires additional computations and in-

line read-modify-write operations to the list of tree node 

pointers to keep the database accesses sorted. As we will 

see in Section 5, this can be easily done without a 

performance penalty in the direct hardware implementation 

because the FPGA can exploit fine-grain parallelism and 

multi-ported or double-clocked memories. However, as 

with the unsorted breadth-first traversal, this approach does 

not improve the performance of a traditional software 

implementation. This is likely due to the additional 

computations and memory activity caused by sorting. 

 Returning to the example in Fig. 3, sorting reduces the 

number of read requests and page misses to the absolute 

minimum. That said, as with the unsorted breadth-first 

traversal, the precise number of memory accesses and page 

misses is wholly dependent on the input data. 

4.3. Memory Bandwidth Evaluation 

Since the behavior of the breadth-first and sorted breadth-

first optimizations is data dependent, before building any 

hardware we wanted to quantify the potential memory 

bandwidth advantages of these techniques for real data. As 

shown in Table 1, we performed a detailed analysis of the 

database accesses made when processing two test images 

using the three traversal approaches. 

 The first image, Avg, represents an image with an 

average number of pixels to be classified. This image 

shows two average-sized adults head-to-toe at the 

suggested camera-user distance. The second image, Stress, 

represents an image where all pixels in the frame must be 

classified. Although this is a degenerate case that will only 

be created when an object strays very close to the camera, 

it represents the maximum computational load. The Avg 

image accesses 233,760 tree nodes (3896 pixels * 3 trees * 

20 levels) and the Stress image accesses 1,152,000 tree 

nodes (19,200 pixels * 3 trees * 20 levels). 

 In Table 1, DF indicates depth-first traversal, BF 

indicates maximally batched breadth-first traversal and 

BFS indicates maximally batched breadth-first traversal 

with sorting. This table also shows four metrics. Cached 

Hits indicates the number of database accesses that that did 

not require an external memory access. This is either 

because the node requested was the same as the previous 

node or because the node requested was fetched along with 

the previous memory access. While each database node in 

our system is 64 bits, every access to the DDR3 in our test 

platform returns a 512-bit word. This 512-bit word is used 

as a simple single-entry cache in our hardware 

implementation. 

 Page Hits indicates the number of database accesses 

that required an external memory access but requested a 

value within the same page as the previous access. Page 

Misses indicates the number of external memory accesses 

that resulted in a page crossing. Norm. BW indicates the 

amount of memory bandwidth consumed (normalized to 

the depth-first results), considering that a Cached Hit does 

not require an external memory access, a Page Hit 

occupies the memory for two cycles when the controller 

has a full pipeline of outstanding read requests, and a Page 

Miss occupies the memory for ten cycles when the 

controller has a full request pipeline. 

 Looking at Table 1, we see that breadth-first traversal 

reduces the consumption of memory bandwidth 

considerably. The bandwidth needed for breadth-first 

traversal is only ~20% that of the depth-first traversal. 

Breadth-first traversal with sorting further reduces memory 

bandwidth consumption to only 1-3% as compared to 

depth-first traversal. This is roughly an additional order of 

magnitude improvement beyond the unsorted breadth-first 

results. 

 As mentioned before, the lessons learned from this 

evaluation looking towards a hardware implementation 

cannot be directly translated for a software version. 

Although memory bandwidth is also a critical resource in 

traditional processors, traversal order and sorting causes  
  

Table 1.  Memory accesses for various tree traversals. 

Traversal 
Cached 

Hits 

Page  

Hits 

Page  

Misses 

Norm. 

BW 

DF Avg 25,551 79,641 128,568 1.000 

BF Avg 159,838 50,523 23,399 0.232 

BFS Avg 218,536 13,709 1,515 0.029 

DF Stress 124,314 394,086 633,600 1.000 

BF Stress 892,202 173,111 86,687 0.170 

BFS Stress 1,119,005 30,714 2,281 0.012 
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Fig. 6. Kinect processing pipeline and Forest Fire hardware 

 

other effects due to differences in parallelism, caching, etc.  

The most highly optimized software implementation we 

use for comparison in Section 6 uses depth-first traversal. 

Depth-first traversal is also used in the GPU 

implementation in [3]. 

5. FOREST FIRE HARDWARE ARCHITECTURE 

Since there are clear bandwidth advantages to sorted 

breadth-first tree traversal for hardware-based systems, we 

used this approach for our FPGA-based implementation of 

the Forest Fire algorithm. Fig. 6 shows a block diagram of 

how this hardware fits into the full Kinect vision pipeline, 

interfacing the FPGA with a Kinect camera and other parts 

of the existing Kinect SDK.  

 The system begins with a Kinect sensor connected via 

USB to a host PC. In addition to handling the USB 2.0 

protocol to receive the raw depth image from the camera 

(this cannot be handled sufficiently using the onboard USB 

1.0 controller present on the ML605 board), the host 

machine also performs the first stage of the Kinect vision 

pipeline: image segmentation. This process identifies the 

pixels representing moving objects, separating them from 

the static background. The depth image with these tagged 

“active” pixels is sent to an input buffer on the FPGA. 

 Once the input buffer has been filled, the FPGA 

performs the Forest Fire algorithm. This phase classifies the 

active pixels in the depth image, producing the probabilities 

for thirty-one distinct body parts for each pixel. These 

probabilities are written into an output buffer on the FPGA 

which are sent back to the host PC.  

 At this point, the remaining part of the Kinect SDK 

resumes operation to perform skeletal tracking. This 

process connects the body parts identified by the 

classification phase into a human skeleton either for display 

or to be passed on to a user application (e.g. a game or other 

target for the natural user-interface). 

5.1.  FIFO Initialization and Classification 

When the image is first transferred to the FPGA, the 

hardware must “seed” the sorting FIFO with pixels to begin 

the tree-based classification process. In our current 

implementation, the image is fully read from the input 

buffer in scan-line order. The pixels are filtered based on 

the “active” designation produced by the image 

segmentation phase and only active pixels enter the sorting 

FIFO for processing. 

 Once the FIFO is loaded, the hardware begins 

executing the classification algorithm on the pixels in the 

FIFO. The compute logic pops a pixel from the sorting 

FIFO, looks up the node it wishes to access from the 

database stored in DDR, computes the appropriate target 

pixel address in the original image (still held in the input 

buffer) based on the offset from the database node, retrieves 

the comparison pixel, computes the evaluation function and 

decides whether the pixel should be pushed back into the 

FIFO now pointing to the left or right child. These pixels 

are sorted upon push-back as described in Section 4.2. 

 Our implementation is heavily pipelined. The system 

utilizes multiple FIFOs (i.e. to/from the DDR controller and 

sorting FIFO) to mitigate the latency of the DDR. 

Although, as discussed earlier, the controller can accept 

new read requests every other or every tenth clock cycle, 

the overall latency through the controller and DDR can be 

up to roughly 100 clock cycles. These FIFOs allow the 

system to issue database reads far ahead of the 

computations performed in the decision engine. 

 As discussed in Section 4.2, if the pixel moves to the 

right child, it is pushed to the FIFO at the right pointer. 

However, if the pixel moves left, the pixel must be inserted 

at the left pointer, displacing the current entry that must be 

written to the right. The possibility of one read/one write to 

the left followed by a write to the right is handled in the 

current implementation by clocking the sorting FIFO at 

twice the speed of the rest of the computational pipeline.  

 When a pixel reaches a leaf node, the resulting 

probabilities are sent to the output buffer and the pixel is 

done with the current tree. After all of the pixels have 

traversed the first tree, the pixels are left in the FIFO. The 

FIFO does not need to be reinitialized to begin processing 

the next tree, since all pixels will begin at the root of the 

subsequent tree. Thus, we can simply restart the processing, 

performing an in-line replacement of the tree node pointers 

with the address of the appropriate root node. Once the last 

tree is processed, the algorithm terminates, signaling the 

software that processing for the frame is complete. 

 

6. EVALUATION 

As discussed in Section 1, the primary goal of this work 

was to build an efficient direct hardware implementation of 

the Forest Fire algorithm. We prototyped our system using 

the Xilinx ML605 board containing a Virtex-6 LX 240T. 



 

 
6.1. Hardware Characterization 

The logic and memory utilization of our FPGA 

implementation is shown in Table 2. The entire system, 

including the Forest Fire core, the DDR3 controller, and 

the Ethernet controller used to communicate with the host 

represents a fairly small portion of the target platform. The 

logic and flip-flop utilization of the full system is less than 

8% of the LUTs and 5% of the FFs. The largest fraction of 

the resources consumed on the FPGA is BRAM (30%). 

Even so, the computational core itself only uses 8.4% of 

the BRAM, entirely devoted to the sorting FIFO. The 

remaining BRAM are primarily consumed in the input and 

output buffers to the PC. We will discuss how we can 

reduce the BRAM requirements in Section 7. 

 We operate the Forest Fire core at 75MHz (as 

mentioned earlier, the sorting FIFO is run at twice this 

clock rate, 150MHz). The DDR3 is clocked at its minimum 

allowable frequency of 150MHz. Although a higher clock 

rate would result in higher performance, as we will show, 

the throughput of the system is already very high. A core 

frequency half of the DDR clock rate is used because, at 

best, the DDR can accept new same-page requests every 

other clock cycle. 

 The execution time of the computational core is shown 

in Table 3. Measured directly in hardware, the cycle count 

begins when the input buffer is full and continues until the 

output buffer receives the last leaf node. We tested the 

system 10 times with the Avg and Stress images from 

Section 4 and averaged the results of all runs. Given that the 

DDR currently has no other traffic to service besides 

requests from our Forest Fire core, the cycle counts were 

quite consistent – varying by no more than +/- 7 cycles.  

 Although we already proved that sorted breadth-first 

traversal was advantageous from the standpoint of memory 

bandwidth, we also measured the effect on runtime. This 

was performed by disabling the sorting aspect of the FIFO. 

For example, forcing the FIFO to always push pixels 

exclusively to the right, regardless as to which child node is 

selected, maintains the original scan-line order, as in the 

unsorted breadth-first search. 

Looking at Table 3, we see that traversing the trees with 

sorted accesses requires ~350K cycles at 75MHz for the 

Avg image. This achieves a throughput of roughly 214 

frames-per-second (FPS). This provides 1.18x faster 

performance as compared to the unsorted breadth-first 

traversal (181 FPS). Behavior is similar for the Stress 

image, with sorted breadth-first traversal achieving 56 

FPS, or 1.27x better performance as compared to unsorted 

breadth-first traversal (44 FPS). 

It is difficult to determine how the performance of the 

system might change if incorporated into an SOC where it 

shared access to the DDR with other computational 

elements. That said, given the excellent throughput, even 

in the degenerate Stress case, the existing implementation 

has quite a bit of headroom since the Kinect sensor 

captures images at 30 FPS. 

6.2. Software Comparison 

The direct hardware implementation described here is 

necessary for many applications because of the 

computational complexity of pixel classification. Although 

the existing Kinect SDK functions adequately on a modern 

desktop or laptop processor, software is no longer 

sufficient when run on an embedded processor. 

 For example, when run on a single-core 1.6 GHz Intel 

Atom 230, our most heavily optimized software 

implementation struggled to process the Avg image at 14.3 

FPS. When faced with the Stress image, the performance 

dropped below 2 FPS. 

 The performance on a modern ARM processor is 

similar. We repeated the experiment with a Qualcomm 

MSM8960, a dual-core 1.0 GHz Cortex-A15. Running 

single-threaded, the Cortex processed the Avg image at 

16.3 FPS and the Stress image at 3.0 FPS. 

 To meet 30 FPS, we would need two Atom or ARM 

cores at 100% utilization just for pixel classification in the 

nominal case – discounting stress cases, any other parts of 

the vision pipeline, or user applications. For power reasons 

alone, this places significant limitations on the systems we 

can build only using software-based processing. 

 Along the same lines, we do not consider performing 

pixel classification on a GPU because embedded GPUs do 

Table 3.  Hardware Performance. 

Algorithm Avg. Cycles @ 75Mhz FPS 

BFS Avg 349,492 (1.18x faster) 214 

BF Avg 414,557 (1.0) 181 

BFS Stress 1,349,706 (1.27x faster) 56 

BF Stress 1,714,525 (1.0) 44 
 

Table 2.  Resource Utilization (V6 LX240T). 

 LUTs FF BRAM 

Full System 
11,319 

(7.5%) 

13,327 

(4.4%) 

125 

(30.0%) 

· Forest Fire 

 Core 

2,511 

(1.7%) 

2,267 

(0.8%) 

35 

(8.4%) 

Sorting 

FIFO 

457 

(0.3%) 

77 

(0.0%) 

33 

(7.9%) 

· DDR3 

 Controller 

6,522 

(4.3%) 

9,935 

(3.3%) 

0 

(0%) 

· PC Interface 
2,282 

(1.5%) 

1,123 

(0.4%) 

90 

(21.6%) 

Input  

Buffer 

248 

(0.1%) 

46 

(0.0%) 

10 

(2.4%) 

Output  

Buffer 

151 

(0.1%) 

8 

(0.0%) 

77 

(18.5%) 
 



not have the GP-GPU capabilities found in standard PC 

graphics cards, such as those used in [3]. 

7. FUTURE WORK 

Looking ahead, there are two particular aspects of our 

current system that we would like to investigate in the 

future. First, porting the implementation to a Spartan-class 

device, and second, integrating more of the Kinect pipeline 

into hardware. 

Porting our system to a Spartan or similar FPGA is 

important for both cost and power reasons. While the 

ML605 was an excellent platform for a proof-of-concept, 

Virtex-class devices are designed for logic capacity and 

performance rather than cost and low power. 

There is only one significant hurdle that prevents the 

existing implementation from fitting into a very low-cost, 

low-power device such as the Spartan LX-16 or possibly 

even the LX-9: block memory. Virtually all of the block 

memory in the existing implementation is consumed by the 

input buffer, the sorting FIFO and the output buffer. While 

the input image will likely remain on-chip, the size of the 

sorting FIFO and output buffer can be reduced 

considerably without effecting performance. 

For example, the sorting FIFO is sized such that we can 

maximally batch all 19,200 pixels in the depth image. As 

mentioned in Section 4, though, it is rare that the number 

of active (non-background) pixels will comprise more than 

~1/4
th

 of the image. Thus, we can optimize the sorting 

FIFO by sizing it to handle the typical number of active 

pixels and simply run multiple classification iterations 

when the number of active pixels exceeds the capacity of 

the sorting FIFO. Multiple iterations may slightly increase 

the necessary processing time as compared to a system that 

can accommodate a larger batch size, but the existing 

implementation is more than fast enough to accommodate 

the expected penalty for atypical frames. 

Discussion of the output buffer brings us to the second 

area we would like to investigate further - integrating 

additional parts of the Kinect pipeline. Beyond simply 

providing a more sophisticated system, integrating some or 

all of Skeletal Tracking will allow us to shrink the output 

buffer considerably. This is because the output of 

classification consists of multiple probabilities for each 

active pixel. The first stage of Skeletal Tracking aggregates 

this data heavily. Rather than describing individual pixels, 

the result of the first stage of Skeletal Tracking is a small 

handful of aggregated body part positions. Since all of the 

computations beyond this first stage only look at the body 

part positions, this dramatically reduces the working set. In 

this case, the output buffer would be less that 1KB rather 

than nearly 300KB. 

8. CONCLUSION 

Random decision tree classification is a powerful, but 

computationally expensive machine learning algorithm. 

Supporting random decision trees raises significant 

computing challenges, particularly for high duty-cycle 

embedded applications. 

 In this paper we demonstrated that the Forest Fire 

algorithm can be efficiently implemented in hardware. 

More importantly, we built a framework in which 

researchers can build and explore future hardware-based 

computer vision applications using this unique and easily 

accessible device. In addition, we showed that there is 

plenty of available room for future expansion, both in terms 

of resources on the FPGA and bandwidth to external DDR. 

We have already outlined new parts of the existing 

computational pipeline that can be readily migrated to 

hardware and we hope to eventually encapsulate full 

systems, including end-user applications. 
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