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ABSTRACT

Search satisfaction is a property of a user’s search process.
Understanding it is critical for search providers to evalu-
ate the performance and improve the effectiveness of search
engines. Existing methods model search satisfaction holisti-
cally at the search-task level, ignoring important dependen-
cies between action-level satisfaction and overall task satis-
faction. We hypothesize that searchers’ latent action-level
satisfaction (i.e., whether they believe they were satisfied
with the results of a query or click) influences their observed
search behaviors and contributes to overall search satisfac-
tion. We conjecture that by modeling search satisfaction
at the action level, we can build more complete and more
accurate predictors of search-task satisfaction. To do this,
we develop a latent structural learning method, whereby
rich structured features and dependency relations unique
to search satisfaction prediction are explored. Using in-
situ search satisfaction judgments provided by searchers, we
show that there is significant value in modeling action-level
satisfaction in search-task satisfaction prediction. In addi-
tion, experimental results on large-scale logs from Bing.com
demonstrate clear benefit from using inferred action satisfac-
tion labels for other applications such as document relevance
estimation and query suggestion.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval
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1. INTRODUCTION

Measuring search engine performance via behavioral indi-
cators of search satisfaction has recently received consider-
able attention [1, 11, 12, 15]. In comparison with traditional
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relevance-based evaluations [4], such methods enable evalua-
tion using real user populations, in naturalistic settings, and
across a diverse set of information needs. It has been shown
that users’ search behaviors provide more accurate signals of
search satisfaction than query-document relevance [12, 15].
The core problem in search-task satisfaction modeling is
to understand whether users are satisfied with their search
actions (i.e., whether they believe they were satisfied with
the search results for a particular information need) when
performing the task [1, 3, 9, 15]. Unfortunately, searchers’
detailed action satisfaction labels are unobservable in search
log data; and they are difficult to obtain at scale from the
searchers or reliably from third-party assessors. As a result,
most prior search satisfaction models do not directly con-
sider user satisfaction at the action level, or elect to only
approximate that with specific assumptions. For example,
most of existing methods consider search-task as the unit,
and extract holistic measures, such as total dwell time [11,
31] and search result clicks [12], to perform search satisfac-
tion prediction. Other methods that consider action-level
behaviors do not predict users’ detailed satisfaction over
those actions [1, 15, 16]. Instead they assume that all ac-
tions are satisfying in a satisfying task, and all actions are
unsatisfying in an unsatisfying task. This masks the com-
plex relationship between action-level satisfaction and over-
all search-task satisfaction: e.g., searchers can be ultimately
satisfied by the search task, but most of their search actions
might be quite unsatisfying [11]. Therefore, such a modeling
assumption expropriates the model’s ability to discriminate
between different actions, i.e., satisfying vs. unsatisfying.
In this work, we hypothesize that users’ perceived action-
level satisfaction, even though unobservable in search logs,
influences their observed search behaviors and contributes to
overall search-task satisfaction. We conjecture that by mod-
eling satisfaction at the individual action level, we can build
more complete and more accurate predictors of search sat-
isfaction. To achieve this, we consider the action-level user
satisfaction as latent variables, and explicitly model their
relationship to overall task satisfaction in a latent structural
learning framework. By introducing the latent variables, ex-
pressive features and dependencies unique to the search sat-
isfaction problem can be incorporated to depict searchers’
complex behavioral patterns. Knowledge about users’ in-
task search behaviors, e.g., consistency between action-level
and overall task satisfaction, is naturally modeled in the pro-
posed learning framework to guide satisfaction modeling.
Our research contributions can be summarized as follows:

e Explicitly model latent action-level satisfaction as part
of search-task satisfaction modeling;



e Perform extensive experimental analysis of the pro-
posed method whereby several state-of-the-art search
satisfaction models are compared and significant per-
formance improvement on different data sets is achieved;

e Demonstrate clear utility of the inferred action-level
satisfaction labels by improved performance in docu-
ment relevance estimation and query suggestion.

2. RELATED WORK

Recent advances in retrieval evaluation have focused on
modeling search behaviors and exploiting implicit feedback
[2, 19]. Qualitative studies showed that users’ search be-
haviors are good indicators of retrieval system performance
[27] and search-task difficulty [3]. Smith and Kantor found
that users adapted their search behaviors to the deliberately
degraded retrieval systems, e.g., increase the rate of query
entry and decrease the occurrence of repeated queries [27].
Aula et al. reported that when facing with difficult search
tasks, users tended to use more diverse queries and more
advanced operations, and spend longer time on the search
result pages [3]. Such studies shed lights on the potential of
evaluating search performance via searchers’ behaviors.

Satisfaction has been studied extensively in a number of
areas such as psychology [24] and commerce [26]. In the IR
literature, search satisfaction is generally defined as the ful-
fillment of a user’s information need [12, 15]. Fox et al. [12]
used an instrumented browser to collect search activities and
compared them against explicit user satisfaction judgments
of full search sessions. They identified a strong association
between users’ search patterns and their explicit satisfaction
ratings. Hassan et al. [15, 17] utilized a user’s search action
sequence to predict search satisfaction. Feild et al. [11] fo-
cused on the behavioral clues to detect search frustration,
where various signals from query logs and physiological sen-
sors were explored. In [21], Kim et al. introduced more
sophisticated signals to calibrate click dwell time for better
estimating click satisfaction.

Despite the wealth of research in this area, most prior
studies regard search-tasks as the basic modeling unit, from
which holistic measures, e.g, total dwell-time [31] and query-
click ratio [11], are extracted for predicting search satisfac-
tion. However, users’ detailed action-level satisfaction was
largely ignored in prior work, though it conveys important
information about searchers’ overall search satisfaction [3,
11]: searchers can be ultimately satisfied by the search task,
but most of their search actions might be quite unsatisfy-
ing. Thus, methods that fail to consider satisfaction at the
action-level may not be optimal for this prediction problem.
To the best of our knowledge, Ageev et al.’s work in [1] was
the first attempt to consider users’ action-level satisfaction
for search-task satisfaction prediction. In their work, a con-
trolled lab experiment is performed to track users’ search ac-
tivities during predefined search tasks. They approximated
users’ action-level satisfaction by using manual relevance
judgments, and they identified distinct search paths among
the satisfying/unsatisfying actions in the satisfying versus
unsatisfying search tasks. Their study confirms our claim
that it is necessary to distinguish and model users’ action-
level satisfaction in search-task satisfaction prediction. As
their solution, a CRF model was adopted to predict search-
task satisfaction based on a set of behavior features. How-
ever, because they asserted that all action labels equaled the
task label, discrimination between different search actions
was not possible. Therefore, their method is still unable to
distinguish action-level satisfaction, as we do in this paper.

3. PROBLEM DEFINITION

In this section, we formally define the problem of search-
task satisfaction prediction. A search task is defined to be an
atomic information need, which results in a series of search
actions [20]. Various methods have been proposed to ex-
tract search tasks from users’ search logs [5, 29], and we will
assume such segmentation is given a priori in our problem.

Specifically, the input of a search-task satisfaction pre-
diction problem is a sequence of user u’s search actions in a
particular search task ¢, in which the actions are chronolog-
ically ordered, i.e., A™ = {a’, ... a’*}. We adopt the ac-
tion type definition in [15], and consider the following types
of search actions in this work:

o Q, issue a query to a search engine;

o SERP, hit BACK button to return to the search result
page or refresh the search result page;

o PAGN;, go to the next page of search results;
o SR, click on a returned document in search result page;

o BR, click on a hyperlink in the current document (not
in a search result page);

o RL, click on a related search suggestion result;
o SP, click on the spelling correction link.

Each action aﬁ“ has an attribute aﬁ“ .ref pointing to the
previous action which leads to the current action.

The above action types cover most of the search actions
a user typically performs during Web search. Additionally,
to be consistent with our later description of the proposed
method, we add two dummy actions into every search task,
ie., af]“ = START and af:q_l = END, indicating the start
and end of a search task respectively. In particular, we de-
note @ = {Q,SERP,PAGN,RL,SP} as query-related ac-
tions, and C = {SR, BR} as click-related actions.

The output of a search-task satisfaction prediction prob-
lem is an overall satisfaction label y‘ indicating whether
the user v has been satisfied in the search task ¢,. In this
work, we follow Aula et al.’s criterion [3] to define search-
task satisfaction as,

Definition (Search-Task Satisfaction) Given a user u’s
search task t,, search-task satisfaction is a binary label y':
y'* = 1, if the user’s information need has been met and
thus resulting a satisfying search task; otherwise y** = 0.

In literature, there are different terms, e.g., “search suc-
cess” [1, 15] and “frustration” [11], and perspectives, e.g.,
subjective [3, 15] or objective [8], used for defining a similar
concept. We want to emphasize that our definition charac-
terizes search satisfaction from a user’s subjective perspec-
tive: a search-task is considered as satisfying, if, and only if,
the searcher is satisfied with the search results and believes
that they has found the answer (but the answer could be
factually incorrect).

As a result, the problem of search-task satisfaction pre-
diction is to estimate a function f(-) from the given search
action sequence A' to a search-task satisfaction label y'*,
such that the predicted satisfaction label agrees with users’
belief on whether they have satisfied their information need.

Most of the previous approaches for search-task satisfac-
tion prediction [1, 11, 12, 14, 15] fall into the above for-
malism. However, one important factor that has not yet
been explicitly defined and explored in prior works is user
w’s satisfaction label h!* related to a specific action a‘*.
Intuitively, hi* characterizes the contribution of action a}
towards user u’s overall satisfaction of task ¢,. Formally, we
define a user’s action-level satisfaction as,



Definition (Action-level Satisfaction) Action-level sat-
isfaction h.* is a binary outcome of a search action a}* in
task t,, such that h’;“ = 1, if user u is satisfied with action
ay*, e.g., found helpful information after clicking on a docu-
ment; otherwise h;“ =0, e.g., a query action does not lead
to any useful document.

It is worthwhile to note that despite defining hl* as binary
in the above definition, the potential label space for the vari-
able h’é” is quite flexible, e.g., encoding it with multi-level
ordinal labels to reflect users’ complex information seeking
behaviors (e.g., query refinement [3], exploring related infor-
mation [30]). Our proposed method can be easily extended
to the multi-label setting. In this work, we will follow this
binary definition for simplicity and explicability.

4. METHOD

In this section, we describe the proposed latent structural
model for search-task satisfaction prediction. We start with
a real search task example to illustrate the necessity of mod-
eling searchers’ action-level satisfaction. Then we discuss
our hypothesis about users’ search behaviors with respect
to action-level satisfaction. And based on it, rich structured
features and dependency relations unique to search-task sat-
isfaction modeling are devised. In the end, we discuss how to
incorporate domain-knowledge to guide the proposed model
in learning the latent structures effectively.

4.1 Motivating Example

Table 1 presents a real example of a satisfying search
task extracted from Ageev et al.’s public search data set [1].
We applied several state-of-the-art search satisfaction mod-
els, including the Markov Model Likelihood (MML) method
[15], logistic regression (LogiReg) model [11] and session-
CRF model [1], and our proposed method on this case. In
particular, the MML and LogiReg take a holistic view to
directly predict the task-level satisfaction, while the session-
CRF and our method consider action-level satisfaction in the
task. Due to space limitations, we only showed the domain
of clicked documents in the table. The action-level predic-
tion results from session-CRF model (denoted as “CREF”)
and our method (denoted as “Ours”) are illustrated in the
last two columns of the table.

In this example, the searcher sought information on metals
that can float on water. She rated this task as satisfying
because she claimed the answer had been found after search.
But it does not mean that she was satisfied with every action
in the task. As we can observe, she first attempted three
queries on Google, but was not satisfied with the search
results: she kept reformulating the queries, spent a very
short time on the clicked documents, and switched to Bing
with the same query. After spending quite some time on
Bing’s search result page, she issued a very specific query
to Google and reached the correct answer (the answer was
verified by a human editor).

Models based on task-level implicit measures, i.e., MML
and LogiReg, mistakenly predicted that the searcher was
unsatisfied with the task: dwell times on the clicked docu-
ments were generally short, along with a number of query
reformulations and search engine switches. Due to the re-
strictive assumption in Ageev et al.’s session-CRF model,
i.e., all actions have to be satisfying in a satisfying task, it
made a wrong prediction for this task as well, since most ac-
tions were unsatisfying. But once we consider the searcher’s
action-level satisfaction, as predicted in our method’s out-
put, we could reach the correct conclusion that the task is

Table 1: Example of a satisfying search task. ‘4’/¢’
indicates a predicted satisfying/unsatisfying action.

Engine Time CRF Ours

Search Actions

Q: metals float on water Google 10s - -
SR: wiki.answers.com 2s - -
BR: blog.sciseek.com 3s - -
Q: which metals float on water Google 31s - -
Q: metals floating on water Google 16s - -
SR: www.blurtit.com 58 - -
Q: metals floating on water Bing 53s - -
Q: lithium sodium potassium Google 38s - +
float on water

SR: www.docbrown.info 158 - +

satisfying. From this example, we can clearly realize the im-
portance of recognizing a user’s fine-grained satisfaction at
action level for search-task satisfaction prediction.

4.2 Hypothesis and the AcTS Model

As was discussed in our motivating example in Table 1, the
action-level satisfaction labels H' convey informative clues
about overall search-task satisfaction. If H is known, sophis-
ticated features about users’ perceived satisfaction of search
activities can be extracted, e.g., examining if the task ends
with a satisfying action or measuring the ratio of time spent
on satisfying actions versus unsatisfying ones, for better pre-
dicting the overall task satisfaction label y. Unfortunately,
H is hidden in search log data; and it is also quite chal-
lenging to be manually annotated at scale. This prevents
previous works from directly utilizing such information for
search-task satisfaction prediction.

To address this challenge, we devise a basic hypothesis
about users’ search behaviors:

Hypothesis. The desire for satisfaction drives users’ inter-
action with search engines and that the satisfaction attained
during the search-task contributes to the overall satisfaction.

This hypothesis makes two assumptions. First, users’
overall search-task satisfaction depends on their satisfaction
with the performed search actions, e.g., if all actions were
satisfying, it is very likely that the user would end up with
a satisfying search task. Second, users’ search actions are
mutually dependent via the latent action satisfaction labels.
For example, if a query is unsatisfying, e.g., it is later reis-
sued to another search engine [13], the result clicks in the
first search engine’s result page can hardly be satisfying.

We consider H as latent variables and realize our hypoth-
esis about a user’s search behaviors in a structured predic-
tion model. We name the proposed method as Action-aware
Task Satisfaction (AcTS) model, and describe the structural
dependencies imposed in the AcTS model in Figure 1.

To formally encode the dependency assumptions in our
hypothesis, we define a feature vector for the task satis-
faction label y specified by the search action sequence A
and corresponding hidden action satisfaction labels H as
®(A, H,y). Based on this feature representation, AcTS pre-
dicts the search-task satisfaction at testing time by,

(9, H) = argmax w'®(A, H,y). (1)
(y,HYEYXH

In Eq (1), Y and H represent the sets of all possible values of
y and configurations of H respectively. w is the parameter
vector in our AcTS model, and it reflects the relative im-
portance of features in predicting search-task satisfaction.

"When no ambiguity is invoked, we will discard the user
index u and task index t“ to simplify the notations.



Figure 1: Structural dependency assumptions about
a user’s search behaviors postulated in AcTS model.
Light circles represent latent variables and shadow
circles represent observable variables. Lines indicate
possible dependencies between the variables (the de-
pendency between y and a is not shown to make the
representation concise). In AcTS, a joint mapping
of f(A) — H X y is estimated.

In this paper, we refer to solving Eq (1) as the inference
problem. In the solution of our inference problem, 4 be-
comes the output for the task-level satisfaction prediction
and H is the inferred action-level satisfaction labels for the
input search action sequence.

The inference problem of Eq (1) clearly distinguishes the
proposed AcTS model from all the prior search satisfaction
models. In order to make a prediction of the overall search
satisfaction label y, we need to determine the latent action
satisfaction labels H as well, which are mostly consistent
with the observations in the input search actions A and sup-
port the predicted overall satisfaction label y in task ¢. For-
mally, we are estimating a joint mapping from input search
action sequence A to task satisfaction label y and latent ac-
tion satisfaction labels H, i.e., f(A) — H X y; while most
prior works only estimate a binary mapping of f(A) — v.
Moreover, in the proposed AcTS model, a user’s search ac-
tions A are no longer treated as independent, but instead,
they are modeled as being correlated with each other via
the latent action satisfaction labels H. Expressive features
about a user’s search behaviors can thus be designed, such
as measuring the transition between a user’s satisfying and
unsatisfying search actions and examining whether a user is
satisfied with all the query actions.

More importantly, the inferred action-level satisfaction la-
bels H not only provide informative signals for determining
overall search satisfaction, but also reveal the utility of those
actions towards a user’s information need. For example,
based on the identified labels in H, we can easily recog-
nize which clicked document is helpful in satisfying a user’s
information need, and which query leads to the helpful doc-
uments. The estimated utilities are beneficial for a variety
of search applications, e.g., document relevance estimation
and query suggestion. Nevertheless, such information is not
available in any of the existing search satisfaction models.

In the following, we will discuss in detail about our design
of the structured features ®(A, H,y) in Section 4.3, and the
use of domain knowledge for learning the optimal feature
weights w in Section 4.4.

4.3 Structured Features

Previous work has developed a wide variety of behavioral
features for search satisfaction prediction [1, 11, 12, 13, 31].
All of those features can be flexibly applied in our AcTS
model. However, since most prior research only estimates a
holistic mapping of f(A) — y, their employed features (e.g.,
total dwell time [31] and number of result clicks [12]) cannot
capture a user’s action-level satisfaction. In this section, we

focus on the newly developed structured features for AcTS,
in which expressive signals about the dependency among
search actions A, action-level satisfaction labels H and task-
level satisfaction label y is explicitly explored via the latent
variables. The devised features can be categorized into two
classes: short-range features (specifying satisfaction label for
a single action in task ¢) and long-range features (specifying
satisfaction labels for a set of actions in task ¢).

e Short-range features: As shown in Figure 1, in our
AcTS model, the features extracted from action a; are di-
rectly used to predict the corresponding satisfaction label h;
and overall task satisfaction label y (i.e., f(A) = H X y).
This is distinct from the features explored in most existing
search satisfaction models, where the action-level observa-
tions are aggregated to determine the task-level satisfaction
label y [11, 12, 13].

In a user’s query-related actions, although not especially
common, search engine switching (i.e., the voluntary tran-
sition between different search engines) usually indicates
searcher frustration [13]. We encode this as ¢switen (Y, A, hi)
= (y, ai, hi)d(as.Engine # aj.Engine), where a; is the
next query action following the current query action a; and
4(-) is the indicator function. Similarly, query reformulation
also indicates the user is not satisfied with the search results
of the current query [3]. We formalize this by measuring the
similarity between two consecutive queries: ¢reform (¥, A, hs)
= (y, ai, hi)sim(a;.Query, a;.Query), where a; is the query
action following the current query action a;, and sim(X,Y)
is the edit distance between query string X and Y. Be-
sides, we also examine if the query is in a question form by
Pquestion (Y, A, h;) and calculate the proportion of stopwords
in the query by ¢stopword(y, 4, h;) to estimate satisfaction
for the query-related actions.

Among a user’s click-related actions, the relevance qual-
ity of a clicked document to the given query can be an
important criterion to measure user satisfaction [18]. Be-
cause we do not assume the availability of document con-
tent in our problem (it is usually unavailable in search log
data), we can only measure relevance of the clicked docu-
ments according to their URL strings. In particular, we de-
fine ¢rei(y, A, hi) = 6(y, as, hi)c(ai.URL, ar.Query), where
c¢(URL, Query) counts the number of query terms occurred
in the URL string, and aj is the query action that leads to
the current click action a;. In addition, the original rank
position of the clicked URL in search-result page is also a
good indicator of its relevance quality [18]. We encode it as
Dpos (Y, ai, hi) = 0(y, as, hi)a;.Pos.

Besides, previous studies have demonstrated that a user’s
last search action is closely related to her search-task sat-
isfaction [12]. We encode this as ¢ast(y, hn) = 0(y = hn),
i.e., examine whether the satisfaction label of the user’s last
action agrees with her overall task satisfaction.

e Long-range features: We devise the first order tran-
sition feature ¢irans(y, hi, hit1,ai,a:+1) to capture a user’s
sequential search behaviors with respect to the latent ac-
tion satisfaction labels. For example, in a satisfying search
task, an unsatisfying query is more likely to be reformu-
lated into a satisfying query rather than another unsatisfying
one. In particular, we define ¢trans(y, hi, hit1,ai,ai41) =
8y =y’ hi = W, hiy1 = b ai = d’;ai1 = a”), where
(y',h',h",a’,a") takes all the possible values for task satis-
faction label, action satisfaction labels and action types. We
should note that our transition features are different from
those introduced in [14, 15, 17]: in those works, only the
transitions between different action types are modeled, e.g.,
from Q to SR; while in our model, we distinguish search ac-



Table 2: Structured behaviorial features for search-task satisfaction modeling in AcTS.

Type Feature

Description

Dswitch (ya A, h’L)
¢Teform(y7A7 hl)
¢question (y7 Qg, hz)
¢stopword(y7 Qg hz)
Fret(y, ai, hi)

¢pos (y7 A, hi)

Short-range

if the user switches search engine after this query action
edit distance between two consecutive queries

if the query is a question

proportion of stopwords in query

query term matching in URL string of a;

display position of the clicked URL

Prast (Y, hn) if T' ends up with a satisfying search action
btrans(Y, hiy hit1,ai,a;41) first order transition between actions with respect to satisfaction labels
banq(y, H, A) if all the query-related actions in T' are satisfying
Long-range  ¢eqist@(y, H, A) if there exists a satisfying query-related action in T
barc(y, H, A) if all the click-related actions in T are satisfying

¢ezistC(y1 H, A)

if there exists a satisfying click-related action in T

tion transitions with respect to the latent action satisfaction
labels, e.g., from satisfying Q to satisfying SR.

Beyond exploring the behaviorial patterns within adja-
cent search actions, a set of features are introduced to cap-
ture dependency at the whole task level by examing: I. if
all the query-related actions are satisfying: ¢anuq(y, H, A) =
03 4,eqhi =22, o 1); 11 if there exists a satisfying query
action: ¢eaistq(y, H, A) = 0(32,. cohi > 0); 1L if all the
click-related actions are satisfying: ¢uuc(y, H, A) = 6(ZaiEC
hi = > ,.cc1); and, IV. if there exists a satisfying click:
¢6$i5tc(y7 Ha A) = 6(2%60 h; > O)

We need to emphasize that the above long-range features
can only be exploited by our AcTS model, since it explicitly
models the users’ action-level satisfaction across different
actions in a search task. None of existing methods can utilize
such information for search-task satisfaction prediction.

In addition to the above newly introduced structured fea-
tures, we also included the action-level and task-level be-
havior features from [1] and [12] in our AcTS model, such as
action dwell time and query-click ratio. The list of features?
used in this work appears in Table 2.

4.4 Training AcTS with Weak Supervision

Because the ground-truth labels for a user’s action-level
satisfaction are unobservable in the search log data, we have
no direct supervision to guide the model in learning about
such latent structures. Fortunately, there is plenty of work
in cognitive science and information science exploring users’
search behaviors and strategies in performing a successful
search task [3, 25, 30]. Such studies shed light on the insights
of users’ detailed in-task search behavior patterns. In this
section, we propose the use of structured loss functions [7] to
inject such domain knowledge as weak supervision for AcTS
training (i.e., learning the weight vector w in Eq (1)).

To regularize the training of AcTS model with domain
knowledge, we derive our learning algorithm for the AcTS
model from the latent structural SVMs framework [7]. For
a given set of search tasks with only task-level search sat-
isfaction labels, i.e., {(Am,ym)}¥_1, AcTS model training
can be formalized as the following optimization problem:

M
.1
min 2wl +CmZ:1£3n 2)
s.t.VYm, maxw ®(Am, H,ym) >
HeH

max [’U}T(P(Am,ﬁ’g)+A(ym7gj,ﬁ,Aﬂ _é-’m
(9, H)EYXH

2Details of features from [1, 12] are not listed in the table.

In Eq (2), A(ym, 9, H, A) measures the distance between
the predicted labels (g, H) and the ground-truth (ym., Hy,),
where H,, is the unobservable ground-truth of action-level
satisfaction labels. {&n %:1 is a set of slack variables to
allow errors in the training data, and C controls the trade-
off between empirical training loss and model complexity.

A(ym,gj,f] ,Am) indicates the prediction error between
(9, fI) and (ym, Hyy,); and thus it drives model learning. As
H;, is unknown in the training data, we have no supervision
to guide the AcTS model in learning about such latent struc-
tures. As our solution, weak supervision about users’ search
behaviors is injected via the design of A(ym, 7, H, Am). In-
tuitively, we should increase A(ym, 7, H, Am), i.e., penalize
the prediction, when the inferred H contradicts our knowl-
edge about a legitimate configuration of H. In this work, we
define a set of structured loss functions o(, H, A) to realize
the knowledge about H in A(ym,4, H, A,,) from different
perspectives.

First, a good configuration of H has to be consistent with
the predicted overall search-task satisfaction label §. We
measure this by:

- 1 =1, S cghi=0
sa 7H - ’ . hi€H 3
7sat(3: H) { 0 otherwise ®)

i.e., all the actions should not be unsatisfying in a satisfying
task. And, vice versa,

R 1 §=0, X5 *iLiZZﬂl
sa ) H) = . hi€H hi 4
Odsar (g, H) { 0 otherwise @

Second, the configuration of H itself should be consistent.
For example, an unsatisfying query cannot result in any sat-
isfying search-result clicks [1], i.e.,

B J1 eXiStai:Q7aj:SR,aj.ref:ai7ili<ilj
UClk(H’A)i{O otherwise (5)

And when the user performs duplicated actions in the same
task, e.g., submit the same query twice to the same search
engine, their inferred satisfaction labels should be the same,

. _ 1 exist a; = aj, ilz a ﬁj
Oaup(H, A) = { 0 otherwise (©)

The suggested query from a search engine’s spelling correc-
tion, e.g., correcting the misspelt query “amazone” into its
correct form “amazon,” should not hurt user satisfaction,

A )1 existai:Q,aj:SP,aj.ref:ai,iLi>fzj
USP(H’A)_{ 0 otherwise (7)



Based on the above estimated distance between H and
H;,, we can define the margin in Eq (2) as,

where \; is a trade-off parameter between task-level 0/1 loss
and action-level loss defined by the structured loss functions
o(§, H, A) as described in Eq (3) to Eq (7).

The margin function defined above encodes the knowledge
about a user’s latent action-level satisfaction labels within
a search task as weak supervision for latent structure learn-
ing [7]. It bridges the qualitative studies of users’ search
behaviors [3, 25, 30] and quantitative modeling approaches.
We should note that the structured loss functions o (j, H, A)
might be violated in a particular user’s real search actions,
and )\; controls our confidence of such loss functions.

The optimization problem in Eq (2) can be efficiently
solved by the iterative algorithm proposed in [7]. One thing
we should note is that due to the long-range dependency in-
troduced by the structured features proposed in Section 4.3,
e.g., dau(y, H, A) and ¢eqistq(y, H, A), the inference prob-
lems defined in Eq (1) and Eq (2) become computationally
intractable. We address these inference problems via inte-
ger linear programming (ILP), and more details about this
inference method can be found in [22].

S. EXPERIMENTS

In this section, we first quantitatively evaluate the effec-
tiveness of the proposed AcTS model that models users’
action-level satisfaction as latent variables, whereby several
state-of-the-art search satisfaction models are compared over
the in-situ task satisfaction labels from previous studies [1,
16]. Then we assess the quality of the inferred action-level
satisfaction labels via their utilities in facilitating other in-
formation retrieval studies, where understanding users’ de-
tailed action-level satisfaction is important.

5.1 Data Sets

Hassan et al. [16] developed a toolbar plugin for the Inter-
net Explorer browser to collect search activities and explicit
search satisfaction ratings from the searchers. The authors
explicitly asked the searchers to rate their search tasks im-
mediately upon termination. This data set provides reliable
first-hand annotation of search-task satisfaction. We refer
to this data set as “toolbar data” in our experiments.

Ageev et al. [1] designed a game-like online contest for
crowdsourcing search behavior studies. In their study, users
were required to perform several predefined informational
tasks via a Web search interface and submit the answers
they found to the system. All users’ search behaviors were
logged and annotated by the authors. According to our
search-task satisfaction definition described in Section 3, we
treat the tasks in which the user has submitted an answer
as satisfying (the answer might be incorrect with respect to
the predefined information need). We refer to this data set
as “contest data” in our experiments.

To investigate the utility of the proposed method in pre-
dicting search satisfaction in real-world search engine logs,
we extracted large-scale query logs sampled from the Mi-
crosoft Bing Web search engine. In a four-month period,
from December 2012 to March 2013, a subset of users were
randomly selected. The search logs recorded their search
activities, including the anonymized user ID, query string,
timestamp, returned URL sets and the corresponding user
clicks. These logs were segmented into search tasks by the
method developed in [29]. This data set does not contain

Table 3: Basic statistics of evaluation data sets.
Data set # User # Task Action/Task T7:T~
toolbar 153 7306 5.2(+6.6) 6.84:1

contest 156 1487 6.2(£5.9) 6.70:1
search log  2.4M 7.6M 7.1(£11.8) -

task-level nor action-level satisfaction labels. We refer to it
as “search log data,” and describe its usage in Section 5.3.
Basic statistics of these data sets appear in Table 3.

5.2 Search-Task Satisfaction Prediction

To investigate the effectiveness of modeling users’ action-
level satisfaction as latent variables in AcTS model, we first
quantitatively compare the performance of the proposed model
with several state-of-the-art methods in predicting overall
search-task satisfaction.

5.2.1 Baselines

Several methods have been proposed to predict search sat-
isfaction based on users’ search behaviors [1, 11, 14, 15].
We adopt several best-performing models from the previous
works as our baseline methods.

Hassan et al. [15] proposed a Markov Model Likelihood
(MML) method to predict search satisfaction. In MML,
two sets of first order transition probabilities are estimated
from the search action trails in satisfying and unsatisfying
tasks. At testing time, MML calculates the likelihood ratio
of an input search action sequence between the satisfying
and unsatisfying models to determine the task satisfaction
label. We followed the specification of MML in [14] to imple-
ment the model (they used the same set of action types as
ours). Maximum a Posteriori estimator with Dirichlet pri-
ors is used to estimate the transition probabilities in MML.
To model click dwell time in MML, we add two new ac-
tion types, SR_long and BR_long, which represent the click
actions (SR and BR) with dwell time longer than 30s.

Feild et al. [11] used a logistic regression model to predict
search frustration, where features extracted from both query
logs and physiological sensors are employed. We built a
logistic regression model based on the features described in
Section 4.3. The short-range features are aggregated in each
task by action type, e.g., average the click position features
®pos(y,ai, hi) over all SR actions in the same task. The
long-range features, e.g., ¢fl“Q(y,H, A), are not included,
since logistic regression cannot handle latent variables. We
refer to this method as “LogiReg.”

Ageev et al. proposed a session-CRF model [1] to predict
search-task satisfaction. Although search actions were ex-
plicitly modeled, they asserted that action-level satisfaction
labels equaled to the task-level label. Mathematically, this
assumption makes their session-CRF degenerate to a logis-
tic regression model. This obscures the complex dependency
between task satisfaction and detailed action satisfactions in
session-CRF. As a result, it cannot as effectively model the
action-level user satisfaction as our model does. We adopted
the same implementation of session-CRF as used in [1].

5.2.2 Effectiveness of the Latent Structure Model

As illustrated in Table 3, the distribution of task satisfac-
tion labels in both toolbar and contest data are highly unbal-
anced: about 85% of the tasks are labeled as satisfying. In
such an unbalanced data set, accuracy alone is inadequate to
compare the performance of different methods. In our eval-
uation, we compute the fi scores for both satisfying (T"-f1)
and unsatisfying tasks (7'"-f1). Following the metric used



Table 4: Search task success prediction performance
on the toolbar data set.

an—fl T+—f1 T_—fl

MML  0.707 0.897 0.518 0.830
LogiReg  0.740 0.918 0.563 0.861
session-CRF  0.728 0.910 0.545 0.850
AcTS 0.761" 0.938" 0.584" 0.893"
AcTSy  0.739 0.924 0.554 0.868

* p-value<0.05

Accuracy

Table 5: Search task success prediction performance
on the contest data set.

an-fl T+-f1 Ti-f1

MML  0.658 0.901 0.414 0.831
LogiReg  0.682 0.930 0.435 0.875
session-CRF 0.685 0.921 0.449 0.862
AcTS 0.701" 0.934 0.469 0.882

AcTSy  0.687 0.925 0.449 0.868
labeled-AcTS  0.649 0.945 0.352 0.899

*p-value<0.05

in [1], we also report the average fi between T"-f; and T~ -
fi. In order to avoid bias introduced by training/testing
split, we performed five-fold cross-validation in each method
by sampling tasks into different folds, and repeated it three
times with different random seeds. As a result, we report the
average performance of all methods from 15 different trials
on the toolbar and contest data sets in Table 4 and Table 5.
Paired two sample t-test is performed to validate the statis-
tical significance of the improvement from the AcTS model
against the best-performing baseline, LogiReg, under each
of the performance metrics. In particular, we set the trade-
off parameters \; to one in Eq (8) for AcTS model in all our
experiments.

We can clearly observe the significant improvement from
the proposed AcTS model over all baselines in both data
sets. MML, which only models the sequential patterns in
a user’s search actions, performed the worst among all the
methods. This indicates that a user’s sequential search be-
haviors alone are insufficient to capture the overall search
satisfaction. session-CRF behaved similarly as LogiReg. Al-
though action-level labels are explicitly modeled in session-
CRF, its restrictive assumption about the labels degrades
the model’s capability in distinguishing the action-level sat-
isfaction labels, e.g., unsatisfying actions will not be allowed
in a satisfying task in session-CRF. We accredit the en-
couraging performance improvement of the proposed AcTS
model to its unique capability of modeling the action satis-
faction labels as latent variables. By explicitly modeling a
user’s action-level satisfaction, AcTS can naturally include
all the signals used in the baseline methods and explore
richer structured information, as specified in our long-range
features, which cannot be handled in any baseline method.

Beside exploring more expressive structured features for
search-task satisfaction prediction, another unique advan-
tage of modeling the action-level satisfaction labels as latent
variables in AcTS is to incorporate domain-knowledge for
model training via the structured loss functions. To investi-
gate this aspect, we test a special setting of AcTS, in which
we set the trade-off parameters A; to zero in Eq (9). As a
result, we are training the AcTS model with only task-level
supervision. We name this model as AcTSy and include its
performance on both data sets in Table 4 and Table 5.

Without the structured loss functions, AcTS’s performance
dropped significantly: it performed similarly as the LogiReg

Accuracy

(a) Q—+SR—Q—SR—>SR=>T"
+ o+ + + + - .
(b) Q—+SR—BR—Q—+SR—+Q>T

Figure 2: Case study of two manually annotated
search sequences in the contest data set. Red labels
on top of each action are the editor’s annotations
from [1], and green labels at the bottom are AcTS’s
predicted labels. 7" and T~ indicate the task satis-
faction labels provided by the users.

and session-CRF baselines. The reason is that the task-level
satisfaction label alone cannot guide the model in learning
the latent structures of H. As a result, the inferred labels of
H in AcTSo becomes arbitrary, and provides little help in
predicting task satisfaction. This result confirms the need
to explicitly model the dependency between action-level and
task-level satisfaction in search satisfaction modeling.

In addition, since action-level manual annotations are avail-
able in the contest data set, we can treat those labels as
“ground-truth” action satisfaction labels, and train our AcTS
model with a known structure. To incorporate these labels
into AcTS training, we define a new margin for Eq (2) as,

i.e., we are computing the Hamming distance between two
labeled search sequences. We name this new model as labeled-
AcTS, and list its performance in Table 5.

Surprisingly, the labeled-AcTS model did not outperform
the original AcTS model with latent structures; and it per-
formed significantly worse when predicting the unsatisfy-
ing tasks. To analyze the degraded performance, we exam-
ined the annotated search tasks in this data set and found
many disagreements between the editor’s judgements and
searchers’ actual behaviors. The discrepancy mainly stems
from the inconsistent criteria between third-party editors
and real users; and to understand it, we illustrate two typi-
cal inconsistent search sequences in Figure 2.

In Figure 2(a), all the clicked documents are judged to
be irrelevant for this task. However the searcher still rated
the task as satisfying. A reasonable explanation is that the
searcher believed that she had found the correct answer, so
was satisfied. While in Figure 2(b), according to the edi-
tor’s judgment, the searcher has already issued several good
queries and found the relevant documents for the question.
However, the user rated it as unsatisfying in the end. The
reason might be that the user did not notice the relevant
passage(s) in the clicked documents, so was not satisfied
with all of her search actions. The main reason for such dis-
agreements is the annotation criterion devised in this data
set [1]: Ageev et al. labeled a URL as a good URL if it con-
tains the correct answer to the predefined question in the
search task; and a query is judged to be good if it leads to
a good URL in its search result page. Nevertheless, from a
real searcher’s perspective, because she may not have any
knowledge about the questions beforehand, she cannot fully
judge the helpfulness of search results in an objective way.
As a result, the editor’s objective judgments in this data set
cannot precisely reflect a user’s perceived satisfaction dur-
ing search, which, however, is the goal of prediction in our
task satisfaction prediction problem. Such discrepancy ex-
plains the degraded performance of labeled-AcTS: in Eq (9),
we overly penalized the predictions in model training due to
the inappropriate manual annotations.



Meanwhile, as shown in Figure 2, the inferred action la-
bels from our AcTS model better aligned with the final task
satisfaction labels in both cases: in Figure 2(a), the last
query and last click action are predicted as satisfying; and
in Figure 2(b), most of the actions are predicted as unsat-
isfying. Those inferred labels are more consistent with our
above hypothetical analysis of users’ search behaviors.

5.3 Action-Level Satisfaction Modeling

As an output of our structured inference problem defined
in Eq (1), the inferred action-level satisfaction labels H have
shown their ability in helping to predict the overall search-
task satisfaction. Nevertheless, because the ground-truth
labels of such output are not available in our evaluation data
sets, we cannot directly evaluate the quality of the predicted
action-level labels. In this section, we assess the quality of
the inferred action satisfaction labels via their utilities in
facilitating other information retrieval applications, where
understanding users’ action-level satisfaction is important.

5.3.1 Document Relevance Estimation

Accurately interpreting users’ clickthroughs and extract-
ing relevance signals for search engine optimization is an
important topic in IR studies [2, 9]. The action-level satis-
faction labels from AcTS can serve as a proxy to estimate
the utility of clicked documents. In this section, we evalu-
ate how the estimated document relevance can be used to
improve the training of general learning-to-rank algorithms.

We chose LambdaMART [6] as our base learning-to-rank
algorithm, and evaluate its ranking performance improve-
ment by adding the features derived from AcTS model’s
output. A large set of manually annotated query-URL pairs
are collected to create the evaluation data set. In this anno-
tation set, each query-URL pair is labeled with a five-point
relevance score, i.e., from 0 for “bad” to 4 for “perfect.” And
each pair is represented by a set of 398 standard ranking
features, e.g., BM25, language model score and PageRank.
We refer to this collection as the “annotation set.”

In this experiment, we train an AcTS model based on all
the search tasks in the toolbar data, and apply the learned
model on the four-month search log data. We group the in-
ferred satisfaction labels under each unique query-URL pair,
and calculate the corresponding median, mean and stan-
dard deviation as the additional relevance features derived
from AcTS. To reduce noise in this estimation, we ignore the
query-URL pairs occurred less than five times in this corpus.
In the end, we joined the query-URL pairs extracted from
the search log data with those in the annotation set, and
obtained 3,311 annotated queries and 128,120 query-URL
pairs with additional features derived from AcTS.

The same feature generation strategy is applied to the
session-CRF’s output. However, the MML and LogiReg
baselines are not directly applicable in this evaluation, since
they cannot make predictions of individual search actions.
To compare with them, we followed Hassan et al.’s method
[16] to estimate document utility based on the predicted
overall task satisfaction labels. In their method, the utility
of a clicked document is assumed to be proportional to its
dwell time. To distinguish document utilities between satis-
fying and unsatisfying tasks, they separated such scores into
“utility” (for satisfying tasks) and “despair” (for unsatisfying
tasks), which were used as two different relevance features.
To make their relevance feature representation consistent
with that from our AcTS model, i.e., one utility score per
query-URL pair, we unified “utility” and “despair” by simply
treating “despair” as negative “utility.” As a result, we can

Table 6: Ranking performance improvements of
LambdaMART with additional document relevance
features estimated from different methods.

% Pa@1 MAP NDCG@5 MRR

MML  +4.926  +3.482 +3.573 +2.650
LogiReg +5.110 +3.352 +3.783 +2.776
session-CRF  +4.752 +3.402 +3.896 +2.616
SUM  +5.101 +3.405 +3.946 +2.807

AcTsSt +5.366 +3.819 +4.278 +2.955

f: p-value<0.01 in all the metrics.

apply the same aggregation strategy over all the query-URL
pairs based on MML’s and LogiReg’s output to generate new
relevance features from those methods.

In addition, we also include a session-based click model,
i.e., Session Utility Model (SUM) [9], as a baseline in this
experiment. SUM aims to extract the intrinsic relevance of
documents to the given query from users’ click behaviors in
search sessions (tasks). However, it assumes all the search
tasks are satisfying when modeling clicks. Thus, it is nec-
essary to investigate if modeling search-task satisfaction is
needed for estimating document relevance from user clicks.

In our experiment, we fixed the total number of trees in
LambdaMART to 100, each of which has 15 nodes. The
learning rate was set to 0.1. Five-fold cross-validation was
used, where we used one fold of data for testing, one fold for
validation and the reminder for training. We computed four
standard IR evaluation metrics. By treating all the labels
above “fair” as relevant, we calculated PQ1, MAP and MRR.
NDCG@5 was also computed based on the five-point rele-
vance scale. The improvements of LambdaMART’s rank-
ing performance with different additional relevance features
against the original features are listed in Table 6.

The new relevance features from AcTS significantly im-
proved LambdaMART’s performance against the original
features under all the metrics (p-value <0.01). We exam-
ined the learned tree models in LambdaMART and found
all the features generated by AcTS model are selected as
important splitting factors (i.e., among the top 10 impor-
tant features). The features from AcTS also significantly
improved the MAP and NDCG@5 metrics (p-value<0.05)
comparing to those from MML and SUM, which are the
second best methods under these two metrics respectively.
Since no baseline search satisfaction models can distinguish
the fine-grained action-level satisfaction, their estimated rel-
evance features are not as accurate as those from the inferred
action-level labels of our AcTS model. Comparing to SUM,
although it distinguishes the utility of different clicked doc-
uments, it does not consider overall task satisfaction when
modeling user clicks, and thus the relevance features from
AcTS led to better improved ranking performance. This re-
sult validates the need to distinguish overall task satisfaction
in modeling clicks for document relevance estimation.

5.3.2  Query Reformulation Quality Estimation

Search tasks provide rich context for performing log-based
query suggestion [10, 23]. Liao et al. [23] reported that the
Log Likelihood Ratio (LLR) based query similarity metric
achieved the best performance in their task-based query sug-
gestion experiment. In this section, we investigate how the
identified action-level user satisfaction labels can be used to
further improve LLR in task-based query suggestion.

Given two queries ¢, and gy, assuming g, is issued after
da, LLR makes the null hypothesis Ho as: P(qv|qa) = po =
P(gp|¢a), i-e., go and gp are independent; and the alterna-



tive hypothesis H1 as: P(qv|ga) = p1 # p2 = P(gs|¢a), ie.,
qo and ¢, are dependent. Likelihood ratio test is used, in

which the test statistic is defined as —21In M, to
maXp;,po L(Hy)

determine the dependency between ¢, and ¢. If the value of
test statistic is larger than a predefined threshold, the null
hypothesis is rejected, i.e., ¢, and g» are determined to be
dependent, and g» will be selected as a suggestion for g¢,.

In Liao et al.’s work, the probabilities of p1,p2 were esti-
mated by the occurrences of consecutive queries in the same
task, without considering the quality of query reformula-
tions. For example, if a satisfying query ¢, is frequently re-
formulated into an unsatisfying query ¢», even though they
are strongly correlated according to LLR, we should not sug-
gest qp for ¢, to users. To take the inferred action-level sat-
isfaction into account, we weight the consecutive query pairs
according to their inferred satisfaction labels by,

c(¢a, @) = exp(hs — ha) (10)
i.e., we emphasize the pair of queries in LLR calculation,
where the follow-up query improved user satisfaction; and
downgrade the reformulations that hurt user satisfaction.
Based on this weighting scheme, the same LLR test statistics
are computed for measuring correlation between queries.

The LLR test statistics for all consecutive query pairs in
the identified search tasks are computed based on the first
three-month search logs. The same threshold, 100 as used
in [23], is applied to filter the suggestion candidates. The
fourth-month search logs are used as the testing set to ex-
amine whether the suggested queries will be issued by users
after the target query [28]. Such evaluation measures utility
of the suggested queries in real usage context. In particular,
the next three consecutive queries following the target query
in the same search task are regarded as relevant in com-
puting the evaluation metrics of P@Q3, MAP and MRR. To
make the evaluation results comparable between the baseline
(LLR without query weighting) and our method (LLR with
query weighting), we only evaluated the overlapped target
queries in both methods.

Beside this automatic evaluation method, we also col-
lected a set of manual annotations to assess the quality of
the suggested queries. We ordered all the target queries
from the first three-month search logs according to their
frequency, and treated the first third of queries as high fre-
quency queries, the second third as medium, and the rest as
low. 100 queries were randomly selected from each category.
For each selected target query, the top five suggestions from
both methods were selected and interleaved before being pre-
sented to the annotators, in order to reduce annotation bias.
Six human annotators were recruited to label the suggestion
results. They were instructed to judge if the suggestions are
relevant to the given target query with binary labels. An-
notators were separated into two groups, each of which was
required to annotate 150 target queries selected evenly from
the above three categories. The final relevance judgment
was obtained by majority vote. We list the improvements of
the LLR~based query suggestion performance from the new
query weighting scheme on these two testing sets in Table 7.

As shown in the results, the new query weighting scheme
greatly improved the original co-occurrence based query sug-
gestion performance. In the log-based automatic evaluation,
all the performance metrics are significantly improved. Ac-
cording to the manual judgments, the major improvement is
derived from the low frequency queries: P@Q3 and MAP are
improved by 14.8% and 15.1% accordingly (p-value<0.01).
In Liao et al.’s reported result, their task-based LLR per-

Table 7: Query suggestion performance improve-
ments with query reformulation quality estimated
by AcTS.

% P@3 MAP MRR
Query log"  +7.18 +8.60 +6.42
Annotation +2.58 +6.79  -0.75

f: p-value<0.01 in all the metrics.

formed poorly on this category, which they attributed to
the sparsity of query co-occurrence. Therefore, we can find
clear benefit of distinguishing the quality of the reformu-
lated queries when performing query suggestion for those
low frequency queries. And the inferred action satisfaction
labels from AcTS provide such a reliable quality estimator
for further improving the query suggestion performance.

5.3.3 Analysis of Search Behavior Patterns

Analyzing users’ search behavior patterns is important,
since it helps us understand how people use search engines
to solve search problems. Ageev et al. [1] analyzed search
paths in different types of users and tasks, and identified
distinct users’ in-task behavioral patterns. In particular,
they approximated the search paths based on the manually
annotated search actions. However, such manual judgments
are not generally available and expensive to acquire at scale.
In contrast, our model is capable of performing such analysis
of user search activities without manual annotations.

We performed this analysis on the toolbar data, where we
do not have action-level annotations. The first-order transi-
tion probabilities between different action types with respect
to the inferred action satisfaction labels are estimated. In
Figure 3, we demonstrated two subgraphs of the identified
search paths in satisfying and unsatisfying tasks. We ignored
the edges with transition probability less than 0.05 and used
bold font to highlight the outgoing edges with the highest
transition probability from each node in the figure. Since
we only showed a sub-graph from the original graph, the
illustrated outgoing transition probabilities of some nodes
may not sum up to one (e.g., p(SERP~|SR™) = 0.558 is not
included in Figure 3(b)).

According to the search paths estimated from the inferred
action satisfaction labels, users exhibit quite different behav-
ior patterns in the satisfying and unsatisfying search tasks.
In a satisfying task (as shown in Figure 3(a)), users usually
start with a satisfying query (p(Q*|START)=0.854), which

will very likely result in a satisfying click (p(SR*|Q*)=0.576);

while in an unsatisfying task (as shown in Figure 3(b)),
users are more likely to begin with an unsatisfying query
(p(Q~|START)=0.544), and move to some unhelpful doc-
uments. An interesting search pattern we observed in the
estimated search paths is that in a satisfying task, once users
issue an unsatisfying query, they can quickly correct it and
reformulate a satisfying one (p(Q*|Q™)=0.331); while in an
unsatisfying task, users tend to get stuck in a sequence of
unsatisfying queries (p(Q~|Q~)=0.232) and end up with a
failed search task (p(END|Q7)=0.334). These are exam-
ples of the types of insights that our automated method can
yield, without having to apply expensive manual labeling.

6. CONCLUSIONS

In this work, we explicitly modeled searchers’ satisfaction
at the action level for search-task satisfaction prediction. A
latent structural learning framework was developed to model
the unobservable action-level satisfaction labels, which en-
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(a) Search paths in satisfying tasks
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(b) Search paths in unsatisfying tasks

Figure 3: Search paths estimated by the inferred action satisfaction labels from AcTS in toolbar data. Edges
with transition probability less than 0.05 are discarded. Bold depicts highest outgoing transition probability.

abled us to explore rich structured features and dependency
relations unique to search satisfaction modeling. Significant
performance improvements in extensive experimental com-
parisons against several state-of-the-art search satisfaction
models confirmed the value of modeling action-level satis-
faction in search-task satisfaction prediction. Moreover, we
demonstrated the clear benefit of the inferred action satis-
faction labels in other search applications such as document
relevance estimation and query suggestion.

As future work, we will investigate how to apply the de-
veloped framework for predicting search-task satisfaction in
real time, action-by-action. If we can detect task failure
early in the search process, search engines can adjust their
ranking strategies or search support offered, before users
abandon their searches. In addition, exploring the applica-
tions of action-level satisfaction labels in additional contexts
is also an interesting direction to pursue.
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