
RANDOM DECISION TREE BODY PART RECOGNITION USING FPGAS

Jason Oberg

Computer Science and Engineering

 University of California, San Diego

 San Diego, CA USA

 email: jkoberg@cs.ucsd.edu

Ken Eguro, Ray Bittner, Alessandro Forin

Embedded and Reconfigurable Computing

 Microsoft Research

 Redmond, WA USA

 email:{eguro, raybit, sandrof}@microsoft.com

ABSTRACT

Random decision tree classification is used in a variety of

applications, from speech recognition to Web search

engines. Decision trees are used in the Microsoft Kinect

vision pipeline to recognize human body parts and gestures

for a more natural computer-user interface. Tree-based

classification can be taxing, both in terms of computational

load and memory bandwidth. This makes highly-optimized

hardware implementations attractive, particularly given the

strict power and form factor limitations of embedded or

mobile platforms. In this paper we present a complete

architecture that interfaces the Kinect depth-image sensor to

an FPGA-based implementation of the Forest Fire pixel

classification algorithm. Key performance parameters,

algorithmic improvements and design trade-off are

discussed.

1. INTRODUCTION

A hallmark of the Microsoft Kinect system is its high-

quality vision-based object recognition. An important and

computationally-intensive part of this processing is pixel

classification using random decision trees [6, 7]. In the

existing implementation, the camera is simply a sensor and

classification is performed entirely in software. On a

standard PC, classification can fully occupy a modern CPU

in order to maintain the desired 30 frames per second.

 As the use of vision-based systems becomes more

ubiquitous (e.g. as a generic natural user interface with

more sophisticated processing, etc.), software-based

classification may not be sufficient. This is certainly a

problem for low-end embedded platforms.

 Specifically, we need to consider two aspects of the

random decision tree processing:

 Efficiency – Constant active use means that the

computation must be efficient. This is both in terms of

power consumption and in terms of the use of shared

resources, particularly bandwidth to external memory.

 Performance – Fast computation with guaranteed

worst-case performance can improve interactive

experiences and allows more time for other processing.

 These considerations make it attractive to implement

decision tree processing directly in hardware. Towards this

end, FPGAs are an ideal computational platform. The

flexibility of FPGAs gives us two advantages. First, we can

update the classification algorithm itself to accommodate

new innovations or to deal with different use cases. This

flexibility is particularly important since we are just

beginning to understand the real-world demands on, and

applications of, a practical consumer-grade vision system.

 Second, modern FPGAs are large enough that they can

encapsulate full systems. The remaining portions of the

vision pipeline and the ultimate consumer of the data (end-

user applications) can be placed alongside the decision tree

processing and gain the power/performance advantages of

direct hardware implementation.

 The main contributions of this paper are:

• The first Verilog implementation of the Kinect

decision tree pixel classification algorithm (Forest Fire).

• Novel algorithmic and architectural optimizations for

processing randomized decision trees that account for the

limitations of real-world memory systems.

• A framework for developing and debugging vision

algorithms on the Xilinx ML605 board. This system can

interface with the Microsoft Kinect SDK using live or

stored Kinect camera images.

2. FOREST FIRE BACKGROUND

The Forest Fire algorithm uses random decision trees and

forests [4, 8] to classify pixels from the Kinect depth

camera into parts of the human body.

 Shown in Fig. 1, every pixel in the input frame

traverses several binary trees. Starting at the root of a given

tree, a decision is made to proceed to either the left or right

child, based on an evaluation function:

(a) does a target pixel in the image surrounding the

current pixel belong to the same player object?

(the relative position of this target pixel is defined

by the tree node the current pixel is visiting)

(b) if so, is the distance in depth between these two

pixels above a threshold? (again, defined by the

current tree node)

(c) if so, move to the right child, else to the left child.

Fig. 1. Decision tree/forest structure

Fig. 2. Forest Fire algorithm

 Eventually, this traversal will reach a leaf node. A leaf

node contains the probability that any pixel reaching that

leaf belongs to a particular human feature, such as a head or

foot. The pixels are classified by every tree and the

probabilities for each pixel are aggregated across all trees in

the forest.

 More formally, decision tree processing is summarized

in Fig. 2. Note that the decision procedure f, the number of

trees, and the database structure and values (interior nodes

and leaf probabilities P) are determined a priori and are

application dependent. Determining these factors is part of

the training process for the decision tree and is outside the

scope of this paper. For more information the reader is

referred to [4].

 Because the structure of the system is use-dependent,

the flexibility of an FPGA implementation is an important

advantage over an ASIC. Applications in vision, speech, or

web search engines would all require different databases

and procedures. Even if we were to take one application, in

this case computer vision, and retrain the database for

detection of a different object, the decision procedure and

database structure may be different, even if the basic

algorithm operates in a similar manner.

3. RELATED WORK

To the best of our knowledge, hardware systems for

classification using randomized decision trees have

received minimal attention. Most related work from the

computer vision community is specific to software and does

not consider the issues and advantages of implementing it

in hardware.

 One work by Narayanan et al. [1] uses FPGAs to

accelerate the construction of decision trees. Their hardware

implementation focuses on calculating the Gini Score – a

quantity used to calculate thresholds in the decision tree. As

mentioned earlier, this is part of the training process. While

a required complement to using the decision trees for

classifying data, it is not the focus of this paper.

 Recent work by Becker et al. [2] uses decision trees to

accelerate object tracking on FPGAs. This work is the most

similar to ours, but there are significant differences in the

algorithms used in the two works. Specifically, the decision

computation used in [2] is more complex than ours, while

the trees are much simpler. Thus, [2] focuses heavily on

parallelizing the classifier decision computation (and

converting the input data into a more efficient internal

representation), while this paper focuses on the efficiency

of data movement and the traversing the trees themselves.

 Other high-performance computing devices, such as

graphics processing units (GPUs), have also been used to

accelerate the evaluation of decision trees. Specifically, a

paper by Sharp [3] describes how to parallelize the

evaluation of decision trees using a GPU to achieve a

~100x speedup over conventional CPU versions. However,

our main goal is to perform the computation directly in

hardware to produce a fast, yet low-power embedded

system. This type of direct hardware implementation is

necessary for platforms where a power-hungry GPU with

hundreds of stream processors would not be practical.

 Decision trees have also been implemented in FPGAs

for other applications such as Internet Protocol (IP) lookup.

For example, Hoang Le et al. [5] presents an architecture

for quick packet routing. They heavily pipeline the packet

traversal through the binary tree and take advantage of dual

ported Block RAM (BRAM) and caching to optimize

performance. Our architecture is quite different, since our

database is much larger and, thus, greatly exceeds the

capacity of on-chip BRAM and must reside in external

DDR. This fundamental architectural difference means that

our work focuses heavily on minimizing and maintaining

sequential access to the DDR to optimize throughput. As

will be discussed later, we accomplish this by introducing a

new computation and storage element – a continuously

sorted FIFO.

4. FOREST FIRE MEMORY OPTIMIZATIONS

As described in Section 2, the number of steps required to

process a frame is the product N*T*L, where N is the

number of pixels to be classified, T is the number of trees,

and L is the number levels in each tree (assuming all trees

are of identical depth). In the Kinect system, N is between 0

Page 0
Node

0

Node

1

Node

2

Node

3

Node

4

Node

5

Node

6

Page 1

Page 2

Fig. 3. Memory layout of tree database in DDR

and 19,200 (as will be discussed in Section 5, the 160x120

input image is filtered prior to classification), T equals 3,

and L equals 20. Among these steps, the traversal of each

pixel through any given tree is independent. Thus, the

algorithm can theoretically be parallelized N*T ways.

 However, looking at the evaluation function described

in Section 2, there are two critical memory accesses that

need to be made at each step. These memory accesses will

bottleneck a realistic physical implementation in which the

memories have finite bandwidth. The first memory access

is to the current tree node in the database. This database

lookup retrieves two values: a pixel offset and a comparison

threshold. The second memory access is to the original

depth image at an address based on the pixel offset obtained

from the database lookup.

 The input depth image is relatively small (~38KB) and

thus can be held in BRAM within the FPGA. However, the

database for the Forest Fire algorithm is comparatively

large (25MB) and thus must be held in an external memory,

such as DDR. As these are random decision trees, there is

little to no a priori discernible correlation or pattern in

either the offset or threshold values in the database.

Because of this, the prescribed tree node must be directly

consulted for every decision.

 Since bandwidth to external DDR is a limited resource,

the achievable performance of the algorithm is heavily

bounded by the number of lookups made to the database.

Furthermore, in the case of a System-On-Chip, the pixel

classification will be merely one component that must share

access to the DDR with other computations. For these

reasons, we took a close look at ways to minimize the

number of external database memory accesses.

4.1. Traversal Order

While the algorithm specifies that all trees in the forest

must be traversed to collect the probability distribution, as

mentioned earlier, each pixel proceeds independently of all

other pixels for all trees. Consequently, the order of

traversal can be changed without affecting the results.

 Depth-first traversal, where a single pixel is processed

completely from root to leaf for a given tree before the next

pixel is processed, can be attractive for light-weight

implementations. This is because very little state needs to

be stored (i.e. if we have one in-flight pixel, we only need a

single pointer to its current tree node). However, this

algorithmic decision has an impact on the number of

external memory accesses that are required, along with the

amount of memory bandwidth consumed.

 For example, DDR modules are organized into

“pages”. Consecutive accesses within a page are much

faster and, thus, consume less bandwidth than accesses that

cross a page. In the case of the DDR3 DIMM on the Xilinx

ML605 board (Micron MT4JSF12864HZ-1G4D1) mated

with Xilinx’s Memory Interface Generator version 3.61

controller used in our experiments, we observe that fully

pipelined in-page reads can be serviced at a rate of one read

every other cycle. Conversely, each read request that

crosses an 8KB page boundary creates a 10 cycle bubble in

the pipeline to account for the latency associated with

opening a new page.

 Since any given tree is large and spans many pages,

depth-first traversal guarantees page misses during the

processing of every pixel. Consider the simple example in

Fig. 3. Here, each level of the database is held on a unique

page (the actual database used is densely packed – this

arrangement is used merely for illustrative purposes). In

this case, each depth-first traversal will send three read

requests, forcing three page changes: the level 0 node, the

level 1 node and the level 2 node. Processing all pixels

completely will require N*T*L read requests which will

generate N*T*L page changes.

 As an alternative, we can traverse the tree in a breadth-

first manner. In this case, anywhere between two and N

pixels can be batched together, processing all pixels in the

batch at a single tree level before proceeding to the next

tree level. The rationale behind this change is that,

regardless as to their specific traversal paths, pixels that are

at the same level in the tree will need to access database

nodes with addresses that are near one another (this is more

true in earlier levels, where the tree is narrow, and less true

in later levels, where the tree is very wide). Thus, traversing

breadth-first can amortize read requests and page changes

among the computations for multiple pixels.

 If we assume maximum breadth-first traversal,

batching all N pixels together, the example in Fig. 3 will

create at most one read request and one page miss at level 0

(all pixels start at the root, so after we read node 0 once, we

do not need to read it again), at most N read requests and

one page miss at level 1 (in the worst case consecutive

pixels alternately traverse to node 1 and node 2, requiring a

unique read request, but both nodes are on the same page)

and at most N read requests and one page miss at level 2

(similarly, consecutive pixels may traverse to different

nodes, but all nodes at this level are on the same page). To

process all pixels in a maximal breadth-first manner will

require at most N*((T*L) – 1) read requests (and likely far

fewer) but only T*L*A page changes, where A is the

average number of pages required to hold the nodes on a

given level. A will be less than one towards the top of the

tree and greater than one towards the bottom of a large tree.

 Although breadth-first traversal reduces the number of

memory transactions considerably, this approach also

requires more intermediate state (i.e. we must keep separate

current tree node pointers for each pixel in the batch).

Keeping the full 19,200 pointers needed for maximal

breadth-first traversal of the entire image requires ~57KB.

As we will show in Section 6, this is well within the

capabilities of onboard BRAM for our hardware

implementation. Thus, this hardware investment is

worthwhile considering the bandwidth savings to the

external DDR. Furthermore, as we will discuss in Section 7,

the batch size can be reduced without affecting nominal

performance to lower the onboard memory requirements.

 That said, storing this table can have performance

implications for a software implementation running on a

traditional CPU. Unlike the hardware-based computation

where we can have highly customized memories, this

approach does not improve performance for our software

implementation. This is likely because the additional

memory traffic created by the pointer table accesses offsets

savings in database lookups.

4.2. Pixel Sorting

As shown in our discussion in the previous section,

although breadth-first traversal can reduce the number of

read requests and page changes, the same address can be

requested multiple times, resulting in unnecessary memory

transactions (e.g. alternating between node 1 and node 2).

By extension, this means that the same page can be opened

multiple times when the nodes for a tree level span more

than one page. In the database used in our system, this

begins in the trees at level 10 (of 20 total).

 Ideally, each time we request a given database node,

we would like to process all of the pixels that require that

node consecutively, reading the node once, using it to

process as many pixels as we can, and never requesting it

again until the next complete iteration through the tree. In

our example from Fig. 3, this would mean somehow

bundling all of the pixels that traverse to node 1 into one

group and all the pixels that traverse to node 2 into another,

before we begin processing the pixels through the tree at

level 1. Similarly, each time that we open a new page, we

would ideally like to process all of the pixels that need

database nodes from that page consecutively. In this way,

each unique page would get opened once, as many same-

page accesses would be made as possible, and when we

move to a new page, the previous page would not get

opened again until the next iteration through the tree.

 This can be accomplished by traversing the tree in a

breadth-first manner while also keeping the pixels sorted as

they are processed – ordered by their respective current tree

node from smallest to largest. With this sorting, each time

we attempt to process a pixel we know that it will either

require the same database node as the previous pixel or a

database node at a higher address. Similarly, if this pixel

requires a database node on a new page, we are guaranteed

that all future accesses during this iteration will be to

database nodes on the same page (at a higher address) or a

different page (also with a higher address).

 Fig. 4 shows a simple example with four pixels of how

this sorting can be accomplished. Note that for clarity, we

depict the list of pixel tree node pointers as a linear FIFO

that is much larger than the nominal size. In our actual

implementation, a circular FIFO of size N is used. The

process for level 0 begins in Fig. 4a with four pixels at the

root, node 0.

 Fig. 4 also shows three pointers, indicating the head of

the list (denoting the next pixel to be processed in the

current level), the left (denoting the space just beyond the

last computed pixel that traversed to its left child), and the

right (denoting the space just beyond the last computed

pixel that traversed to its right child). As processing has not

yet begun in Fig. 4a, the left and right both point to the first

available space in the FIFO.

 In Fig. 4b, we show that the first pixel traverses the tree

right to node 2. This pixel is pushed to the right and the

pointer is incremented. Shown in Fig. 4c, the next pixel also

traverses the tree to its right child. Shown in Fig. 4d, the

third pixel traverses to its left child, node 1. To maintain

proper sorting, the existing pixel at the left pointer is evicted

to the right and the new pixel is inserted at the left. As both

the left and right were written, both pointers are

incremented. This is shown in Fig. 4e.

 A single read-modify-write insertion sort operation is

sufficient to always keep the pixels fully ordered, but this

requires one additional consideration when managing the

left pointer – each time the head pointer encounters a new

tree node (when the current head node is greater than the

0 0 0 0

Head Left, Right

0 0 0 0 2

Head Left Right

0 0 0 0 2 2 2

Head Left Right

0 0 0 0 1 2 2 2

Left Right

1

0 0 0 0 1 2 2 2

Left RightHead

a)

b)

c)

d)

e)

Head

Fig. 4. Basic sorting

0 01 2 2 4

Head Left Right

4 01 2 2 3

Head Left Right

New head node,

reset left to right

4 01 2 2 3

Head Left, Right

a)

b)

c)

0 0

0 0

0 0

Fig. 5. Management of left pointer

previous head node), we must reset left to right. Consider

the situation in Fig. 5. In Fig. 5a, we have begun processing

pixels at node 1, producing children at node 3 or node 4. In

Fig. 5b, we discover we have processed all of the pixels that

were at node 1 and we have begun processing those at node

2. Since the children of pixels at node 2 will be either node

5 or node 6, any children from this point forward must enter

the FIFO behind all existing pixels. Thus, as shown in Fig.

5c, the left pointer must be reset to the right pointer.

 This sorted breadth-first traversal only requires one

additional pointer (left) on top of the intermediate storage

that is needed to perform unsorted breadth-first traversal.

However, it also requires additional computations and in-

line read-modify-write operations to the list of tree node

pointers to keep the database accesses sorted. As we will

see in Section 5, this can be easily done without a

performance penalty in the direct hardware implementation

because the FPGA can exploit fine-grain parallelism and

multi-ported or double-clocked memories. However, as

with the unsorted breadth-first traversal, this approach does

not improve the performance of a traditional software

implementation. This is likely due to the additional

computations and memory activity caused by sorting.

 Returning to the example in Fig. 3, sorting reduces the

number of read requests and page misses to the absolute

minimum. That said, as with the unsorted breadth-first

traversal, the precise number of memory accesses and page

misses is wholly dependent on the input data.

4.3. Memory Bandwidth Evaluation

Since the behavior of the breadth-first and sorted breadth-

first optimizations is data dependent, before building any

hardware we wanted to quantify the potential memory

bandwidth advantages of these techniques for real data. As

shown in Table 1, we performed a detailed analysis of the

database accesses made when processing two test images

using the three traversal approaches.

 The first image, Avg, represents an image with an

average number of pixels to be classified. This image

shows two average-sized adults head-to-toe at the

suggested camera-user distance. The second image, Stress,

represents an image where all pixels in the frame must be

classified. Although this is a degenerate case that will only

be created when an object strays very close to the camera,

it represents the maximum computational load. The Avg

image accesses 233,760 tree nodes (3896 pixels * 3 trees *

20 levels) and the Stress image accesses 1,152,000 tree

nodes (19,200 pixels * 3 trees * 20 levels).

 In Table 1, DF indicates depth-first traversal, BF

indicates maximally batched breadth-first traversal and

BFS indicates maximally batched breadth-first traversal

with sorting. This table also shows four metrics. Cached

Hits indicates the number of database accesses that that did

not require an external memory access. This is either

because the node requested was the same as the previous

node or because the node requested was fetched along with

the previous memory access. While each database node in

our system is 64 bits, every access to the DDR3 in our test

platform returns a 512-bit word. This 512-bit word is used

as a simple single-entry cache in our hardware

implementation.

 Page Hits indicates the number of database accesses

that required an external memory access but requested a

value within the same page as the previous access. Page

Misses indicates the number of external memory accesses

that resulted in a page crossing. Norm. BW indicates the

amount of memory bandwidth consumed (normalized to

the depth-first results), considering that a Cached Hit does

not require an external memory access, a Page Hit

occupies the memory for two cycles when the controller

has a full pipeline of outstanding read requests, and a Page

Miss occupies the memory for ten cycles when the

controller has a full request pipeline.

 Looking at Table 1, we see that breadth-first traversal

reduces the consumption of memory bandwidth

considerably. The bandwidth needed for breadth-first

traversal is only ~20% that of the depth-first traversal.

Breadth-first traversal with sorting further reduces memory

bandwidth consumption to only 1-3% as compared to

depth-first traversal. This is roughly an additional order of

magnitude improvement beyond the unsorted breadth-first

results.

 As mentioned before, the lessons learned from this

evaluation looking towards a hardware implementation

cannot be directly translated for a software version.

Although memory bandwidth is also a critical resource in

traditional processors, traversal order and sorting causes

Table 1. Memory accesses for various tree traversals.

Traversal
Cached

Hits

Page

Hits

Page

Misses

Norm.

BW

DF Avg 25,551 79,641 128,568 1.000

BF Avg 159,838 50,523 23,399 0.232

BFS Avg 218,536 13,709 1,515 0.029

DF Stress 124,314 394,086 633,600 1.000

BF Stress 892,202 173,111 86,687 0.170

BFS Stress 1,119,005 30,714 2,281 0.012

Host Machine

Image

Segment.

Skeletal

Tracking

Input

Buffer

Output

Buffer

Sorting

FIFO

Pixel

FIFO

DDR

Ctrller

Ext.

DDR

Decision Engine

FPGA

Fig. 6. Kinect processing pipeline and Forest Fire hardware

other effects due to differences in parallelism, caching, etc.

The most highly optimized software implementation we

use for comparison in Section 6 uses depth-first traversal.

Depth-first traversal is also used in the GPU

implementation in [3].

5. FOREST FIRE HARDWARE ARCHITECTURE

Since there are clear bandwidth advantages to sorted

breadth-first tree traversal for hardware-based systems, we

used this approach for our FPGA-based implementation of

the Forest Fire algorithm. Fig. 6 shows a block diagram of

how this hardware fits into the full Kinect vision pipeline,

interfacing the FPGA with a Kinect camera and other parts

of the existing Kinect SDK.

 The system begins with a Kinect sensor connected via

USB to a host PC. In addition to handling the USB 2.0

protocol to receive the raw depth image from the camera

(this cannot be handled sufficiently using the onboard USB

1.0 controller present on the ML605 board), the host

machine also performs the first stage of the Kinect vision

pipeline: image segmentation. This process identifies the

pixels representing moving objects, separating them from

the static background. The depth image with these tagged

“active” pixels is sent to an input buffer on the FPGA.

 Once the input buffer has been filled, the FPGA

performs the Forest Fire algorithm. This phase classifies the

active pixels in the depth image, producing the probabilities

for thirty-one distinct body parts for each pixel. These

probabilities are written into an output buffer on the FPGA

which are sent back to the host PC.

 At this point, the remaining part of the Kinect SDK

resumes operation to perform skeletal tracking. This

process connects the body parts identified by the

classification phase into a human skeleton either for display

or to be passed on to a user application (e.g. a game or other

target for the natural user-interface).

5.1. FIFO Initialization and Classification

When the image is first transferred to the FPGA, the

hardware must “seed” the sorting FIFO with pixels to begin

the tree-based classification process. In our current

implementation, the image is fully read from the input

buffer in scan-line order. The pixels are filtered based on

the “active” designation produced by the image

segmentation phase and only active pixels enter the sorting

FIFO for processing.

 Once the FIFO is loaded, the hardware begins

executing the classification algorithm on the pixels in the

FIFO. The compute logic pops a pixel from the sorting

FIFO, looks up the node it wishes to access from the

database stored in DDR, computes the appropriate target

pixel address in the original image (still held in the input

buffer) based on the offset from the database node, retrieves

the comparison pixel, computes the evaluation function and

decides whether the pixel should be pushed back into the

FIFO now pointing to the left or right child. These pixels

are sorted upon push-back as described in Section 4.2.

 Our implementation is heavily pipelined. The system

utilizes multiple FIFOs (i.e. to/from the DDR controller and

sorting FIFO) to mitigate the latency of the DDR.

Although, as discussed earlier, the controller can accept

new read requests every other or every tenth clock cycle,

the overall latency through the controller and DDR can be

up to roughly 100 clock cycles. These FIFOs allow the

system to issue database reads far ahead of the

computations performed in the decision engine.

 As discussed in Section 4.2, if the pixel moves to the

right child, it is pushed to the FIFO at the right pointer.

However, if the pixel moves left, the pixel must be inserted

at the left pointer, displacing the current entry that must be

written to the right. The possibility of one read/one write to

the left followed by a write to the right is handled in the

current implementation by clocking the sorting FIFO at

twice the speed of the rest of the computational pipeline.

 When a pixel reaches a leaf node, the resulting

probabilities are sent to the output buffer and the pixel is

done with the current tree. After all of the pixels have

traversed the first tree, the pixels are left in the FIFO. The

FIFO does not need to be reinitialized to begin processing

the next tree, since all pixels will begin at the root of the

subsequent tree. Thus, we can simply restart the processing,

performing an in-line replacement of the tree node pointers

with the address of the appropriate root node. Once the last

tree is processed, the algorithm terminates, signaling the

software that processing for the frame is complete.

6. EVALUATION

As discussed in Section 1, the primary goal of this work

was to build an efficient direct hardware implementation of

the Forest Fire algorithm. We prototyped our system using

the Xilinx ML605 board containing a Virtex-6 LX 240T.

6.1. Hardware Characterization

The logic and memory utilization of our FPGA

implementation is shown in Table 2. The entire system,

including the Forest Fire core, the DDR3 controller, and

the Ethernet controller used to communicate with the host

represents a fairly small portion of the target platform. The

logic and flip-flop utilization of the full system is less than

8% of the LUTs and 5% of the FFs. The largest fraction of

the resources consumed on the FPGA is BRAM (30%).

Even so, the computational core itself only uses 8.4% of

the BRAM, entirely devoted to the sorting FIFO. The

remaining BRAM are primarily consumed in the input and

output buffers to the PC. We will discuss how we can

reduce the BRAM requirements in Section 7.

 We operate the Forest Fire core at 75MHz (as

mentioned earlier, the sorting FIFO is run at twice this

clock rate, 150MHz). The DDR3 is clocked at its minimum

allowable frequency of 150MHz. Although a higher clock

rate would result in higher performance, as we will show,

the throughput of the system is already very high. A core

frequency half of the DDR clock rate is used because, at

best, the DDR can accept new same-page requests every

other clock cycle.

 The execution time of the computational core is shown

in Table 3. Measured directly in hardware, the cycle count

begins when the input buffer is full and continues until the

output buffer receives the last leaf node. We tested the

system 10 times with the Avg and Stress images from

Section 4 and averaged the results of all runs. Given that the

DDR currently has no other traffic to service besides

requests from our Forest Fire core, the cycle counts were

quite consistent – varying by no more than +/- 7 cycles.

 Although we already proved that sorted breadth-first

traversal was advantageous from the standpoint of memory

bandwidth, we also measured the effect on runtime. This

was performed by disabling the sorting aspect of the FIFO.

For example, forcing the FIFO to always push pixels

exclusively to the right, regardless as to which child node is

selected, maintains the original scan-line order, as in the

unsorted breadth-first search.

Looking at Table 3, we see that traversing the trees with

sorted accesses requires ~350K cycles at 75MHz for the

Avg image. This achieves a throughput of roughly 214

frames-per-second (FPS). This provides 1.18x faster

performance as compared to the unsorted breadth-first

traversal (181 FPS). Behavior is similar for the Stress

image, with sorted breadth-first traversal achieving 56

FPS, or 1.27x better performance as compared to unsorted

breadth-first traversal (44 FPS).

It is difficult to determine how the performance of the

system might change if incorporated into an SOC where it

shared access to the DDR with other computational

elements. That said, given the excellent throughput, even

in the degenerate Stress case, the existing implementation

has quite a bit of headroom since the Kinect sensor

captures images at 30 FPS.

6.2. Software Comparison

The direct hardware implementation described here is

necessary for many applications because of the

computational complexity of pixel classification. Although

the existing Kinect SDK functions adequately on a modern

desktop or laptop processor, software is no longer

sufficient when run on an embedded processor.

 For example, when run on a single-core 1.6 GHz Intel

Atom 230, our most heavily optimized software

implementation struggled to process the Avg image at 14.3

FPS. When faced with the Stress image, the performance

dropped below 2 FPS.

 The performance on a modern ARM processor is

similar. We repeated the experiment with a Qualcomm

MSM8960, a dual-core 1.0 GHz Cortex-A15. Running

single-threaded, the Cortex processed the Avg image at

16.3 FPS and the Stress image at 3.0 FPS.

 To meet 30 FPS, we would need two Atom or ARM

cores at 100% utilization just for pixel classification in the

nominal case – discounting stress cases, any other parts of

the vision pipeline, or user applications. For power reasons

alone, this places significant limitations on the systems we

can build only using software-based processing.

 Along the same lines, we do not consider performing

pixel classification on a GPU because embedded GPUs do

Table 3. Hardware Performance.

Algorithm Avg. Cycles @ 75Mhz FPS

BFS Avg 349,492 (1.18x faster) 214

BF Avg 414,557 (1.0) 181

BFS Stress 1,349,706 (1.27x faster) 56

BF Stress 1,714,525 (1.0) 44

Table 2. Resource Utilization (V6 LX240T).

 LUTs FF BRAM

Full System
11,319

(7.5%)

13,327

(4.4%)

125

(30.0%)

· Forest Fire

 Core

2,511

(1.7%)

2,267

(0.8%)

35

(8.4%)

Sorting

FIFO

457

(0.3%)

77

(0.0%)

33

(7.9%)

· DDR3

 Controller

6,522

(4.3%)

9,935

(3.3%)

0

(0%)

· PC Interface
2,282

(1.5%)

1,123

(0.4%)

90

(21.6%)

Input

Buffer

248

(0.1%)

46

(0.0%)

10

(2.4%)

Output

Buffer

151

(0.1%)

8

(0.0%)

77

(18.5%)

not have the GP-GPU capabilities found in standard PC

graphics cards, such as those used in [3].

7. FUTURE WORK

Looking ahead, there are two particular aspects of our

current system that we would like to investigate in the

future. First, porting the implementation to a Spartan-class

device, and second, integrating more of the Kinect pipeline

into hardware.

Porting our system to a Spartan or similar FPGA is

important for both cost and power reasons. While the

ML605 was an excellent platform for a proof-of-concept,

Virtex-class devices are designed for logic capacity and

performance rather than cost and low power.

There is only one significant hurdle that prevents the

existing implementation from fitting into a very low-cost,

low-power device such as the Spartan LX-16 or possibly

even the LX-9: block memory. Virtually all of the block

memory in the existing implementation is consumed by the

input buffer, the sorting FIFO and the output buffer. While

the input image will likely remain on-chip, the size of the

sorting FIFO and output buffer can be reduced

considerably without effecting performance.

For example, the sorting FIFO is sized such that we can

maximally batch all 19,200 pixels in the depth image. As

mentioned in Section 4, though, it is rare that the number

of active (non-background) pixels will comprise more than

~1/4
th

 of the image. Thus, we can optimize the sorting

FIFO by sizing it to handle the typical number of active

pixels and simply run multiple classification iterations

when the number of active pixels exceeds the capacity of

the sorting FIFO. Multiple iterations may slightly increase

the necessary processing time as compared to a system that

can accommodate a larger batch size, but the existing

implementation is more than fast enough to accommodate

the expected penalty for atypical frames.

Discussion of the output buffer brings us to the second

area we would like to investigate further - integrating

additional parts of the Kinect pipeline. Beyond simply

providing a more sophisticated system, integrating some or

all of Skeletal Tracking will allow us to shrink the output

buffer considerably. This is because the output of

classification consists of multiple probabilities for each

active pixel. The first stage of Skeletal Tracking aggregates

this data heavily. Rather than describing individual pixels,

the result of the first stage of Skeletal Tracking is a small

handful of aggregated body part positions. Since all of the

computations beyond this first stage only look at the body

part positions, this dramatically reduces the working set. In

this case, the output buffer would be less that 1KB rather

than nearly 300KB.

8. CONCLUSION

Random decision tree classification is a powerful, but

computationally expensive machine learning algorithm.

Supporting random decision trees raises significant

computing challenges, particularly for high duty-cycle

embedded applications.

 In this paper we demonstrated that the Forest Fire

algorithm can be efficiently implemented in hardware.

More importantly, we built a framework in which

researchers can build and explore future hardware-based

computer vision applications using this unique and easily

accessible device. In addition, we showed that there is

plenty of available room for future expansion, both in terms

of resources on the FPGA and bandwidth to external DDR.

We have already outlined new parts of the existing

computational pipeline that can be readily migrated to

hardware and we hope to eventually encapsulate full

systems, including end-user applications.

9. ACKNOWLEDGMENTS

We would like to thank Shaoshan Liu for his help

performing benchmarking on the ARM Cortex-A15.

10. REFERENCES

[1] R. Narayanan, D. Honbo, G. Memik, A. Choudhary, and J.
Zambreno. An FPGA Implementation of Decision Tree
Classification. In proceedings of the Design Automation and
Test Europe Conference (DATE), April 2007. Pg. 1-6.

[2] T. Becker, Q. Liu, W. Luk, G. Nebehay, and R. Pflugfelder.
Hardware-accelerated Object Tracking. Computer Vision
on Low-Power Reconfigurable Architectures Workshop,
Field Programmable Logic and Applications (FPL), 2011.

[3] T. Sharp. Implementing Decision Trees and Forests on a
GPU. In the European Conference on Computer Vision
(ECCV), 2008. Pg. 595-608.

[4] A. Criminsi, J. Shotton, and E. Konukoglu. Decision Forests
for Classification, Regression, Density Estimation, Manifold
Learning and Semi-Supervised Learning. Microsoft
Technical Report. MSR-TR-2011-114.

[5] H. Le, W. Jiang, and V. K. Prasanna. A SRAM-based
Architecture for Trie-based IP Lookup Using FPGA. In
proceedings of the conference on Field Programmable
Custom Computing Machines (FCCM), 2008. Pg. 33-42.

[6] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake. Real-Time Human
Pose Recognition in Parts from a Single Depth Image. In
proceedings of the Computer Vision and Pattern
Recognition conference(CVPR), Colorado Springs CO,
IEEE, June 2011.

[7] Y. Amit, and D. German. Shape Quantization and
Recognition with Randomized Trees. In Neural Computation
Vol. 9 No. 2, October 1997. Pg. 1545-1588.

