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ABSTRACT

A machine learning approach to learning to rank trains a
model to optimize a target evaluation measure with repect
to training data. Currently, existing information retrieval
measures are impossible to optimize directly except for mod-
els with a very small number of parameters. The IR com-
munity thus faces a major challenge: how to optimize IR
measures of interest directly. In this paper, we present a
solution. Specifically, we show that LambdaRank [1], which
smoothly approximates the gradient of the target measure,
can be adapted to work with four popular IR target eval-
uation measures using the same underlying gradient con-
struction. It is likely, therefore, that this construction is
extendable to other evaluation measures. We empirically
show that LambdaRank finds a locally optimal solution for
mean NDCG@10, mean NDCG, MAP and MRR with a 99%
confidence rate. We also show that the amount of effective
training data varies with IR measure and that with a suf-
ficiently large training set size, matching the training op-
timization measure to the target evaluation measure yields
the best accuracy.

Categories and Subject Descriptors

H.3.3 [Information Systems]: Information Storage and
Retrieval; 1.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation, Theory

Keywords
Learning to Rank, Web Search

1. INTRODUCTION

Learning to rank is an increasingly popular area of re-
search. Ranking is a mapping from a set of items to an
ordered list; the ranking of Web search results is a common
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example. This task consists of a set of queries and a set of
retrieved documents for each query. The document-query
pairs are labeled according to a scale from not relevant to
highly relevant, and the ranking systems use the training
data to compute a model that outputs a rank order based
on a real-valued scoring function f(x). In Web search rank-
ing, the cost function is typically defined with respect to a
sorted order of documents at the query level, and averaged
over a large number of queries.

The ranking problem generally employs a cost function
(target evaluation measure) that is not necessarily the one
used to train the system. Typical target measures used in IR
(see [8] for a detailed list) depend only on the sorted list and
the relevance levels of the listed items. These measures are
generally either flat everywhere or non-differentiable with
respect to the model parameters; hence they are difficult
to optimize directly. One way to address this issue is to
find a close smooth approximation to the target measure,
and optimize it via gradient descent. However, this is quite
challenging due to the sort component of the target ranking
measures. LambdaRank [1] tackles the problem by defining
a smooth approximation to the gradient of the target cost
instead of searching for a smooth approximation to the tar-
get cost itself. The basic idea of LambdaRank is to specify
rules determining how the rank order of documents should
change. These rules are incorporated into a A-gradient that
defines the gradient of an implicit cost function only at the
points of interest [1]. LambdaRank was originally proposed
for NDCG (Normalized Discounted Cumulative Gain), but
the method is general and works with any target cost func-
tion. Recently, LambdaRank was shown to satisfy a neces-
sary, but not sufficient condition for local optimality, namely
that the gradient vanishes at the learned weights [12].

In this paper, we define A\-gradients for four widely used
IR measures, namely mean NDCG@10, mean NDCG, MAP
and MRR, using the same underlying construction used for
the NDCG A-gradient in [1]. This construction is likely
extendable to other IR measures as well. We empirically
show, with a confidence bound, the local optimality of Lamb-
daRank on these measures by monitoring the change in
training accuracy as we vary the learned weights of the net.
We change the weights by projecting in a random direction
on a unit ball and moving the weights in that direction. If
the accuracy decreases as the original net weights change,
it means the learned weights are at a local optimum. By
checking the accuracy decreases for several hundred random
directions, we show, with 99% confidence, that the learned
net weights are at a local optimum, using a Monte-Carlo test



with one-sided error. We also find that the gradient vanishes
at each learned weight by fixing all but one weight’s value
and varying that weight’s value while checking for a decrease
in accuracy on the training set. If the highest accuracy is
achieved at the learned weight value, then the gradient has
vanished. Our work is not only the first to show empiri-
cal optimality of a learning algorithm, but also the first to
show optimality across several IR measures. In addition, it
shows IR practitioners can now directly optimize for the IR
measure they care about, and the model need not be lim-
ited to only a few parameters. We also show that with large
enough amounts of training data, the best test accuracy is
achieved when matching the training optimization measure
to the target evaluation measure.

2. RELATED WORK

The ranking task has become increasingly popular among
researchers in the past few years. Some approaches rely on
structured output prediction such as the large margin meth-
ods of [9, 10]. The learned structures are mapped to the
reals, and then the best structure is chosen to give the high-
est real-valued score among all possible outputs. Another
line of work casts the ranking problem as ordinal regression,
that is, learning the mapping of an input vector to a member
of an ordered set of numerical ranks [5]. Like many other
ranking algorithms, their cost functions depend on pairs of
examples. Crammer and Singer [4] proposed a similar so-
lution where the ranker is a perceptron whose output is a
weight vector w. Cao et al. [3] proposed a listwise approach
to learning to rank where a cross-entropy loss is defined be-
tween two parametrized probability distributions of permu-
tations. Qin et al. [7] proposed a method called RankCosine,
which depends on a listwise loss function that takes the co-
sine similarity between the score vectors of the predicted
result and the ground truth. In addition, there are methods
that claim to directly optimize the evaluation measures, such
as SVMMAP [13] and AdaRank [11]. SVMMAP incorpo-
rates MAP into the listwise optimization constraints which
are exponentially large. SVMMAP tackles this problem by
performing optimization only on a working set of constraints
which is extended with the most violated constraint at each
step. The resulting algorithm works in polynomial time.
AdaRank, on the other hand, performs a boosting-type op-
timization where the IR measure is embedded into the loss
function used in updating the distribution of the data. The
authors claim a theoretical guarantee that the training er-
ror defined in terms of the IR measure will reduce constantly
with some mild assumptions. More recently, a method to di-
rectly optimize IR measures using an approximation of the
positions of documents was proposed in [6].

Another approach is to train on pairs of documents per
query. RankNet [2] is a neural-net-based ranking algorithm
that optimizes a cross-entropy cost function using gradient
descent. It is trained on pairs of documents per query, where
documents in a pair have different labels. The RankNet cost
consists of a sigmoid followed by a pair-based cross-entropy
cost. The training time of RankNet scales quadratically
with the average number of pairs per query, and linearly
with the number of queries. Thus, speeding up RankNet
training becomes crucial especially for large training sets.
LambdaRank [1] provides a significant training speed-up as
well as a framework for optimizing a cost function while
avoiding the difficulties of working with non-differentiable

IR measures. In addition, the NDCG gradient at the weights
learned by LambdaRank has been shown to vanish, a neces-
sary but not sufficient condition for empirical optimality of
LambdaRank on NDCG [12]. We empirically show not only
that it optimizes NDCG, but also MAP and MRR.

3. IR MEASURES

IR measures are typically defined with respect to a permu-
tation of documents for a given query. The relevance labels
can be binary or multilevel. For binary measures, we assume
labels {0, 1} (1 for relevant, and 0 for non-relevant). Binary
measures include Mean Average Precision (MAP), Mean Re-
ciprocal Rank (MRR), and Winner Takes All (WTA) (see
[8] for a more complete list). In this paper, we focus on four
of the most commonly used IR metrics: MAP, MRR, mean
NDCG, and mean NDCG@10.

Average Precision (AP) computes for each relevant doc-
ument the precision at its position in the ranked list; these
precisions are then averaged over all relevant documents for
query %:

L
P
APQL; = W (1)

where r is the rank position, L is the truncation level, R is
the number of relevant documents, I(r) is the binary rele-
vance label of the document at rank position r, and PQr is
the precision up to rank position r, i.e. PQr = M
Mean Average Precision is the average of the average pre-
cisions over all N queries, MAPQL = % Zil APQL;. In
our work, we report on MAP@Qoo and denote it by MAP.

Reciprocal Rank (RR) for a given query is the reciprocal of
the rank position of the highest ranking relevant document
for the query. MRR is just the average of the reciprocal
ranks over queries:

1.1
MRR:N;E (2)

where N is the number of queries and r; is the highest po-
sition of a relevant document for query 1.

Unlike binary measures such as MAP and MRR, NDCG
recognizes multilevel relevance labels. NDCG for a given
query ¢ is formulated as follows:

ToB(1+7) )

1o 210 -1
NDCGQL; = - ;1

where [(r) € {0,...,4} is the relevance label of the doc-
ument at rank position 7 and L is the truncation level to
which NDCG is computed. Z is chosen such that the perfect
ranking would result in NDCGQL; = 1. Mean NDCGQL is
the normalized sum over all queries: + SN, NDCGQL;.
NDCG is particularly suited for Web search applications
since it accounts for multilevel relevance labels and the trun-
cation level can be set to model user behavior. In our stud-
ies, we consider mean NDCG@10 and mean NDCGQoo. We
denote mean NDCGQoo as simply mean NDCG.

4. LAMBDARANK

In most machine learning tasks, a target cost is used to
assess the accuracy of the system at test time, and an op-
timization cost, generally a smooth approximation to the



target cost, is used to train the system. Ideally, the opti-
mization cost matches the target cost, but typical IR target
costs (e.g. MAP, MRR, mean NDCG, etc.) are either flat
or non-differentiable everywhere. Hence, direct optimiza-
tion of the target cost is quite challenging. LambdaRank [1]
solves this problem by defining the gradients of a given cost
function only at the points of interest. The gradients are
defined by specifying rules about how swapping two docu-
ments, after sorting them by score for a given query, changes
the cost. Although LambdaRank gradients were originally
defined for mean NDCG, the gradient definition is general
and can work with any target cost function. In this section,
we define A-gradients for four different IR measures.

4.1 x-Gradient for Mean NDCG

A LambdaRank gradient, \;, is defined to be a smooth
approximation to the gradient of a target cost with respect
to the score of the document at rank position j. A-gradients
have a physical interpretation; documents are represented
by point masses and A-gradients are forces on those point
masses [1]. On two documents in a pair in a query, the \-
gradients are equal and opposite, where a positive A-gradient
indicates a push toward the top of the list, and a negative
A-gradient indicates a push toward the bottom of the list.
With a choice of suitable A\-gradient, the gradient of any
target cost can be smoothly approximated for a given doc-
ument.

The authors of [1] tried several alternatives for A-gradients
and chose the best according to accuracy on validation data
(for a detailed list, the reader is referred to [1]). The best
A-gradient found in [1] is a combination of the derivative of
the RankNet cost [2] scaled by the NDCGQL, gain from
swapping two documents ¢ and j with differing labels for a
given query gq. We drop g below for brevity. The RankNet
cost is a pairwise cross-entropy cost applied to the logistic of
the difference of the model scores. Assume document i has
score s; and label /;, document j has score s; and label [;,
and o0;; = s; — s; is the score difference, then the RankNet
cost can be written as follows:

Cij = C(Oi]') = —Sijoij + log(l + 6Sijoij) (4)
where
o +1 ifl; >
Sij = { -1 ifl; < (5)

The derivative of the RankNet cost according to score dif-
ference is

(SCZ‘]‘/(SO»;J‘ = (SCZ]/(SSZ = — ij/(l + esijoij) (6)
The A-gradient can now be written as follows:
Nij = 84 ANDCG(SS” (7)
i

= Si;

) ) 1 1 1
N (24 -2l -
( )<log(1 +1i) log(1 +m)> (1 + €50 )‘

where N is the reciprocal of the maximum DCG for the
query and r; and r; are the rank positions of documents
¢ and j, respectively. Note that the sign S;; only depends
on the labels of documents ¢ and j and not on their rank
positions. In addition, if I; > [;, then document ¢ is more
relevant than document j and document ¢ must move up the
ranked list to reduce the cost, so S;; = 1 and the A-gradient

for document ¢ is positive. The A-gradient for a single doc-
ument is computed by marginalizing over the pairwise A-
gradients, A\; = 3, p Aij, where the sum is over all pairs P
for query ¢ which contain document 7. In each case below,
Ai is the sum of the pairwise A-gradients.

4.2 )-Gradient for MAP

LambdaRank is designed to work with any target cost
function, as long as the A-gradient can be defined. We de-
sign a A-gradient for MAP based on the same principles as
the one designed for mean NDCG, with the exception that
ANDCGQL is substituted with AAPQL.

The A-gradient for MAP uses the RankNet cost, scaled
by the AP (Average Precision) gain found by swapping two
documents ¢ and j at rank positions r; and r;. We assume
L = oo, and drop it from equations for brevity. Assume
documents ¢ and j are misranked by the current net, i.e.,
ri > rj but l; > ljl, then S;; = 1 and we can drop it for
brevity. We have

ij = ';(Z I(k)P@k — Z l’(k)P’@k) (#)‘ )

k=r; k=r;

where [(k) = 1 if the document at rank position k is relevant,
and 0 otherwise; PQFk is the precision at rank k; R is the
number of relevant documents for that query. I'(k) is the
relevance value after we swap the documents at positions r;
and r;. In fact, I'(k) = I(k) for all k € {r; + 1,...,7; — 1},
U'(ri) = l(rj), and I'(r;) = I(r;). P'@k is the precision at
the rank positions between r; and r; after the swap. We can
rewrite the above formula as:

A S [

k=r;+1

where n and m (n < m) are the number of relevant docu-
ments at the top r; and the top r; positions, respectively.

4.3 -Gradient for MRR

The A-gradient for MRR uses the RankNet cost scaled
by the gain in Reciprocal Rank (RR) for query ¢, found
by swapping documents ¢ and j at the corresponding rank
positions r; and r;, for any {i,7}. Assume document ¢ is
relevant and document j is non-relevant, thus l; > I; and
Si; = 1, then

1
)\ij = ‘ARR(T“T])<W>‘ (10)

ARR(ri, r;) calculates the difference in the reciprocal rank
of the top relevant document as a result of the swap:

L 1 ifr; <r<mr
ARR i, T) = T r J > Iz
(ri; ) { OJ otherwise

(11)

where r is the rank of the top relevant document in the
ordered list. Clearly, there is no RR gain (or loss) unless the
rank of the top relevant document shifts after the swap.

5. LOCAL OPTIMALITY TESTING

We verify local optimality by showing that the training
accuracy of LambdaRank decreases as the weights’ learned

IThroughout, we assume higher (better) rank means lower
rank index.



values are changed (either increased or decreased in value)?.
We project iid random directions 771, 72, ..., Fx on a unit ball
by first sampling each dimension of a vector from a Gaussian
distribution® with 0 mean and unit variance and then pro-
jecting the vector onto the unit sphere. We modify the net
weights in each direction as follows: let @ be the vector of net
weights, and Aps (W) be the accuracy of the net with weights
w with respect to a given evaluation measure M. We use a
Monte-Carlo test with one-sided error. Assume a Bernoulli
random variable Z that takes value 1 with probability pz
and 0 with probability 1 — pz. pz is the probability that
the accuracy increases for some random direction r;; i.e.,
Ap (W) < Ay (W + 1) for small n > 0. Given Z, we define
a geometric random variable X with parameter pz to be the
number of independent trials required, i.e., the number of
random directions tested, before Z = 1. Requiring (1 — §)%
confidence yields:

Pr(X<N)=1-(1-pz)V = 1-96
=N [In(d)/In(1 — pz)]
where N denotes the number of directions to test to find an
increasing direction with probability 1 — §. Since pz is un-

known in our case, we assume pz > ¢ for small €. Assuming
pz > €, we obtain the following relation:

pz > e=Pr(X <K)>1-¢ where K = [In(d)/In(1 —¢€)]

which gives the minimum number of random directions K to
be tested in order to find an increasing direction with (1 —
0)% confidence. Let us define the null hypothesis Hy as the
assumption that pz > €, then we obtain Pr(X < K | Ho) >
1 — 0. If for K random directions no increasing direction
is found, we reject Ho. Hp may still be true even if we did
not encounter an increasing direction, but this probability is
upper bounded by §. Requiring that ¢ = 0.01 and § = 0.01,
we obtain K =1n(0.01)/In(1 — 0.01) = 459.

If we can show that varying the net weights in all 459
random directions results in worse training accuracy than
the learned set of weights, then the learned set of weights
represents a local optimum with 99% confidence. We ana-
lyze the change in training accuracy at 10 different step sizes
n € {0.1,0.2, ..., 1} as we change the net weights & in a given
random direction r;. Our empirical analysis (see Section 7)
shows that there is a smooth decrease in the target costs as
the learned weights change; hence, the choice of the step size
does not seem to be restrictive 2.

6. DATASETS

We conducted experiments on three different datasets; two
are real Web datasets from a commercial search engine and
one is an artificial dataset [2] created to remove any variance
caused by the quality of features and/or relevance labels.
The artificial data was generated as decribed in [2] from
random cubic polynomials. It has 300 features, 50 URLs
per query, and a random 10K /5K /10K train/valid/test split
on queries. We refer to it as the Artificial Data. The first
Web search dataset has 158.7 URLSs per query, 420 features,

2A direct analysis of the local optimality, involving the gra-
dient or the hessian, for the IR target measures is problem-
atic due to non-differentiability of the loss function.

3 Any spherically symmetric distribution could be used.
4We found consistent results with 5 € {0.001,0.002, ...}, but
omit results due to space limitations.

Table 1: MAP scores with standard error (SE) of
different A-gradients on the validation set.

A-gradient MAP + SE

RankNetWeightPairs | 0.462+0.0048
LocalGradient 0.43540.0048
LocalCost 0.42740.0049
SpringSmooth 0.42440.0048
DiscreteBounded 0.4014£0.0049

Table 2: MRR scores with standard error (SE) of
different A-gradients on the validation set.
A-gradient MRR + SE

RankNetWeightPairs | 0.52440.0059

LocalCost 0.51540.0060
LocalGradient 0.51240.0059
SpringSmooth 0.498+0.0058
DiscreteBounded 0.471£0.0059

and 10K/5K /10K query train/valid/test splits. We call this
dataset the 10K Web Data. The second Web dataset con-
tains 22K /2K /10K query train/valid/test splits, 158.6 URLSs
per query, and 420 features. We refer to this dataset as the
22K Web Data.

All the document-query pairs are assigned integer labels
between 0 (the least relevant) and 4 (the most relevant).
For the binary measures MAP and MRR, we transform the
multilevel relevance labels to binary by converting all labels
between 2 and 4 (inclusive) to relevant (1), and all the rest
to non-relevant (0).

7. EXPERIMENTS

Through our experiments we seek to (1) show the local
optimality of LambdaRank on three datasets for four IR
measures and (2) determine if matching the training mea-
sure to the target evaluation measure yields the best test
accuracy, and if so, how much training data is required. We
begin by determining the best A-gradient construction.

Following [1], we define 13 A-gradient constructions for
each IR measure and then train each construction for each
measure on a 5K query Web set. We choose the construc-
tion with the best validation accuracy on a 5K query val-
idation set. Tables 1 and 2 report the validation accuracy
of a selective subset of A-gradients for MAP and MRR, re-
spectively. ‘RankNetWeightPairs’ is the construction de-
tailed in Section 4. ‘SpringSmooth’ is a smoothed version
of ‘RankNetWeightPairs’ where the gain obtained by swap-
ping a pair is lower-bounded by 1. ‘LocalGradient’ estimates
the gradient by the change in accuracy with respect to the
difference in scores between two adjacent documents in an
ordered list. A margin is added to handle very small score
differences. ‘LocalCost’ uses a cost based on a document’s
neighbors to compute an estimate of the local gradient. ‘Dis-
creteBounded’ computes the change in accuracy when a doc-
ument is moved to its ideal position in the ranked order,
and the A-gradient is upper-bounded by 1. For all four IR
measures, ‘RankNet WeightPairs’ outperforms the other con-
structions with statistical significance on the validation set.
We choose this construction for our A-gradients. It is likely
this construction can be extended to other IR measures as
well.
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Figure 1: Shifting single- and two-layer weights for
mean NDCG. x-axis is the step size, 7.

For all experiments, we varied the learning rate between
1077 to 1073, and picked the rate that gave the best valida-
tion accuracy. Each algorithm was run for 700 epochs with
a random restart if validation accuracy was constant over 50
epochs. If the training accuracy decreased at a given epoch,
the learning rate was reduced by a factor of 0.8 with 30%
probability. The output of each algorithm is a set of learned
model weights. We report results in this paper based on
single-layer nets and two-layer nets with 10 hidden nodes.
We denote the training of LambdaRank for the different
measures by LambdaRankNDCG, LambdaRankNDCG@10,
LambdaRankMAP, and LambdaRankMRR.

7.1 Empirical Optimality of LambdaRank

We determine, for each training measure, if the learned
weights represent a local optimum by examining the training
accuracy at the learned weights as well as the weights shifted
in 459 random directions.We vary all weights together in
both single-layer and 2-layer nets. In all figures, for read-
ability, we graph only 4 random directions, but verify that
all remaining directions cause a decrease in training accu-
racy. When the step size n = 0, the accuracy corresponds
to the training accuracy of the original (learned) net. We
begin with mean NDCG.

Figure 1 shows the change in mean NDCG on the three
training sets when varying the weights of the single- and two-
layer nets learned by LambdaRankNDCG. On all three train-
ing sets, mean NDCG decreases as we change the learned

Figure 2: Shifting single- and two-layer weights for
mean NDCG@10. x-axis is the step size, 7.

weights. The training accuracy is higher on the Artificial
dataset, as expected, since it is much less noisy. In all cases,
NDCG curves are smooth functions of the weights and it is
apparent the learned weights result in the best accuracy.

Figure 2 shows the change in mean NDCG@10 on the
three training sets when varying the weights of the single-
and two-layer nets learned by LambdaRankNDCG@10. On
all three training sets, mean NDCGQ@10 decreases as we
change the values of the learned weights, indicating that
the learned weights are indeed at a local optimum.

Figure 3 shows the results for weights learned by Lamb-
daRankMAP on all three training sets for the single-layer
and 2-layer nets. We see that all variations in learned weights
cause a decrease in accuracy and satisfy the test for local
optimality. The MAP score on the Artificial Data is higher
than the MAP score on the Web datasets.

Lastly, we evaluate the local optimality of the weights
learned by LambdaRankMRR. MRR training accuracy de-
creases as a relatively smooth function of the weights for
both nets and all training sets, as shown in Figure 4, and
therefore also satisfies the test for local optimality.

We also verify that the gradient vanishes at each learned
weight by fixing all weights at their learned values except
one and then randomly varying the one weight under con-
sideration. As the weight value varies, we again check that
training accuracy decreases with all variations. We find in
all cases that the gradients vanish at all learned weights. We
do not include figures due to space constraints.
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Figure 3: Shifting single- and two-layer weights for
MAP. x-axis is the step size, 7.

7.2 Matching Training and Target Measures

We investigate if matching training and target measures
yields the best test accuracy, for all four IR measures. For
all tables in this section, the columns in left-to-right order
list the target (test) measure, the training measure, the ac-
curacy (evaluated using the target measure) on the test set,
and the statistical significance of the test-train pair’s test
accuracy relative to the test accuracy of the pair with the
same target measure as training measure (Y: yes, N: no, —
the matching test-train pair). We used a paired t-test to
determine significance, with 95% confidence.

In Table 3, we report test accuracy of 2-layer nets on the
10K Web data. When testing on mean NDCG, training on
mean NDCG gives the best test accuracy, with statistical
significance. Similarly, we find that when testing on MAP,
training on MAP gives the best test accuracy, with statisti-
cal significance. In the case of mean NDCG@10, we find the
highest test accuracy comes from training on mean NDCG.
Simiarly, we find that the highest test accuracy for MRR
comes from training on mean NDCG. We could be inclined
to conclude that matching the training measure to the target
measure does not necessarily yield the best test accuracy.

However, to correctly interpret the table, we must con-
sider the number of effective training pairs, that is, the num-
ber of pairs with a non-zero A-gradient that contribute to
training. MAP and MRR are binary measures, while mean
NDCG and mean NDCG@10 are multilevel relevance mea-
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Figure 4: Shifting single- and two-layer weights for
MRR. x-axis is the step size, 7.

sures. The number of pairs that contribute to LambdaRank
training for a binary measure is far fewer than the number
for a multilevel relevance measure. For the 10K Web data,
the upper bound on the number of effective pairs per epoch
in the multilevel case is ~73 million compared to ~27 million
in the binary case. For MRR, the pairwise A-gradient is non-
zero only when the pair contains a non-relevant document
ranked higher than the top relevant document (see Eqn 11);
no other pairs contribute to training so the number of ef-
fective pairs per epoch is around 1-2 magnitudes less than
the binary upper bound. MAP, on the other hand, is within
a constant of the upper bound since pairs at all positions
may contribute non-zero A-gradients. Mean NDCG is within
a constant of the multilevel upper bound since it consid-
ers documents in all positions, but mean NDCG@Q10 learns
from fewer pairs since it only considers pairs which contain
at least one document in the top 10 rank positions. As a
result, mean NDCG has more effective pairs (more learning
opportunity) than mean NDCG@10, which has more than
MAP, which has more than MRR. The 22K Web data has
at most 60 and 162 million pairs per epoch in the binary
and multilevel cases, respectively. Table 4 shows the accu-
racy on the test data of from 2-layer net training on the
22K data. We see that matching the training and target
measures for both mean NDCG and MAP yields the best
test accuracy with statistical significance. For MRR and
NDCG@10, on the other hand, it does not. However, for
MRR, learning from more pairs does decrease the differ-
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Figure 5: Number of effective training pairs (log10) versus MRR test accuracy. Results from four trained
models are reported. We do not plot error bars since the standard error for each point is less than 0.0018.

Table 3: Test accuracies on 10K Web Data for
2-layer LambdaRank trained on different training

Table 4: Test accuracies on 22K Web Data for
2-layer LambdaRank trained on different training

measures. Bold indicates statistical significance at
95% confidence against all other test-train pairs.
Test, Train Test Score + SE | Sig.
NDCG 0.723 + 0.001 -
NDCG NDCG@10 | 0.722 + 0.001 Y
MAP 0.718 £ 0.001 Y
MRR 0.704 £ 0.001 Y
NDCG 0.442 £+ 0.002 N
NDCG@10 | NDCG@10 | 0.422 4+ 0.002 -
MAP 0.435 £+ 0.002 Y
MRR 0.403 £ 0.002 Y
NDCG 0.335 £ 0.002 Y
MAP NDCG@10 | 0.335 + 0.002 Y
MAP 0.337 £ 0.002 -
MRR 0.314 £+ 0.002 Y
NDCG 0.546 £ 0.004 Y
MRR NDCG@10 | 0.548 + 0.004 Y
MAP 0.546 £+ 0.004 Y
MRR 0.526 £ 0.004 -

measures. Bold indicates statistical significance at
95% confidence against all other test-train pairs.
Test Train Test Score £ SE | Sig.
NDCG 0.726 + 0.001 -
NDCG NDCG@10 | 0.724 £ 0.001 Y
MAP 0.723 4+ 0.001 Y
MRR 0.709 £+ 0.001 Y
NDCG 0.452 £ 0.002 Y
NDCG@10 | NDCG@10 | 0.448 4+ 0.002 -
MAP 0.447 4+ 0.002 N
MRR 0.415 4+ 0.002 Y
NDCG 0.341 4+ 0.002 Y
MAP NDCG@10 | 0.338 £+ 0.002 Y
MAP 0.343 +0.002 -
MRR 0.322 4+ 0.002 Y
NDCG 0.550 4+ 0.004 Y
MRR NDCG@10 | 0.547 £ 0.004 Y
MAP 0.550 4+ 0.004 Y
MRR 0.539 4+ 0.004 -

ence in accuracy between MRR and mean NDCG (0.02 to
0.011 points MRR) and for NDCG@10 we see a similar de-
crease between mean NDCG@10 and mean NDCG (0.02 to
0.004 points NDCG@10). Since both MRR and NDCG@10
learn from fewer effective pairs than NDCG@10, it seems
likely that with more training pairs, matching the training
and target measures will yield the best accuracy. To address
this, we created various sizes of artificial training data to de-
termine if learning on roughly similar numbers of effective
pairs would reveal matching training and target measures
to yield the best accuracy. Figure 5 plots the number of
effective pairs versus the MRR test accuracy for four dif-
ferent training measures. For similar numbers of effective
pairs, training for MRR results in better MRR test accu-
racy, with statistical significance. We find similar results for
NDCG@10 (not shown here). Thus, we conclude that when
training on the same number of effective pairs, it is indeed
best to match the training measure to the target measure.
When a sufficiently large training sample is not available,
it may be best to use a finer-grained training measure, e.g.
mean NDCG, since it takes advantage of the most training

pairs. Robertson and Zaragoza [8] claim different measures
have different local optima, and likely have many local op-
tima. They point out that a measure that responds to many
flips (e.g. MAP and mean NDCG) will have many local op-
tima whereas a measure that responds to fewer flips (e.g.
MRR) will have fewer optima, but larger flat areas. These
are the large areas of the parameter space that it cannot
distinguish [8]. In other words, MAP and mean NDCG are
more flexible than MRR, and mean NDCG has more gran-
ularity.

8. DISCUSSION AND CONCLUSION

Since we find all learned weights to be at local optima, two
questions immediately arise: are weights at earlier epochs
also local optima and are weights learned for one measure
a local optimum for another measure? We looked at the
NDCG@10 training accuracy of 2-layer NDCG@10-learned
weights at epoch 7 and 12 on the 10K data. We found
the weights at both epochs to be local optima. We then
examined the mean NDCG@10 training accuracy of the 2-
layer MRR-learned weights and found that they too are at
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Figure 6: Shifting random single-layer weights for
mean NDCG. x-axis is the step size, 7.

a local optimum. However, initializing learning for mean
NDCG@10 at the early epoch weights and the MRR-learned
weights results in immediate mean NDCG@10 training accu-
racy improvement, indicating that learning escapes each of
these local optima and climbs to a different, potentially bet-
ter, local optimum. The escape occurs due to the stochastic-
ity of the batch LambdaRank learning (both full batch and
batch per query). Eventually, training converges, and these
are the local optima reported in Section 7.1. In light of these
results, we perform a sanity check to verify that a net with
random weights is not at a local optimum. Figure 6 plots
the step size n versus the mean NDCG training accuracy on
the 10K data of a single-layer net for four of 459 random di-
rections. Confidently, we find that the random weights are
not at a local optimum, since training accuracy increases
as we move away from the initial random weights in two of
the four plotted random directions. Although LambdaRank
starts from random weights, it appears that within a very
small number of training epochs that the learning in fact
guides the weight values into a region containing many local
optima. The stochasticity in LambdaRank allows the algo-
rithm to then repeatedly escape local optima and climb, and
ultimately converge, to a superior local optimum. Our work
shows that the learned weights upon convergence are locally
optimal and points to the importance of the stochasticity in
LambdaRank. This result is significant since LambdaRank
builds upon smooth approximations to any target gradient
rather than a direct optimization and still converges to a
local optimum for various IR measures.

In conclusion, the direct optimization of IR measures has
been very challenging, causing IR practitioners to build mod-
els with one (like BM25) or a few parameters that can be
optimized using grid-search. However, it was recently shown
that learning a model on many weak features can signifi-
cantly improve test accuracy [1, 2]. In this paper, we have
shown that four IR measures can in fact be optimized di-
rectly, and our A-gradient construction is very likely extend-
able to other IR measures. We also show that with enough
training data, matching the training measure to the target
measure results in the best test accuracy. Our results open
up a world of possibilities for directly optimizing sophisti-
cated models on large numbers of features for possibly any
IR measure of interest.

An interesting direction for future work is to revisit the
13 A-gradient constructions described in Section 7 and deter-
mine how the number of effective training pairs varies across
these constructions for various IR measures. Some of these

constructions are not pair based in fact, and they may result
in lower training accuracy due to the small number of effec-
tive pairs used for learning. Furthermore, it may be that
‘RankNetWeightPairs’ employs the most effective training
pairs of the 13 constructions. It would also be fruitful to
learn if other A-gradient constructions, and possibly other
learning to rank algorithms, converge to a local optimum,
and escape local optima during learning.
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