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ABSTRACT 

Geographic information has spawned many novel Web 

applications where global positioning system (GPS) plays 

important roles in bridging the applications and end users. 

Learning knowledge from users’ raw GPS data can provide rich 

context information for both geographic and mobile applications. 

However, so far, raw GPS data are still used directly without 

much understanding. In this paper, an approach based on 

supervised learning is proposed to automatically infer 

transportation mode from raw GPS data. The transportation mode, 

such as walking, driving, etc., implied in a user’s GPS data can 

provide us valuable knowledge to understand the user. It also 

enables context-aware computing based on user’s present 

transportation mode and design of an innovative user interface for 

Web users. Our approach consists of three parts: a change point-

based segmentation method, an inference model and a post-

processing algorithm based on conditional probability. The 

change point-based segmentation method was compared with two 

baselines including uniform duration based and uniform length 

based methods. Meanwhile, four different inference models 

including Decision Tree, Bayesian Net, Support Vector Machine 

(SVM) and Conditional Random Field (CRF) are studied in the 

experiments. We evaluated the approach using the GPS data 

collected by 45 users over six months period. As a result, beyond 

other two segmentation methods, the change point based method 

achieved a higher degree of accuracy in predicting transportation 

modes and detecting transitions between them. Decision Tree 

outperformed other inference models over the change point based 

segmentation method.  

Categories and Subject Descriptors 

H.4.3 [Information System Application]: Communications 

Applications – Information browsers. H.5.2 [Information 

Interface and Presentation]: User Interface. I.5.2 [Pattern 

Recognition]: Design Methodology - Classifier design and 

evaluation. 

General Terms 

Algorithm,  Design,  Experimentation. 

Keywords 

Geographic Applications, GPS, Transportation Mode, Machine 

Learning, Classification. 

1. INTRODUCTION 
In recent years, on the World Wide Web, geographic information 

has enabled an explosion of applications in which locality and 

mobility usually connect to one another closely. Web-based 

mapping applications like Google Maps, Yahoo Maps and Live 

Maps as well as mobile/local search engines have attracted 

considerable interest among Web users and developers. 

Meanwhile, with the increasing prevalence of GPS devices, as 

never before, many communities that engaged in geographically 

related activities have been established. For instance, GPS track 

visualization and sharing over Web maps [1, 2, 3, 4, 5] as well as 

geo-tagging photos for archiving and browsing [6] have been 

incubated. In these applications, GPS data have played important 

roles in bridging them and end users, e.g., ranking the results of 

mobile/local search, tagging photos with locations, etc. However, 

to date, most of these applications only use raw GPS data like 

GPS coordinates and timestamps without much understanding, 

while other applications needs support from manual efforts. 

Neither method is optimal for the development of geographic and 

mobile applications. In this paper, we aim to improve local/mobile 

applications on the Web and enhance their connections by mining 

knowledge from raw GPS data with minimal user efforts. 

As a kind of knowledge mined from raw GPS data, transportation 

modes such as walking, driving etc, and the transitions between 

them are valuable for both users and application systems. 

 For users: The information helps individuals effectively 

reflect on their past events and deeply understand their own 

life pattern as well. Also, it presents richer knowledge over 

the plain GPS tracks to other users and facilitates life sharing 

among people. 

 For the application systems: 1) It enables context-aware 

computing based on a user’s present transportation mode and 

design of innovative web user interface. 2) It empowers the 

application systems to distinguish GPS tracks by 

transportation modes so that users can find proper routes to 

their destinations in a more effective manner. 3) It allows the 

systems to mine deeper knowledge such as traffic condition, 

popular routes for different transportation modes, etc., from 

public GPS data. 
 Moreover, in many research [7][8][9][10][11][12] aiming to 

understand user behavior from raw GPS data, transportation 

mode is also important knowledge to support their work. It 

can be used to improve the accuracy of prediction on an 

individual’s outdoor movements. Also, it can contribute to 

extract a user’s life pattern and discover the social pattern. In 

turn, all the knowledge learned from this work can be 

leveraged to enhance many innovative local/mobile 

applications on the Web further.  

However, due to the following two reasons, it is not feasible to 

require every user to manually tag corresponding transportation 

modes to their GPS tracks. 1) No motivation: Users cannot 

directly achieve benefits from labeling their trips. 2) Difficulty: A 

personal trip usually includes different transportation modes. 

However, it is difficult for people to remember the accurate time 

when they change their transportation modes. 
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On the other hand, the identification methods based on simple rule 

like velocity-based approach, cannot handle this problem with 

great effect. The features of different transportation modes are 

usually vulnerable to traffic conditions and weather. Intuitively, in 

congestion, the mean velocity of driving would be as slow as 

walking while on a rainy day a bus may move more like a bike 

from the perspective of velocity. When a user takes more than one 

kind of transportation modes along a trip, the identification on 

transportation mode becomes more difficult. Thus, we do need an 

approach to automatically and accurately infer transportation 

modes as well as the transitions between them from raw GPS data. 

Meanwhile, to make the approach more general and universal, we 

do not expect it relies on the data collected by other sensors like 

cell-phone, Wi-Fi, RFID, and/or other information extracted from 

geographic maps, such as road networks etc. In other words, the 

inference approach should only depend on raw GPS data. To the 

best of our knowledge, no related work solves this problem. 

In this paper, for geographic and mobile applications on the Web, 

we propose an approach using raw GPS data that is based on 

supervised learning to automatically learn the transportation 

modes including walking, taking a bus, riding a bike and driving. 

The contributions of the work lie in that:  

 It is an important step towards improving geographic 

applications on the Web by using knowledge mined from 

raw GPS data.  

 Such knowledge can enhance the connection between 

locality and mobility, and enable more novel applications on 

the Web.  

 It helps users deeply understand their own experience and 

better shares other people’s knowledge. 

 It enables local/mobile application systems to perform 

context-aware computing based on transportation mode and 

create an innovative user interface for Web users.  

The advantages of our approach lie in that: 1) our approach can 

infer compound trips, which contain more than one kind of 

transportation modes. In addition, it can correctly detect the 

transition between different transportation modes. 2) The 

approach is independent of other information from maps and other 

sensors. 3) The model learned from the dataset of some users can 

be applied to infer GPS data from others. 

The rest parts of the paper are organized as follows. First in 

Section 2, we briefly introduce the architecture and the prototype 

of GeoLife where our approach has been deployed to play 

important roles. The significance of inferring transportation mode 

is justified by three application scenarios here. Then, the 

framework of our approach is described in Section 3 while the 

detail methodologies are given in Section 4. Subsequently, in 

Section 5, we evaluate our approach based on the GPS data from 

45 people over a period of six months. Some experiments results 

and corresponding discussions are also presented. Finally, after 

introducing some related work in Section 6, we draw conclusions 

and offer an outlook for our future work in Section 7. 

2. GEOLIFE 
The work reported in this paper is a part of research into our 

project GeoLife, which is a GPS-log-driven application over Web 

Map. It focuses on lively visualization, effective organization, fast 

retrieval and deeply understanding of GPS track logs for both 

personal and public use.  

As shown in Figure 1, given the GPS track log as well as 

associated multimedia data people created in their daily lives, 

GeoLife helps users visualize their past events on Web maps and 

understand their personal life pattern as well. By publishing some 

of GPS tracks out, users can share life experience with others and 

absorb rich knowledge from others’ GPS tracks. Based on public 

data, more knowledge such as popular travel routes, hot places 

and traffic condition, etc., can be mined. The mined knowledge 

can be recommended to users via Web or mobile user interface 

(UI) when they need suggestions. Further, a spatial-temporal 

search function, which allows users to give a spatial range over 

maps and/or temporal interval as a query, is offered in GeoLife to 

help people effectively find out the GPS tracks they are interested 

in. The search function does not only facilitates allowing people 

to efficiently get information from other’s life experience but also 

support each person’s recall of past events.  
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Figure 1. Architecture of GeoLife 

Figure 2 depicts the Web user interface of GeoLife prototype. 

Compared to traditional text-based description, visualizing GPS 

log over Web maps can provide a more attractive, concise and 

explicit approach to express people’s experience.  

 

Figure 2. Prototype of GeoLife 

Our approach has been deployed in the website to help system 

automatically tag transportation modes to GPS tracks submitted 

by users. Also, it can be performed in GPS-phone to infer a 

person’s present transportation mode. Therefore, with the 

information of transportation mode, 1) users can connect to their 

personal past better, and obtain more information from others’ 

experience when they browse a GPS track. 2) When searching for 

a route on desktop machines or mobile devices, users can 

efficiently retrieve the GPS tracks matching their preference on 

transportation mode. Intuitively, people do not want to see a 

riding means when they are trying to find a driving route. 3) For 

remote users carrying GPS phones, based on their present 

transportation modes, we can display information with different 

map scales. 4) The system can model each individual’s activity 



more accurately and delivery commonsense information, e.g. bus 

schedules, in advance.  

Figure 3 presents an example to distinguish the different Web 

experience with and without transportation mode. As we can see, 

without the tag of transportation mode, the track shown in the 

Figure 3 (a) only provides us some basic location information. 

However, after we apply our inference model to this track, as 

illustrated in Figure 3 (b) and (c), richer knowledge has been 

discovered over the plain track. We can realize that the user first 

drives a car downtown, and then at the parking lot he/she switches 

to walking. At least, we know there is a parking lot where we can 

stop a car, and how long could we might spend on the way if we 

want to drive. Meanwhile, this track may also suggest walking 

from the parking lot to downtown to avoid heavy traffic and enjoy 

shopping. According to the mean velocity of the whole track, the 

route looks as it if it suffers from heavy traffic. Therefore, we will 

ignore it when searching a way to drive downtown. 

 

(a) Before inference   (b) Stop at parking lot   (c) Switch to walk 

Figure 3. An example of inferring transportation modes from 

GPS data 

Figure 4 give us another example to present the significance of 

our work on route recommendation based on user preference on 

transportation mode. In Figure 4 (a), there are many route 

candidates for selection when people try to find a way from the 

right-bottom to the left-top. Unfortunately, these routes are less 

discriminative from one another before we infer their 

transportation modes. 

  

      (a)   Raw GPS Tracks                   (b) Tracks after inference 

   

             (c) A track of bike                      (d) A track of car                            

Figure 4. Route recommendation based on transportation 

mode 

Actually, as shown in Figure 4 (b), these routes are generated by 

different users taking different transportation modes. Thus, when 

a person wants to ride a bike to the destination, we should 

recommend the route shown in Figure 4 (c). Likewise, when a 

user intends to drive, we should present the route depicted in 

Figure 4 (d). This recommendation makes sense to remote users 

when they search an efficient route to a location via mobile phone.  

Another potential application of our work is related to 

mobile/local search. As shown in Figure 5, when people search 

for a restaurant around them, the system can return different 

search results with different map scales based on their present 

transportation mode. For instance, in Figure 5 (a), if the person is 

walking, we can return the top ten restaurants within a distance of 

500 meters. However, in Figure 5 (b), if the person is driving, we 

can return the top ten restaurants within a farther distance like two 

or three kilometers. Intuitively, people who drive do not care 

about the distance of two or three kilometers while that distance is 

relatively far to a person who is walking. Since, in Figure 5 (b), 

more restaurants will be retrieved from a larger spatial range, the 

quality of top 10 restaurants may be higher than the results in (a). 

 

(a) Search results for WALK     (b) Search results for CAR 

Figure 5. Using transportation mode to improve mobile search 

3. FRAMEWORK 
In this section, we first define several terms used in this paper and 

then describe procedures of inference from a high level. Our 

approach is comprised of a segmentation method, an inference 

model, and post-processing method.  

3.1 Preliminary  
Before we start describing the framework of our approach, we 

have to clearly define the terms, GPS log, track, trip, segment, 

change point, Walk Segment and non-Walk Segments mentioned 

in this paper. Basically, as depicted in the left part of Figure 6, 

GPS log is a sequence of GPS points Pi ∈{P1, P2, … , Pn}. Each 

GPS point Pi contains latitude, longitude and timestamp. We can 

sequentially connect these GPS points into a track, and divide the 

track into trips if the time interval of the consecutive points 

exceeds a certain threshold.  

     Latitude, longitude, Time

P1:     Lat1,     long1,       T1

P2:     Lat2,     long2,       T2

         ………...

Pn:     Latn,     longn,       Tn

P1

Pn

Car

P2 P3 Pn-1

Change Point

Walk
Non-Walk Segment

L1
L2

Walk Segment

 

Figure 6. GPS log, segment and change point 

A change point stands for a place where people change their 

transportation modes. Since users usually change their 

transportation modes along a trip, i.e., a trip may contain more 

than two kinds of modes, we should first distinguish the segments 

of different transportation modes. For the description convenience, 

we name the segment of walk after Walk Segment while the 

segments of other transportation modes are called non-Walk 

Segments. Further, we denominate the GPS point from a Walk 

Segment, such as Pn-1, Walk Point while the GPS point from non-



Walk Segment, e.g., P2, is called non-Walk Point. For instance, in 

Figure 6, a trip can be partitioned into a Walk Segment and a non-

Walk Segment by a change point. The duration of a trip is the time 

interval between its start point and end point while the length of a 

trip denotes the sum of distance between each two consecutive 

points. The same definition also goes to the segment.  

3.2 Inference Strategy 
As shown in Figure 7, when a GPS Log file comes, first, we 

divide the GPS track into trips and then partition each trip into 

segments by change points. Then, we extract the features from 

each segment and send these features to the inference model. Two 

alternative ways are considered when we attempt to learn a user’s 

transportation mode. In one way, we regard the segments of GPS 

tracks as independent instances. General classifiers like Decision 

Tree are employed to perform inference. After the inference, a 

post-processing, which takes the transition probability between 

different transportation modes into account, is implemented to 

improve the prediction accuracy. In the other way, GPS data are 

deemed as a kind of sequential data. Conditional random field 

(CRF) [13], a framework for building probabilistic models to 

segment and label sequence data, is leveraged to perform the 

inference. Since the conditional probabilities between different 

transportation modes have been considered in the CRF graphical 

model, in this way, we do not take the post-processing. In the 

inference, the mode of transportation can take four different 

values including Bike, Bus, Car and Walk. At the same time, we 

do not discriminate driving private car from taking taxi. Both of 

them are deemed as Car. 

 

Figure 7. Procedure of inferring transportation mode 

3.3 Post-Processing 
After taking the former inference process, as depicted in Figure 8, 

we can get the predicted transportation mode ranked by its 

probability value for each segment. If we directly select the 

transportation mode with maximum probability as the final results, 

the prediction is CarBikeBike while the ground truth is 

CarWalkBike. I.e., a prediction error is occurred. At this 

moment, we can improve the prediction accuracy by considering 

the conditional probability between different transportation modes.  

Segment[i-1]: Car Segment[i]: Walk Segment[i+1]: Bike

P(Car):   75%

P(Bus):   10%

P(Bike):  8%

P(Walk): 7%

P(Bike):  62%

P(Walk): 24%

P(Bus):   8%

P(Car):    6%

P(Bike):  40%

P(Walk): 30%

P(Bus):   20%

P(Car):   10%
 

Figure 8. An example of post-processing 

If in a segment, e.g., segment i-1, the probability of the top 

transportation mode exceed a threshold (for instance, 70 percent 

in our experiment), we use this transportation mode as the final 

prediction result on this segment. Then, we can re-calculate the 

probability of each kind of transportation mode of its adjacent 

segment, e.g., segment i, according to the following equations. 

      𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝑖 . 𝑃 𝐵𝑖𝑘𝑒 = 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝑖 . 𝑃 𝐵𝑖𝑘𝑒 × 𝑃 𝐵𝑖𝑘𝑒 𝐶𝑎𝑟 ,     (1) 

     𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝑖 . 𝑃 𝑊𝑎𝑙𝑘 = 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝑖 . 𝑃 𝑊𝑎𝑙𝑘 × 𝑃(𝑊𝑎𝑙𝑘|𝐶𝑎𝑟), (2) 

     …. 

where 𝑃(𝐵𝑖𝑘𝑒|𝐶𝑎𝑟) and 𝑃 𝑊𝑎𝑙𝑘 𝐶𝑎𝑟  stands for the transition 

probability from Car to Bike as well as that from Car to Walk. 

𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝑖 . 𝑃 𝐵𝑖𝑘𝑒  represents the probability of Bike on the 

segment i. After the calculation, we use the transportation mode 

with maximum probability as the final results. In the case depicted 

in Figure 8, since the transition probability between Car and Bike 

is very small, the probability of Bike will drops behind Walk after 

the multiplication shown in equation (1) and (2).  

3.4 CRF-Based Inference 
In the later inference way we described in Section 3.2, CRF is 

responsible for the prediction on transportation mode. So, we 

present the graphic mode we designed for CRF in Figure 9. The 

top part of Figure 9 depicts a trip where a person transfers his/her 

transportation modes from Bus to Walk and then to Car. After 

partitioned by two change points, the trip is divided into three 

segments. The top line of the graphical model is a sequence of 

states {…, Mi-1, Mi, Mi+1,... } represented by black nodes while 

each white node {…, Xi-1, Xi, Xi+1,... } on the bottom denotes the 

observation of corresponding state. Each observation and 

corresponding state compose an instance < Xi , Mi>, and these 

consecutive instances construct a sequence. In our approach, each 

state stands for the transportation mode of a segment while an 

observation is the features we extract from the segment. The lines 

connecting a state Mi to its adjacent observations Xi-1 and Xi+1 

represent that each state not only depends on current observation 

but also depends on its previous and next observation. In other 

words, a person’s present transportation mode has close 

relationship with the modes of both previous and next segment.   

Mi-1 Mi Mi+1

Xi-1 Xi Xi+1

Observations

States

WalkBus ForwardCar

Graphical 

Model

A Trip

Figure 9. Graphical model of CRF 

4. Change Point Based Segmentation 
In this section, we will demonstrate how change points can be 

detected automatically. The detecting approach is derived from 

the following commonsense knowledge of the real world, and 

justified by Table 1.  

 People must stop and then go when changing their 

transportation modes. I.e., there must be some GPS points 

whose velocities are close to zero during transition.  

 Walk should be a transition between different transportation 

modes. In other words, the start point and end point of a 

Walk Segment could be a change point in very high 

probability.  

As shown in Table 1, the above knowledge can be proved by the 

transition matrix summarized from the GPS data collected by 45 

people for six months. Almost in all the cases, Car, Bus and Bike 

transfer to Walk while the direct transition among them is quite 

rare. On a few occasions, a person could take a taxi immediately 

after he/she gets off a bus. The very short Walk Segment between 

these two transportation modes is easy to be neglected when the 

Inference 
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Post Process
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Log
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Features
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Final 

Results
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person label his/her GPS data. However, Walk essentially exists 

in this situation. That is the reason causing the direct transition 

between Car and Bus.  
Table 1. Transition matrix of transportation modes 

Transportation modes Walk Car Bus Bike 

Walk / 53.4% 32.8% 13.8% 

Car 95.4% / 2.8% 1.8% 

Bus 95.2% 3.2% / 1.6% 

Bike 98.3% 1.7% 0% / 

On the contrary, over the same dataset, Figure 10, 11 and 12 

respectively shows the distribution of average velocity, maximum 

velocity and maximum acceleration of different transportation 

modes. The data shown in these figures paint a richer picture 

about how difficult it is to give some simple rules to directly 

distinguish the segments of different transportation modes. 

Without knowing how many modes a trip contains, it is especially 

difficult to tackle the problem by simple rules.  

 

Figure 10. Distribution of average velocity  

 

Figure 11. Distribution of maximum velocity  

 

Figure 12. Distribution of maximum acceleration 

Enlightened by the above-mentioned commonsense approach as 

well as the knowledge mined from GPS data, we can first find the 

change points by detecting Walk Segments from a trip. Then by 

leveraging these change points, the trip are partitioned into 

alternate Walk Segments and non-Walk Segments. Since segments 

from a trip are only categorized directly into two classes rather 

than four classes {Bike, Bus, Car, Walk}, the complexity of 

segmentation has been reduced greatly. Subsequently, we can 

extract the features of each segment and infer its specific 

transportation mode further. By leveraging Figure 13 as an 

example where an individual transfers his/her transportation mode 

from Bus to Car using Walk as a transition, we describe the 

detecting procedure as follows.  

 Step 1: Using a loose upper bound of velocity (Vt) and that of                       

acceleration (at) to distinguish all possible Walk Points from 

non-Walk Points.  

 Step 2:  If the length of a segment composed by consecutive 

Walk Points or non-Walk Points less than a threshold, merge 

the segment into its backward segment. 

 Step 3: If the length of a segment exceeds a certain threshold, 

the segment is regarded as a Certain Segment. Otherwise it is 

deemed as an Uncertain Segment. If the number of 

consecutive Uncertain Segment exceeds a certain threshold, 

these Uncertain Segments will be merged into one non-Walk 

Segment. 

 Step 4: The start point and end point of each Walk Segment 

are potential change points, which are leveraged to partition a 

trip.  

WalkBus

Certain Segment

Denotes a non-walk Point:        P.V>Vt or P.a>at

Denotes a possible walk point: P.V<Vt and P.a<at

(b)

(c)

Backward Forward

Car

(a)

Certain Segment3 Uncertain Segments

Car

 

Figure 13. An example of detecting change points 

As depicted in Figure 13, each possible Walk Point (white points) 

is a GPS point whose velocity (P.V) and acceleration (P.a) are 

both smaller than the given bound. Ideally, as demonstrated in 

Figure 13 (a), only one Walk Segment will be detected from this 

trip. However, as depicted in Figure 13 (b), when car or bus 

moves slowly in some transient occasions, a few GPS points from 

non-Walk Segments may be detected as possible Walk Points. 

Also, because of the locative error, a few points from the Walk 

Segment will exceed the bound and become a non-Walk Points 

(black points in Figure 13). To reduce the probability of detecting 

error, we require that the length of each retrieved segment must 

exceed a certain distance. Otherwise, it will be merged into its 

backward segment. For instance, in Figure 13 (b), the two Walk 

Points in the segment of Bus cannot construct a segment due to 

the short distance between them. The same criterion is also 

applied to handle the outlier points in Walk Segment. 

After step 1 and step 2 are conducted, the trip is divided into a 

serial of alternate Walk Segments and non-Walk Segments. 

Unfortunately, in some occasion shown in Fig. 8 (c), e.g. a user 
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meets a congestion or heavy traffic, a segment of car may be 

comprised of many alternate Walk Segments and non-Walk 

Segments after detection. It is not appropriate for the inference 

model to directly predict their transportation modes over the 

features extracted from such segments. It is commonsense that the 

longer a segment is, the richer features of its transportation mode 

a segment will express. Hence, it is more probable for us to infer 

its transportation mode correctly. On the contrary, the shorter a 

segment is, the higher the uncertainty is. To avoid the incorrect 

partition which will lead to the further inference error, we take the 

following policy to merge, to some extent, the consecutive 

Uncertain Segments. We define a segment whose length exceeds a 

threshold (e.g., fifty meters used in the experiments) as a Certain 

Segment. Otherwise, we deem it as an Uncertain Segment. I.e., we 

are not sure about the transportation mode of this segment even if 

it holds the condition of a Walk Segment. If the number of 

consecutive Uncertain Segments exceeds a certain threshold, e.g., 

three we find out in experiments, we still deem all these Uncertain 

Segments as one non-Walk Segments. It is not difficult to 

understand that common users will not frequently change their 

transportation modes within such a short distance. For instance, as 

depicted in Figure 13 (c), within a certain distance, it is 

impossible for a person to take the following transition, Car  

Walk  Car  Walk  Car. So, we believe the middle three 

segments between the two Certain Segments are also non-Walk 

Segments, Car here. Thus, we can merge the three Uncertain 

Segments into one segment and perform the further inference. 

5. EXPERIMENTS 
In this section, at first, we describe the framework of the 

experiment. The setup includes GPS data, toolkits and parameters 

of each algorithm we used in our experiments are presented 

respectively. Subsequently, detailed experimental results are given. 

Finally, corresponding discussions are provided based on the 

evaluation results.  

5.1 Framework of the Experiments 
From a hierarchical perspective of view, Figure 14 illustrates the 

framework of the experiment we performed. It includes four steps: 

segmentation, feature extraction, inference and evaluation.  

Segmentation: Over the GPS log data, change point based 

segmentation method is leveraged to divide a GPS track into 

segments. To validate the effectiveness of our segmentation 

method, two baseline methods are also selected to partition the 

trips. They are uniform duration based and uniform length based 

segmentation. In other words, each segment will have same 

duration after being partitioned by the former method or same 

length after being partitioned by the latter one.  

Feature Extraction: We extract features including the length, the 

mean velocity, the expectation of velocity, the variance of 

velocity, the top three velocities and the top three accelerations of 

each segment. In case the features of a segment are dominated by 

an abnormal point with positional error, we need to select top 

three velocities and top three accelerations rather than the 

maximal velocity and maximal acceleration. Using Figure 6 as an 

instance, we calculate the features of a segment by following 

formula. 

                           𝐿𝑖 = 𝐷𝑖𝑠𝑡 𝑃𝑖 , 𝑃𝑖+1 ;                

                           ∆𝑇𝑖 = 𝑃𝑖+1. 𝑇 − 𝑃𝑖 . 𝑇 ;               

                           𝑉𝑖 = 𝐿𝑖/∆𝑇𝑖 ; 

                                   𝑎𝑖 = |𝑉𝑖+1 − 𝑉𝑖|/∆𝑇𝑖  

                                        𝑉 =
 𝐿𝑖

𝑛
𝑖=0  

𝑃𝑛 .𝑇−𝑃0 .𝑇
 

                                        𝐸 𝑉 =
 𝑉𝑖

𝑛
𝑖=0  

𝑛
 

Inference: two alternative ways are considered when we select 

the inference model to learn a user’s transportation mode. In one 

way, the three white boxes on the top level, we regard the 

segments of GPS tracks as independent instances. Three different 

classification algorithms including Decision Tree, Support Vector 

Machine (SVM) and Bayesian Net are selected to learn the 

transportation mode of each segment. Meanwhile, we respectively 

use Bootstrap aggregating (bagging) [14] as a meta-algorithm to 

improve the accuracy of these three models by reducing variance 

and over-fitting. After the inference, the post-processing is 

performed. In the other way, the box with gray background, GPS 

data is deemed as a kind of sequential data. CRF is leveraged to 

perform the inference. In this way, we do not perform the post-

processing. 
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Figure 14.  Schema of segmentation and inference model 

Evaluation: During the process of the experiment, we are 

interested in the following two variables: three segmentation 

methods and four different inferring algorithms. Therefore, over 

each segmentation method, four different approaches can be 

employed. To validate the effectiveness of each approach, both 

the inference accuracy of transportation mode and that of change 

points, which denotes user makes a transition between different 

modes, are investigated. With regard to the prediction accuracy of 

transportation mode, since the number of segments of a trip 

partitioned by different segmentation methods is quite differential, 

we focus on the following two evaluation criteria: Accuracy by 

Length (𝐴𝐿) and Accuracy by Duration (𝐴𝐷). 

𝐴𝐿 =
 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡  𝑗  .𝐿𝑒𝑛𝑔𝑡 ℎ𝑚

𝑗=0

 𝑆𝑒𝑔𝑚𝑒𝑛𝑡   𝑖 .𝐿𝑒𝑛𝑔𝑡 ℎ𝑁
𝑖=0

 ; 

   𝐴𝐷 =
 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡  𝑗  .𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑚

𝑗=0

 𝑆𝑒𝑔𝑚𝑒𝑛𝑡   𝑖 .𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑁
𝑖=0

 ; 

where N stands for the total number of the segments after being 

partitioned by a segmentation method while m denotes the number 

of segments our approach correctly predicted over the 

segmentation method.  

About the inference accuracy of change point, we investigate its 

recall and precision while its recall has higher priority over its 

precision. For the uniform duration based and uniform length 

based segmentation method, if the predicted transportation modes 

of two consecutive segments are different, a change point is 

detected between the two segments. If the distance between the 

inferred change point and actual change point extracted from 

user’s label is within a certain distance, we regard the detected 

change point as a correct inference.  

5.2 Settings 
GPS Data and Toolkits: As shown in Figure 15, the GPS data we 

used in the experiments are collected by 45 users over a period of 

six months. The data cover 15 cities, and its total length has 



exceeded 20,000 kilometer. About 70 percent of the data are used 

as a training set while the rest is used as test data. The GPS device 

we chose to collect data from included handheld GPS receivers 

(Magellan Explorist 210 or 300) and GPS phones. All the GPS 

devices receive GPS coordinates every second and record a GPS 

point once the velocity of a user changes to a certain extent or 

his/her moving direction varies up to a threshold. After data 

collection, we segment the track into trips if the interval between 

two consecutive GPS points exceeds 20 minutes. Further, these 

trips are partitioned into separate segments by the three 

segmentation methods mentioned above. With regard to the 

toolkit we used in the experiments, Weka 3.4 toolkit [14] is 

selected to implement Decision Tree (REPTree), SVM/SMO 

(linear) and Bayesian Net while CRF++ [15] are leveraged to 

perform CRF algorithm over the partitioned segments. 

 

Figure 15. GPS data and GPS devices 

Parameter Selection: With regard to the change point based 

segmentation method, to recall all the Walk Segments from each 

trip, we need to determine a proper threshold for velocity and 

acceleration respectively. With the guidance of Figure 9, 10 and 

11, using 0.2 as step size, we have tested all the possible values of 

velocity within [1, 3] m/s and values of acceleration within [0.2, 

1.0] m/s2. Figure 16 and Figure 17 depict the results of the first 

step towards detecting the change points over the dataset. As a 

result, when v=1.8 m/s and a=0.6 m/s2, we can get an acceptable 

recall with the best precision. Ideally, when we chose a loose 

bound, all the Walk Points along a trip would be retrieved after 

the first step, i.e. 100 percent recall. However, the unintentional 

mistakes from users’ incorrect labels scarify a few performances. 

Since it is only the results of the first step, the selected upper 

bound <v, a> should provide high recall first. Meanwhile, it 

should ensure high precision and make the number of segments as 

small as possible. The precision of inferred change point will be 

improved in the following steps. 

 

Figure 16 Recall of change points after step 1 towards 

detecting change points  

 

Figure 17. Precision of change points after step 1 towards 

detecting change points 

5.3 Results 
As shown in Figure 18, over the change point based segmentation 

method, the inference accuracy of transportation mode using 

different four inference models are separately evaluated by two 

criteria, the Accuracy by Length and the Accuracy by Duration. If 

we take both criteria into account, we can see the Decision Tree 

outperforms other models when we partition trips by change point 

based segmentation method. Figure 19 and Figure 20 show the 

recall and precision of retrieved change points respectively. As 

depicted in Figure 20, when the Decision Tree is selected to 

perform the inference, almost 90 percent of the actual change 

points can be retrieved from the corresponding GPS data within a 

distance of 150 meters to the actual change point. 

 

Figure 18. Inferring accuracy of transportation mode 

As shown in Table 2, given uniform duration based segmentation, 

the prediction results of Decision Tree (DT), SVM, Bayesian Net 

(BYS) and CRF are reported respectively. Although many 

duration candidates are tested, we just present the results of 60s, 

90s and 120s due to the similarity between these results. With 

regard to the change point, we give its precision and recall within 

150 meters of actual transition. Overall, Decision Tree 

outperforms other inference model. Meanwhile, when we partition 

trips by 120 seconds, Decision Tree get better performance over 

other two duration candidates.  

In Table 3, we present the inference results given the uniform 

based segmentation methods. The results of three length 

candidates including 100 meter, 150 meter and 200 meters are 

selected to present. The same four inference models are also 

tested respectively. With regard to the change point, we also give 

its precision and recall within 150 meters of actual transition. 

Overall, Decision Tree outperforms other inference model while 

100 meter is better beyond other two length candidate for 

Decision Tree. 
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Figure 19. Recall of change point using change point based 

segmentation method 

 

Figure 20. Precision of change point using change point based 

segmentation method 

Table 2 Inference results of uniform duration based segmentation method 

 
60 second 90  second 120 seconds 

DT SVM BYS CRF DT SVM BYS CRF DT SVM BYS CRF 

Accuracy by Length 0.664 0.446 0.119 0.505 0.673 0.197 0.512 0.524 0.687 0.462 0.523 0.544 

Accuracy by Duration 0.695 0.505 0.431 0.404 0.699 0.444 0.577 0.413 0.721 0.517 0.574 0.422 

Recall/change point 0.867 0.511 0.141 0.090 0.889 0.822 0.889 0.121 0.867 0.578 0.867 0.115 

Precision/change point 0.139 0.084 0.167 0.060 0.184 0.194 0.197 0.070 0.197 0.095 0.206 0.072 

Table 3 Inference results of uniform length based segmentation method 

 
100 m 150 m 200 m 

DT SVM BYS CRF DT SVM BYS CRF DT SVM BYS CRF 

Accuracy by Length 0.399 0.172 0.500 0.585 0.405 0.174 0.470 0.617 0.429 0.184 0.463 0.616 

Accuracy by Duration 0.674 0.504 0.172 0.566 0.647 0.473 0.173 0.525 0.651 0.464 0.182 0.514 

Recall/change point 0.867 0.601 0.111 0.641 0.889 0.533 0.111 0.656 0.867 0.511 0.111 0.64 

Precision/change point 0.148 0.124 0.167 0.155 0.152 0.132 0.167 0.159 0.127 0.184 0.167 0.152 

 

5.4 Discussions 
Over the experiment results, we compare the prediction results of 

the two inference ways based on the three segmentation methods 

mentioned above.  

The former way with post-processing: Overall, Decision Tree 

outperforms other inference models no matter what kinds of 

segmentation methods are selected. The reason that Bayesian Net 

falls behind Decision Tree is in that the probabilistic 

independencies among selected features do not hold. E.g., average 

velocity and maximum velocity has some implicit relationship. 

With regard to the SVM, basically, it is hard for linear SVM to 

handle multiclass classification problem. What’s more, SVM does 

not offer probabilities of each class in its inference results. 

Therefore, we cannot improve the prediction accuracy by 

performing the post-processing algorithm designed in Section 3.3.  

As shown in Table 4, we evaluate each segmentation methods 

using the inference results of Decision Tree as a representation. 

Suggested by Table 2 and Table 3, the results of 120 seconds are 

selected to represent the performance of uniform duration based 

segmentation method while the results of 100 meters are picked 

out for uniform length based methods. As a result, change point 

based segmentation method outperforms others in accurately 

inferring transportation mode and change points. Particularly, the 

prediction precision of change point is much higher than that of 

other two methods, though the recall of change point of different 

segmentation methods looks approximate. In other words, most 

inferred change points are false predictions caused by the 

improper segmentation methods. Intuitively, if we partition a trip 

by uniform length, two kinds of transportation modes may be 

assigned to a segment with high probability, especially when user 

makes a transition. This kind of segment brings lots of trouble to 

the inference model and leads some actual change points missed. 

Table 4. Comparison of different segmentation methods 

 
change 

point  

uniform 

duration 

(120 s) 

uniform 

length 

(100 m) 

Accuracy by Length 0.675 0.667 0.399 

Accuracy by Duration 0.743 0.721 0.674 

Recall/change point 0.887 0.867 0.867 

Precision/change point 0.406 0.197 0.148 

CRF-based inference way: Although, in most cases, CRF drops 

behind Decision Tree, we cannot say that CRF is worse than other 

prediction model in handling this problem. To investigate the truth 

behind the evidences, we evaluate the results of CRF model based 

on different segmentation methods in Table 5. As a result, 

uniform length based segmentation method outperforms other 

methods. With regard to the change point based segmentation 

method, the reason that CRF falls behind other models lies in that 

the granularity of segments partitioned by change points is too 

coarse. It causes the number of instances (segments) within a 

sequence (a trip) to be very small. In the worst case that people 

only take one kind of transportation mode during a trip, the sole 
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segment cannot compose a sequence. Intuitively, people will not 

frequently change their transportation modes within a trip in real 

world. Consequently, in most cases, a trip will only be partitioned 

into two or three segments. That is not appropriate to develop the 

advantages of CRF in labeling sequence data.  

Table 5. Comparison of inference results of CRF over 

different segmentation methods 

 
change 

point  

uniform 

duration 

(90 s) 

uniform 

length 

(150 m) 

Accuracy by Length 0.528 0.524 0.617 

Accuracy by Duration 0.358 0.413 0.525 

Recall/ change point 0.281 0.121 0.656 

Precision /change point 0.286 0.070 0.159 

Using uniform duration based or uniform length based 

segmentation methods, we can get enough instances in a sequence. 

However, we are facing new challenges. About the uniform 

duration based segmentation, when users stay in a place for a 

while without movement, the features extracted from segments of 

different transportation modes becomes indiscriminative. I.e., 

under this kind of situations, all the features except duration of a 

segment are zero. However, the transportation mode can be walk, 

car, bike and bus. The inference model is unable to handle this 

problem. Moreover, in the graphic model we designed for CRF, 

the state is not only depends on its present observation but also 

depends on its prior and post observations. Therefore, the trouble 

may infect the inference on more segments as compared to using 

other models such as decision tree.  

By employing uniform length based segmentation method, we get 

a better performance over other two segmentation methods. The 

reasons lie in that the weaknesses of the previous two methods are 

reduced to some extent. However, it is still vulnerable to the 

unbalance of the training instances. With commonsense of real 

life, people usually move farther when driving than taking other 

transportation modes, e.g., walking. Thus, in a trip, the number of 

segments of car will be much more than that of walk segment, 

which leads the inference model dominated by Car.  

Summary: According the experimental results, we get the 

following summary: 

 Overall, when Decision Tree is performed over change point 

based segmentation method, we get the best inference 

accuracy on both transportation mode and change point.  

 Among the three segmentation methods, change point based 

method outperforms others when we take the former way of 

inference while uniform length based method is slightly 

better than other two segmentation methods in the CRF-

based inference way. 

 The three segmentation methods proposed in this paper are 

not appropriate to apply CRF directly. Based on these 

methods, CRF do not meet our expectation on predicting 

transportation mode and transition. In most cases, it even 

drops behind Decision Tree and SVM although CRF is 

designed to segment and label sequence data.  

6. RELATED WORKS  
Single Location Based Applications. Over recent years, 

geographic information has boomed a lot of application on the 

Web. For instance, in a more effective manner, Google local and 

Live local have enabled Web users to find more information over 

maps. Meanwhile, for better archiving and browsing photos, in 

many communities like Flickr and WWMX [6], users are allowed 

to tag the photos with the location where they are taken. Also, by 

geo-tagging web pages [16], personal blog [17] and RSS feeds 

[18], users are essentially assign a location to these Web content. 

However, these techniques only use the basic geographic 

coordination about a location. The main difference between our 

work and above mentioned works is that we focus on the 

geographic information extracted from a GPS track which is a 

sequence of location. 

Improve Mobile User Interface using geo-Context: By 

leveraging some location- and orientation-aware devices, some 

research aimed to enable innovative types of user interfaces on 

mobile devices. Wasinger et al [19] equipped a mobile device 

with a digital compass to realize Geo-Wand-like pointing 

functionality. Mitchell et al [20] and Strachan et al [21] applied 

similar concepts in the context of a mobile multiplayer game and 

a handheld audio navigation tool respectively. Meanwhile, Rainer 

et al [22] presented an application framework that allows 

developers to create innovative geospatial user interfaces on high 

end devices with advanced navigation features. The essential 

difference between our work and these research is in that we 

leverage the knowledge learned from GPS track to improve 

mobile user interface while they directly employ original stand-

alone location as context. 

GPS Track Sharing. In the application scenarios [1][2][3][4][5] 

leveraging users’ GPS tracks, some communities have been 

established to help users share their historical GPS data. These 

systems tell the users about the basic information, such as distance 

and duration, of a particular route. Tags and photos are also 

shown for the route. However, they either provided users raw GPS 

track [1][2] or required users manually label their tracks [3][4][5]. 

For instance, the transportation modes of each track are manually 

tagged by the user who uploads the GPS log. Due to the user 

efforts for manually tagging, many users are frustrated to give up 

uploading their GPS data. The essential difference between our 

work and the work mentioned above is that we understand 

knowledge from user’s GPS track automatically and leverage the 

knowledge to improve the geographic applications and related 

mobile applications on the Web. 

GPS Track Understanding. Several research projects aiming to 

understand a particular user’s behavior from his/her GPS data. 

These work include extracting significant place of an individual 

[7][8], predicting a user’s movement [9][10] and modeling a 

user’s transportation routine [11][12]. In paper [7], authors aimed 

to detect the stay point, a place where user stays for a while. In 

addition, by clustering these stay points, the personally significant 

locations, such as home and working place, are extracted. 

However, the stay point is different from change point proposed 

in this paper. On one hand, sometimes, people may change their 

transportation modes without staying in a place for a while. E.g., a 

person gets on a taxi immediately after taking off a bus. On the 

other hand, people may not change their transportation modes in a 

stay point. For instance, people usually wait traffic light at a 

crossroad when driving car.  

In paper [11], authors attempted to infer an individual’s 

transportation routine given his/her raw GPS data. Their system 

first detects a user’s set of significant places, and then recognizes 

the activities in those places using a Rational Markov Network. 

By leveraging a dynamic Bayesian network, the system learns and 

infers the person’s transportation routines between the significant 

places. As compared to our approach, this work has three 



constraints: 1) It needs the information of road networks, bus 

stops and parking lots. 2) It also needs the location of a user’s car, 

which implies two GPS receivers are needed. 3) Given above 

supplementary information, the model learned from a particular 

user’s historical GPS data are customized for the user. I.e., each 

user needs a personal model learned from his/her historical GPS 

data respectively. Thus, it is not universal and general to be 

implemented on the website for public geographic applications.   

The main difference between our work and the research 

mentioned above is that we mine the knowledge from the GPS 

data collected by multi-users while the knowledge can also 

contribute to both personal use and public use. 

7. CONCLUSIONS 
In this paper, by using knowledge mined from raw GPS data, we 

aim to improve geographic applications on the Web and build 

closer connections between locality and mobility. The knowledge 

we gained as well as the connections enable more novel 

applications and improve user experience in a variety of tasks. An 

approach has been proposed to automatically learn transportation 

mode from raw GPS data. The inferred transportation mode can 

help Web users more deeply understand their own experience 

while better sharing other users’ knowledge. It also enables 

context-aware computing based on a user’s present transportation 

mode and creation of innovative user interface for Web users. The 

proposed approach is independent of other information and 

devices. Therefore, it is universal to be performed in both mobile 

devices and servers. 

Our approach consists of three parts: a change point based 

segmentation method, an inference model and a post-processing 

algorithm based on conditional probability. We evaluated our 

approach using the GPS data collected by 45 people over a period 

of six months. As compared to uniform duration based and 

uniform length based segmentation methods, change point based 

method achieved a higher degree of accuracy in predicting 

transportation modes. It also obtained better precision in detecting 

transitions between different transportation modes. Over the 

change point based segmentation method, Decision Tree 

outperformed other inference models. However, based on the 

three segmentation methods mentioned above, CRF did not 

present its advantages in labeling sequence data. 

In the future, we will strive for improving the prediction 

performance of CRF by designing more reasonable segmentation 

methods and more sophisticated graphical model for CRF. 

Combing different segmentation methods is also potential work to 

do. Meanwhile, we are moving forward to learning more 

knowledge from raw GPS and hope to leverage them to improve 

geographic applications on the Web. 
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