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ABSTRACT
The gold standard for online retrieval evaluation is AB testing.
Rooted in the idea of a controlled experiment, AB tests compare the
performance of an experimental system (treatment) on one sample
of the user population, to that of a baseline system (control) on
another sample. Given an online evaluation metric that accurately
reflects user satisfaction, these tests enjoy high validity. However,
due to the high variance across users, these comparisons often have
low sensitivity, requiring millions of queries to detect statistically
significant differences between systems. Interleaving is an alterna-
tive online evaluation approach, where each user is presented with a
combination of results from both the control and treatment systems.
Compared to AB tests, interleaving has been shown to be substan-
tially more sensitive. However, interleaving methods have so far
focused on user clicks only, and lack support for more sophisticated
user satisfaction metrics as used in AB testing.

In this paper we present the first method for integrating user sat-
isfaction metrics with interleaving. We show how interleaving can
be extended to (1) directly match user signals and parameters of
AB metrics, and (2) how parameterized interleaving credit functions
can be automatically calibrated to predict AB outcomes. We also
develop a new method for estimating the relative sensitivity of in-
terleaving and AB metrics, and show that our interleaving credit
functions improve agreement with AB metrics without sacrificing
sensitivity. Our results, using 38 large-scale online experiments en-
compassing over 3 billion clicks in a web search setting, demonstrate
up to a 22% improvement in agreement with AB metrics (consti-
tuting over a 50% error reduction), while maintaining sensitivity of
one to two orders of magnitude above the AB tests. This paves the
way towards more sensitive and accurate online evaluation.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.3 Information Search
and Retrieval

Keywords
Information retrieval; Evaluation; Interleaved comparisons

∗Most of this work done during internship at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGIR’15, August 09 - 13, 2015, Santiago, Chile.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3621-5/15/08 ...$15.00.
DOI: http://dx.doi.org/10.1145/2766462.2767695.

1. INTRODUCTION
Evaluation has long played a key role in information retrieval

(IR). Most commonly, systems are evaluated following the Cran-
field approach [25]. Using this approach, systems are evaluated in
terms of document relevance for given queries, which is assessed by
trained experts. While the Cranfield paradigm ensures high internal
validity and repeatability of experiments, it has been shown that
the users’ search success and satisfaction with an IR system are not
always accurately reflected by standard IR metrics [29, 31]. One
reason is that the relevance judges typically do not assess queries
and documents that reflect their own information needs, and have to
make assumptions about relevance from an assumed users point of
view. Because the true information need can be difficult to assess,
this can cause substantial biases [10, 30, 36].

To address the gap between offline evaluation and true use of IR
systems, online evaluation has been used to directly measure observ-
able user behavior on alternative systems. The biggest challenge
for online evaluation is to identify metrics that accurately reflect
user satisfaction. This has motivated a large amount of research on
online metrics. While early online evaluation focused on simple
metrics such as click-through rate (CTR, the fraction of queries for
which users click a result) or the ranks of clicked documents [14],
more sophisticated metrics have been recently developed. These in-
clude observing which results users skip over [34], the time between
search engine visits [3], and focusing on “satisfied” (long-duration)
clicks (which we refer to as SAT clicks) [4].

Given an IR system and an appropriate online metric, the standard
experimental procedure for comparing systems is AB testing [17].
This means that a controlled experiment is conducted on users
of a running system. A random sample of users is exposed to
the treatment system, a second sample is exposed to the control
system. Given that the assignment to systems is random and the
experimental units (e.g., users) can be assumed independent of
each other, any differences in online performance measured on the
two samples can be attributed to differences between treatment
and control system. If the measured differences are statistically
significant, we can make highly confident decisions on which system
to deploy. Unfortunately, the variance in user behavior is typically
high, which results in low sensitivity of such AB comparisons. This
means that, to reach high confidence levels, large samples need to
be collected over a long period of time (e.g., millions of samples)
[1]. Considering the effects of exposing users to potentially lower
quality systems over long periods of time, it can be seen that AB
comparisons can be extremely expensive.

An alternative online evaluation approach, interleaving, was de-
veloped to improve on the AB design [14]. It avoids many of the
sources of variance by combining results from both the treatment
and control systems, for all queries. In particular, the results returned



by the two systems are combined in a way that is fair to both, in the
sense that neither system would be preferred in expectation if users
were to click on documents at random. Observed user clicks on the
combined result list are then credited to one of the systems to infer
which system would be preferred by the user [24]. In comparison to
AB tests, interleaved comparisons have been shown to be substan-
tially more sensitive. For instance, in an empirical comparison of
five AB tests and corresponding interleaving experiments, Chapelle
et al. [1] observed that AB experiments required 145 times more
data than interleaving to achieve statistical significance.

While high sensitivity makes interleaving very attractive for on-
line evaluation, existing methods have primarily focused on ob-
served clicks, and ignore the richer user satisfaction signals that
have been incorporated into AB metrics. As a result, it was unclear
to what degree interleaved comparisons agree with user satisfaction,
as measured by specifically designed AB tests. This is challenging
to address because by their very nature interleaving methods change
rankings and attribute credit in a non straight forward way, making
it far from trivial to align them with AB metrics. This paper is the
first to address this limitation of interleaving methods.

In particular, we make the following contributions:
Sensitivity: Starting with existing AB and interleaving metrics (de-
fined in Section 3), we propose a new, statistical method for as-
sessing the sensitivity of these metrics from estimated effect sizes
(Section 4). The resulting method allows a detailed comparison
between metrics in terms of the power of statistical tests at varying
sample sizes. Our analysis shows that AB tests typically require two
orders of magnitude more data than interleaved comparisons.
Agreement: Turning to the agreement between existing metrics, we
find that current interleaved comparisons achieve from random up
to 76% agreement with AB user satisfaction metrics.
Credit Formulation: Motivated by the results of our analysis, we
propose novel interleaving credit functions that are (a) designed to
closely match the implementation and parameters of AB metrics,
or (b) are parameterized to allow optimization towards agreement
with arbitrary AB metrics (Section 5). We further propose the first
approach for automatically maximizing agreement between such
parameterized interleaving credit functions and AB metrics.
Optimization: We demonstrate that interleaving credit functions can
be automatically optimized, and that learned parameters generalize
to unseen experiments. These results demonstrate for the first time
that interleaving can be augmented with user satisfaction metrics,
to accurately predict the outcomes of AB comparisons that would
require one to two orders of magnitude more data.
Large Scale Evaluation: Finally, our empirical results, obtained
from experiments with 3 billion user impressions and 38 paired (AB
and interleaving) experiments demonstrate the effectiveness of our
proposed approach (Section 6). In particular, we achieve agreement
of up to 87%, while maintaining high sensitivity.

2. RELATED WORK
In this section, we discuss prior work on measuring user satisfac-

tion with online IR systems, starting with absolute relevance metrics:
Metrics that measure a single number for a given ranking system
(2.1). We then present existing results on online evaluation using
interleaving (2.2). Finally we discuss approaches for optimizing
online evaluation metrics as relevant to this paper (2.3).

2.1 Absolute User Metrics
The most common type of online evaluation today is AB testing,

where online performance is estimated on two independent samples
of users: One exposed to a treatment system, the other exposed to
a control system [17]. Standard assumptions allow experimenters
to obtain unbiased online performance estimates, and confidence

estimates or hypothesis testing are available via statistical methods
such as the two-sample t-test. For instance, this methodology has
been effectively used to compare systems in terms of CTR (e.g., for
news recommendation [20]).

While simple to measure, CTR has been shown to be a poor metric
for measuring user satisfaction in search [15]. Consequently, a large
body of work has developed online metrics that more accurately
measure search satisfaction. An established signal is dwell time,
where clicks followed by only short visits to the corresponding result
document are considered “unsatisfied”, i.e., the user is unlikely to
have found the document as relevant [36]. Moving beyond a single
time threshold for identifying user satisfaction, sophisticated click
satisfaction classifiers combine a range of user signals, and have
been shown to accurately detect satisfied clicks [16].

Other proposed online metrics also consider the effect of tabbed
browsing (opening several results in browser tabs in quick succes-
sion) [13]. Conversely, the lack of a click (abandonment) is often
taken as a signal of a lack of relevance, but this interpretation has
posed a challenge for evaluating richer search engine result pages,
where relevant information may be presented directly, without the
need to click. A number of papers have proposed methods to deter-
mine when abandonment indicates satisfaction [20, 28]. Follow-on
queries can also be considered indicative of a lack of success [8],
as can skipping results be indicative of incorrect result order [34].
Of course, to accurately interpret user clicks, we must also consider
which results users examined. If a user never looked at a search
result, their lack of engagement on this result cannot be indicative of
low relevance. A number of studies have shown that mouse move-
ment can be an indicator of user examination of search results, and
of specific sections within search results [2, 5, 6, 9, 35]. Similarly,
in a mobile setting recording how long each part of the screen is
visible can be considered an indicator of relevance [18].

Finally, although the majority of online evaluation has focused
on user satisfaction for individual queries, it has been argued that
the correct unit of measurement is the user session, or a search task.
A number of session based metrics have been proposed [7, 33].

In this paper we specifically focus on AB metrics that capture
click-level search satisfaction [16] (cf., Section 3.1).

2.2 Interleaved Comparisons
While providing flexibility and control, AB comparisons typically

require a large number of observations. Given typical differences
in IR system performance in state of the art systems, many AB
metrics have been found to require millions of users [1]. Interleaved
methods, originally proposed by Joachims [14], reduce the variance
of measurement by combining documents retrieved by both the
control and the treatment system. Projecting user clicks on the
resulting interleaved document lists back to the original document
rankings is then taken as an estimate of which system would be
preferred by the user. This mixing substantially reduces variance
and was found to reduce required sample sizes by up to two orders
of magnitude [1, 24]. A variety of interleaving approaches have
been proposed (e.g. [11, 14, 23, 24, 26, 27]). The most frequently
used interleaving algorithm is Team Draft Interleaving (TDI) [24].
We use TDI as our baseline. It is described in detail in Section 3.2.

2.3 Optimizing Interleaving Metrics
The interleaving approaches described above measure which

ranker is more likely to attract user clicks in a fair, paired com-
parison. However, as described in Section 2.1, raw clicks can be
misleading. Previous research has shown that with interleaving there
may be biases due to highlighting in search result titles [38] and
other caption effects such as title and snippet length [12]. Proposed
methods to mediate these biases were shown to improve agreement



Table 1: AB metrics implemented as ground truth for comparisons with interleaving. See Section 3.1 for notation.
AB Metric Description Implementation 1

QA

∑
q∈QA

...

AB Number of queries that received at least one click. 1(|Cq| > 1)
AB@1 Number of queries that received at least one click on the first position. 1((

∑
c∈Cq 1(rank(c) = 1)) > 1)

ABS Number of queries that received at least one SAT click. 1((
∑

c∈Cq 1(is_sat(c))) > 1)
ABS@1 Number of queries that received at least one SAT click on the first position. 1((

∑
c∈Cq 1(rank(c) = 1) · 1(is_sat(c))) > 1)

ABT Time from the query being issued until the first click. minc∈Cq time(c)
ABT @1 Time to the first click on the top position. minc∈Cq time(c) · 1(rank(c) = 1)
ABT,S Time to the first click classified as SAT. minc∈Cq time(c) · 1(is_sat(c))
ABT,S@1 Time to the first click on the top position classified as SAT. minc∈Cq time(c) · 1(rank(c) = 1) · 1(is_sat(c))

with offline evaluation [12, 38], but optimizing agreement with
online metrics remains an open challenge.

Also, the above approaches may improve interleaving by remov-
ing some click bias, they still aim to be unbiased rather than pre-
dictive of satisfaction. In this paper, we show how to create an
interleaving evaluation that instead aims to predict the outcome of
an AB experiment for any given AB metric, while maintaining the
sensitivity improvements of interleaving. In particular, we take into
account whether clicks are indicators of success by reimplementing
the classifier learned by Kim et al. [16].

The goal of this paper is also related to prior work on optimiz-
ing the sensitivity of interleaving algorithms, where interleaving
algorithms were learned to be more statistically powerful [37], or
to satisfy given choices about the value of any given preference
observed [23]. In contrast, our work is the first that focuses on
optimizing “correctness” of an interleaving outcome as captured
in terms of agreement with AB metrics, while maintaining high
sensitivity. Our results show that in this way agreement between
interleaving and any given AB metric can be dramatically improved.

3. BACKGROUND
In this section we describe the most commonly used AB metrics,

and the interleaved evaluation approach that we build on in the
remainder of this paper. We will take the presented AB metrics as
the ground truth user satisfaction metrics we aim to predict with
much smaller interleaving samples.

3.1 Common AB Metrics
As described above, a large number of AB metrics have been

developed. Most have in common that clicks are the basic observed
interaction with users, thus this is our focus too. We note that many
common AB metrics can be categorized as taking into account par-
ticular attributes of clicking behavior. The most common attributes
include (i) estimating clicks as indicative of satisfaction or not, (ii)
giving particular importance to clicks at the top position of Web
search results, and (iii) measuring the time spent by the user prior
to clicking. Consequently, we implement the following AB metrics.
An overview is given in Table 1.
3.1.1 Click-through Rate

Click-through rate (CTR) is often used as a baseline AB metric,
e.g., in [1]. It can be implemented as the average number of clicks
per search result page, or as the fraction of pages for which there are
any clicks. We follow the second definition. We use |Cq| to denote
the number of clicks for query q. The indicator function 1(·) is used
and evaluates to 1 when the argument is true, and 0 otherwise.
3.1.2 Click Rank

It was noted by [1] that of all the AB metrics studied in a large
scale comparison of AB tests and interleaving evaluation, the AB
metric that most reliably agreed with known experimental outcomes
was the fraction of search results pages with a click at the top
position. As such, we also use two types of metrics: Those which

only consider clicks at the top position (named @1) and those that
consider all clicks (the others). In equations we use rankA(c) to
denote the rank of click c in the results returned by ranker A.

3.1.3 User Satisfaction
While clicks are often directly interpreted as a user preference,

they are known to be both noisy and biased. To remedy the noise,
a common approach is to only consider satisfied clicks (here: SAT
clicks) with dwell time above a fixed cutoff of 30 seconds [36].

However, only using time as a threshold for satisfaction is prob-
lematic as some queries naturally require users to spend more time
than others. Recently, Kim et al. [16] showed that taking more user
signals into account leads to better prediction of user satisfaction.
For this paper, we partially re-implement the SAT click classifier
from that work.Our classifier uses the dwell time, document read-
ability, document topic and query topic features suggested by Kim
et al. [16]. In particular, the features beyond dwell time are assumed
to partially explain the dwell time necessary for a given query and
document. We combine these features using quantile regression
forests [21]. The model is trained to predict the probability of a
SAT click, given user signals. It can be turned into a classifier by
selecting a decision threshold, e.g., based on the distribution over
classes in the training set. With training on approximately 3,000
manually labeled clicks, our classifier obtains an accuracy of 77%,
which is marginally lower than the 81% reported by Kim et al. [16].
The major difference between the implementations is that we do not
represent dwell time distributions per topic. Instead, we use raw
dwell time values directly as input for our classifier.

The output of this SAT click classifier is used throughout this pa-
per. For a given click c, we define sat(c) as the estimated probability
that c indicates user satisfaction. For succinctness, we also define
is_sat(c) := true whenever sat(c) > 0.8 (the threshold based on
the class distribution). Half of the AB metrics we consider use the
is_sat(c) signal to filter out clicks c that are not deemed satisfied
by our classifier. These AB metrics are marked with subscript S.

3.1.4 Time To Click
Another commonly used metric is the time that the user spends on

the search result page before clicking a document. As time spent is
the key cost to search system users, reducing this time is considered
good (e.g. [1]). Our metrics that measure time to click are marked
with subscript T . In equations we use time(c) to denote the time
from the user issuing the query until the click c.

Combining all possible choices of AB metrics leads to the eight
metrics shown in Table 1. The first four (AB, AB@1, ABS ,
ABS@1) focus on the presence of a click, while the other four
capture the time to the first click of a particular type, if such a click
occurred (ABT , ABT @1, ABT,S and ABT,S@1).

3.2 Interleaving
In this paper, we use Team Draft Interleaving (TDI) [24] as our

interleaving baseline. This algorithm is most frequently used in



Algorithm 1 Team-Draft Interleaving [24]
1: Input: Rankings A = (a1, a2, . . . ) and B = (b1, b2, . . . )
2: Init: L← ();∼ TeamA← ∅;∼ TeamB ← ∅; i← 1
3: while A[i] = B[i] do . . . . . . . . . . . . . . . . . . . . . . . .common prefix
4: L← L+A[i] . . . . . append result to L without assigning teams
5: i← i+ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . increment i
6: while (∃i : A[i] 6∈ L) ∧ (∃j : B[j] 6∈ L) do not at end of A or B
7: if (|TeamA| < |TeamB|) ∨

((|TeamA| = |TeamB|) ∧ (RandBit() = 1)) then
8: k ← mini{i : A[i] 6∈ L} . . . . . . top result in A not yet in L

9: L← L+A[k] . . . . . . . . . . . . . . . . . . . . . . . . . . append it to L
10: TeamA← TeamA ∪ {A[k]} . . . . . . . clicks credited to A

11: else
12: k ← mini{i : B[i] 6∈L} . . . . . . . top result in B not yet in L

13: L← L+B[k] . . . . . . . . . . . . . . . . . . . . . . . . . append it to L
14: TeamB ← TeamB ∪ {B[k]} . . . . . . .clicks credited to B

15: Output: Interleaved ranking L, TeamA, TeamB

practice, and has been empirically shown to be equally effective as
Balanced Interleaving [1, 14].

Given an incoming user query, TDI produces a result list as
follows. The algorithm takes as input two ranked lists of documents
for the query, A = (a1, a2, . . .) and B = (b1, b2, . . .). The goal is
to produce a combined ranking L = (l1, l2, . . .). This is done in the
same way that sports teams may be constructed in a friendly match,
with two team captains taking turns picking players for their team.

The algorithm is detailed in Algorithm 1. It initializes the inter-
leaved list L with any common prefix of A and B, if this exists. For
this common prefix, no teams are assigned, as no preferences should
be inferred.1 Then, on line 6, the algorithm continues in phases by
adding two documents to L: In each phase, on line 7, we first flip an
unbiased coin to decide if rankerA orB is given priority. Assuming
that ranker A is given priority, A appends its highest ranked result
that is not already in L to L (i.e. l1 ← a1 in the first instance), and
assigns it to TeamA. Then, B selects its first result not already
present in L (in the first instance either b1 if it differs from a1, and
b2 otherwise) and again appends it to L and TeamB. This repeats
until all results in A or B have been consumed or until L reaches
the desired length.

The interleaved rankingL is then shown to the user. Any clicks on
documents contributed by A (in TeamA) are credited to A. Clicks
on documents in TeamB are credited to B. Over an observed
sample of interleaving observations, a preference for A or B is then
inferred based on which ranker was credited with more clicks. The
final outcome of the interleaving comparison experiment can thus
be written as:

OTDI(A,B) = sign(
1

|Q|
∑
q∈Q

|Cq
A| − |C

q
B |), (1)

where Q is the set of all query impressions (non-unique queries
issued by all users during the interleaving experiment), and Cq

X

denotes the set of clicks observed in TeamX on q.
We use TDI as our baseline throughout this paper. In addition, all

our approaches use the interleaving (i.e., list construction) algorithm
shown in Algorithm 1 and described above. Our focus is on replac-
ing the credit function (Eq., 1). We will introduce our methods in
Section 5.

4. DATA ANALYSIS
Many of the AB user satisfaction methods that we introduced in

Section 3.1 have been developed recently. Therefore, it is not clear
1This was shown to substantially increase sensitivity of the simpler
original TDI algorithm [1, 22].

to what degree interleaved comparisons agree with these metrics. In
this section, we conduct an empirical analysis of the sensitivity and
directional agreement between these AB metrics and TDI. We start
by describing the data we use in this section and in the remainder
of this paper (4.1). We then propose a new approach for comparing
the sensitivity (in terms of statistical power) of AB and TDI com-
parisons, and use this method to analyze the relative power of the
different approaches (4.2). This also lets us estimate the probability
of agreement between approaches at varying sample sizes. The
results of our analysis are presented in Section 4.3. They motivate
why an improved approach is needed, as discussed in Section 4.4.

4.1 Data
For our experiments, we start with a set of 38 pairs of rankers for

which both an AB comparison, and a TDI interleaving comparison
were performed. All ranker comparisons reflect changes that are
typical for the normal development of a commercial web search
engine. They consist of changes to the ranking function used to
order web search results, in terms of parameters of the ranking
function, modified ranking features, and so forth. The comparisons
were all run in the first 9 months of 2014, in the United States locale.
The experimental unit consisted of assigning users to individual
ranking conditions uniformly at random.

The AB and interleaving comparisons were run for varying dura-
tions, usually around one week for AB comparisons and around 4
days for interleaving comparisons. Additionally, AB comparisons
were typically run with higher volume, resulting in about 80 times
more queries for each AB comparison than each interleaving com-
parison. In all, this data consists of over 3 billion clicks. Depending
on the experiment, between 2% and 30% of interleaved queries with
clicks had at least one click on a result assigned to one of the teams.

4.2 Estimating Power and Agreement
We now propose an approach for assessing the relative power

of AB measurement compared to TDI, and further show how this
approach can be used to estimate agreement between approaches at
varying sample sizes.

As described earlier, AB tests perform controlled experiments.
Users are exposed to either treatment or control result rankings, ren-
dering this a between subject experiment. In interleaving, each user
is exposed to results from both rankers, rendering them within sub-
ject experiments. We can measure the importance of this difference
using a power computation, which tells us how many independent
samples we need to obtain a statistically significant outcome for
each approach, as follows.

We start with AB comparisons, following the standard methodol-
ogy described in [17]: Two independent samples are collected by
exposing a random fraction of users to treatment A, and another to
treatment B. An AB metric is used to assess each sample, and we are
interested in determining whether there is a statistically significant
difference between A and B in terms of this metric. This question is
typically addressed using a two-sample t-test.

Power of AB comparisons. Assume that the target metric is approx-
imately normally distributed (this is reasonable due to the central
limit theorem), with means µA and µB and equal variance σAB .
Formally, we have A ∼ N (µA, σAB) and B ∼ N (µB , σAB).
We are interested in detecting whether µA

?
= µB . This gives us

the null hypothesis H0 : µA = µB and the alternative hypothesis
H1 : µA 6= µB . We also choose the probability of Type-I error we
are willing to accept, e.g., α = 0.05. The t-test then assumes that
H0 is true and assesses the probability of observing differences of
at least the observed sample difference |Â− B̂| under H0.

While Type-I error is controlled in the significance test, here we



are interested in the power (also called sensitivity) of the conducted
test. Assuming H1 is actually true, power quantifies the probability
of correctly rejecting H0. It is affected by the true effect size
δAB = (µA − µB)/

√
1/nA + 1/nBσ, where nA, nB are the

respective sample sizes.
We can assess the power of a test as follows. Under H1 (samples

are drawn from normal distributions with means µA 6= µB and
shared variance σAB) we observe sampleA,B and compute the test

statistic [19]: t(A,B) = (Ā−B̄)√
1

nA
+ 1

nB

/
√∑

(Ai−Ā)2+
∑

(Bj−B̄)2

vAB
.

The test statistic t(A,B) follows a non-central t distribution Ā −
B̄ ∼ nct(δAB , vAB), with non-centrality parameter δAB (the effect
size, from above) and degrees of freedom vAB = nA + nB − 2.
H0 is correctly rejected when t(A,B) ≥ C0. The power of the

test is the probability P (reject(H0)|H1) = P (t(A,B) ≥ C0)
and can be computed (solved using linear programming2):

P (t(A,B) ≥ C0) =

∫ ∞
C0

nct(δAB , vAB)dy. (2)

Power of interleaving comparisons. The analysis for interleav-
ing is closely related, but relies on the typically more powerful
(one-sample) paired t-test. Instead of independent samples, we now
observe a single sample I of paired comparisons, assumed to be nor-
mally distributed with I ∼ N (µI , σI). We want to detect whether
µI

?
= 0 with H0 : µI = 0 and H1 : µI 6= 0. Given µI and sample

size nI , the test statistic t(I) follows a non-central t-distribution
t(I) ∼ nct(δI , vI) with non-centrality parameter δI =

√
nµI/σI

and vI = nI − 1 degrees of freedom. The power calculation is3

P (t(I) ≥ C0) =

∫ ∞
C0

nct(δI , vI)dy. (3)

Probability of agreement. Given Equations (2) and (3), we can
compute the probability of comparison outcomes at varying sample
sizes. For example, the probability that an AB comparison with
parameters µA, µB , σAB : µA − µB > 0 agrees with the true
AB outcome at sample sizes nA, nB is computed by plugging into
Equation (2) and computing P (Ā − B̄ > 0) = P (t(A,B) > 0).
Correspondingly, the probability that an interleaving comparison
with parameters µI , σI would agree with the same outcome is com-
puted using Equation (3) so that P (Ī > 0) = P (t(I) > 0).

4.3 Data Analysis Results
We apply the analysis methodology described above to the set

of 38 ranking algorithms described in Section 4.1. In Figure 1 we
show the power obtained using AB comparisons and interleaving
comparisons at increasing sample sizes. We see that on average
across the set of 38 experiments, 80% power4 with AB experiments
is obtained with between 107 and 108 observations (queries). On
the other hand, the same power is obtained with between 105 and
106 observations with TDI. This difference of approximately two
orders of magnitude is also consistent with previous work [1].

Having presented the relative power of the approaches, we re-
turn to the key question: Do the metrics agree on which ranker is
better? We use the method developed in the previous section to
estimate agreement between AB and interleaving comparisons, and

2We use the python implementation statsmodels.stats.
power.tt_ind_solve_power, http://statsmodels.
sourceforge.net/
3We use the python implementation statsmodels.stats.
power.tt_solve_power.
4Controlled experiments are typically designed for 80-95% power.
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Figure 1: Power as a function of sample size, computed using
the observed effect sizes for 38 interleaving and AB compar-
isons, averaged over all comparisons (assuming two-sided t-test
with p = 0.05, as described in Section 4.2).

Table 2: Agreement of AB metrics on our data. We measure
agreement with TDI, with a sub-sample of AB of the same size
as the TDI comparison, and with a sub-sample of AB with
the same size as the original AB comparison (this is an upper-
bound on agreement for each AB metric). For TDI, values in
bold are statically significantly different from 50%.

self-agreement

AB Metric TDI ABSub ABUp

AB 0.63 0.63 0.94
AB@1 0.71 0.62 0.95
ABS 0.71 0.61 0.96
ABS@1 0.76 0.60 0.95
ABT 0.53 0.58 0.91
ABT @1 0.45 0.59 0.90
ABT,S 0.47 0.59 0.88
ABT,S@1 0.42 0.60 0.87

AB comparisons at varying sample sizes. The first column in Table 2
summarizes the agreement rates of TDI and AB metrics. We see
that agreement rates are generally low. This agreement of TDI with
AB metrics is a baseline that we want to improve upon in this paper.
In the results in Section 6, this baseline is referred to as TDI .

Recall that our goal is to predict the outcome of a large AB com-
parison given the much smaller amount of data used in interleaving
comparisons. As such, another reasonable baseline is to assess how
well a smaller AB comparison predicts the outcome of the full AB
comparison. We can answer this question using the methodology
for assessing the probability of agreement developed above (Section
4.2), by plugging in the observed effect sizes and setting the sample
size to that of the corresponding interleaving comparison. This our
second baseline, which we refer to as ABSub. Results are given in
the second column of Table 2. Generally, these AB metrics com-
puted on small subsamples have low agreement with the experiment
outcome given the complete data, of around 60%.

We also compute an upper bound of agreement with AB metrics
by actually measuring how well a subsample of the same size as the
full AB, ABUp, would agree with itself, using the same methodol-
ogy. This can be seen as a measure of how predictable a metric is.
The last column of Table 2 shows that the time-based metrics are
much less predictable than count-based AB metrics. Given these
lower and upper bounds on AB agreement with itself, we can restate
our goal as follows. We aim to augment TDI to improve over the
above two baselines (TDI and ABSub) and to close the gap with
the upper bound ABUp.

http://statsmodels.sourceforge.net/
http://statsmodels.sourceforge.net/


Table 3: Definitions for interleaving credit functions. The δ(CA) functions give credit to ranker A based on attributes of the clicked
documents assigned to ranker A. The last row actually computes a combination of credit functions above it.

Credit functions designed to match AB metrics (cf., 5.2) δ(CA) =

TDI Number of clicks on ranker A |CA|
TDI@1 Number of clicks on documents that A ranks first

∑
c∈CA

1(rankA(c) = 1)

TDIS Number of SAT clicked documents contributed by A
∑

c∈CA
1(is_sat(c))

TDIS@1 Number of SAT clicked document ranked first by A
∑

c∈CA
1(is_sat(c)) · 1(rankA(c) = 1)

TDIT Time to clicks on documents contributed by A
∑

c∈CA
time(c)

TDIT @1 Time to clicks on documents ranked first by A
∑

c∈CA
1(rankA(c) = 1) · time(c)

TDIT,S Time to SAT clicks on documents contributed by A
∑

c∈CA
1(is_sat(c)) · time(c)

TDIT,S@1 Time to SAT clicks on documents ranked first by A
∑

c∈CA
1(rankA(c) = 1) · 1(is_sat(c)) · time(c)

Parameterized credit functions (cf., 5.3) δ(CA) =

TDItsS , ts ∈ {0.1..0.9} Number of clicks with SAT probability≥ ts, on documents
contributed by ranker A

∑
c∈CA

1(sat(c) ≥ ts)

TDItsT,S , ts ∈ {0.1..0.9} Time to clicks with SAT probability ≥ ts, on documents
contributed by ranker A ≥ ts

∑
c∈CA

1(sat(c) ≥ ts) · time(c)

Combined credit functions (cf., 5.4) δ(CA) =

TDIwT,S , wi ∈ {0.1..0.9}Weighted combination of the credit functions above
∑

wi∈w wiδi(CA)

4.4 Implications
Summarizing the results above motivates the rest of this work:

AB metrics have been developed guided by real analysis of user
behavior. Yet they usually have relatively low power. Interleaving
has much higher power, but low agreement with most AB metrics,
being blind to richer behavioral signals. Thus, we aim to optimize
interleaving to increase agreement with AB metrics, while maintain-
ing the statistical power of the technique. The AB metric is treated
as the gold standard to which interleaving must compare itself.

As noted in the Section 2, this goal is similar to that addressed by
[37]. However, they only focused on optimizing sensitivity, while
we focus on optimizing correctness in the sense of agreeing with
AB metrics. It is similar to [12, 38] in the sense that our method can
reduce click bias in interleaved comparisons, however the earlier
work only considered agreement with offline metrics.

5. METHOD
In this section we describe how to incorporate user signals into

TDI comparisons, to increase agreement with AB metrics. We first
formalize the notion of interleaving credit in a way that allows us to
incorporate user signals (Section 5.1). We then design a set of credit
functions that closely match user satisfaction AB metrics (Section
5.2). Because agreement between interleaving and AB metrics is
not necessarily maximized by mirroring AB parameters, we then in-
troduce parameterized credit functions (Section 5.3), and combined
credit functions (Section 5.4) designed to be automatically tuned
to maximize agreement. Finally, our methodology for maximizing
agreement is detailed in Section 5.5.

5.1 Formalizing Interleaving Credit
Formally, for all pairs of rankers A and B, we aim to find an

interleaving method that agrees with the sign of the differences in
AB metrics that we found in an AB comparison. The sign of such
a difference should be interpreted as a preference for either A, B,
or neither. We denote such a preference, the comparison outcome
OAB , of the metric AB as:

OAB(A,B) = sign(AB(A)−AB(B)). (4)

Instances of AB metrics are click through rate, clicks at one, and
time to click (see Table 1 for details).

As opposed to AB metrics, interleaving methods are directly de-
fined on pairs of rankers. Following the same notation, the outcome
of an interleaving comparison with TDI can thus be denoted as:

OTDI(A,B) = sign(TDI(A,B)). (5)

Interleaving preferences, when using TDI (cf., Section 3.2), come
from differences between credit acquired by each ranker:

TDI(A,B) =
1

|Q|
∑
q∈Q

δ(Cq
A)− δ(Cq

B). (6)

Here, Q is a set of query impressions and δ(CA) a credit function
that attributes credit to ranker A depending on user interactions with
the result list. Next, we introduce a new set of credit functions that
is designed to mirror the use of user signals in AB comparisons.

5.2 Matching AB Credit
We now present instantiations of credit functions δ(CA) designed

to match the AB metrics in Section 3.1. All our interleaving credit
functions are defined on a set of clicks assigned to a ranker (e.g.,
for ranker A these are c ∈ CA), for a query impression. Clicks are
associated with user signals.

The details of our matching credit functions are given in the first
part of Table 3. The following signals are used:

• |CA| the number of clicks for rankerA for a query impression.
See Section 3.1.1.
• rankA(c) is the rank of the clicked document in the original

ranking A (before interleaving: i.e., rankers A and B can have
different documents at rank 1). See Section 3.1.2 for the a
description of this signal as used in AB metrics.
• is_sat(c) is a binary indicator that is true if the SAT classifier

identified the click as SAT click, see Section 3.1.3 for details
on the SAT click classifier.
• sat(c) is the probability of the click being a SAT click. Again,

details are in Section 3.1.3.



• time(c) is the time from query submission to the observed
click, in seconds. See Section 3.1.4 for the corresponding AB
signal.

Previously proposed interleaved comparison methods, such as
TDI, use the credit function TDI shown in the table. It can be
interpreted as a close match to the AB metric AB, because it esti-
mates whether a given ranker would have obtained a click in an AB
comparison.

The credit functions TDI@1, TDIS , and TDIS@1 are designed
to closely match the AB metrics AB@1, ABS , and ABS@1. For
clicks at rank one, we consider whether a clicked document would
have been placed first by the original ranker, as this reflects the most
accurately whether the ranker would be likely to receive a click at
the top rank in an AB comparison. For SAT clicks, we use the same
classifier as for our AB comparisons above, as in Section 3.1.3.

The four time-based credit functions TDIT , TDIT @1, TDIT,S ,
and TDIT,S@1 are designed to match the time-based AB metrics.
E.g., TDIT reflects the AB metric ABT , however we use the av-
erage time to click for a ranker, as it tends to be more robust than
the time to the first click. The remaining three metrics implement
filters on which clicks contribute, parallel to the click-based metrics
described above.

5.3 Parameterized Credit Functions
Next, we propose a second set of interleaving credit functions

that can be parameterized to automatically calibrate them to max-
imize agreement with AB metrics. Effectively calibrating these
credit functions would allow users of interleaved comparisons to
automatically identify credit functions that maximize agreement
with arbitrary AB metrics.

For instance, we define a credit function that captures user satis-
faction. We filter out clicks c that have a low satisfaction probability
sat(c) by thresholding this probability using a threshold ts. This
leads to the following credit function:

δ(CA)ts =
∑
c∈CA

1(sat(c) > ts). (7)

The threshold, ts in this case, of such a parametrized credit function
can be tuned to maximize agreement with AB metrics. We define
two such parameterized functions, the first click-based, as shown
above, the second time-based. We list our parameterized credit
functions in the second part of Table 3.

5.4 Combined Credit Functions
Now that we have several credit functions, as listed in the first two

sections of Table 3, we can take it a step further and start combining
them. We propose to combine the interleaving credit functions in a
weighted linear combination:

TDIw(A,B) =
1

|Q|
∑
q∈Q

∑
wi∈w

wiδi(C
q
A)− wiδi(C

q
B), (8)

where w denotes the weights used to combine several credit func-
tions. We thus define the interleaving preference as a weighted sum
of credit functions we introduced earlier.

In the original TDI, we have a single credit function as defined in
the first row of Table 3 and a weight vector of w = (1).

5.5 Maximizing Agreement with AB Metrics
We return to our initial goal, to optimize the agreement between

interleaving metrics and AB metrics, and present a method for au-
tomatically tuning interleaving credit functions to maximize agree-
ment with a given AB metric. Together with the parameterized

Algorithm 2 Maximizing Agreement
1: Input: Ranker pairs C = ((A1, B1), . . . , (An, Bn)), AB
2: Init: test agreements A← [], weights W ← []
3: for all n ≤ N do . . . . . . . . . . . . . . . . . . . . . . . . . . . . N repetitions
4: S ← sample_with_rep(C, |C|) . bootstrap sample, train set

5: ŵ← arg max
w

∑
(A,B)∈S

1(Ow
TDI(A,B) = OAB(A,B))

6: O ← C \ S . . . . . . . . . . . . . . . . . . . . ‘out of bag’ sample, test set

7: A← A+
1

|O|
∑

(A,B)∈O

1(Oŵ
TDI(A,B) = OAB(A,B))

8: W ←W + ŵ . . . . . . . . . . . . . . . . . . . . . . . append weight vector
9: Output: weights mean(W ), agreement mean(A)

and combined credit functions presented above, this allows tuning
interleaving to an arbitrary AB metric. Our approach treats the AB
metric as a black box presented by an experimenter who presumably
selected this metric for some reason.

The weights introduced in Equation (8) can be optimized such
that we maximize the agreement:

ŵ = arg max
w

∑
(A,B)∈S

1(Ow
TDI(A,B) = OAB(A,B)). (9)

I.e., we maximize the number of times the outcome of an AB com-
parison agrees with the outcome of an interleaving comparison for
all of ranker comparisons S.

To implement and validate the maximization step in Equation (9),
we use the bootstrap procedure presented in Algorithm 2. This
takes as input a set C of pairs of rankers that have been compared
(such as those described in described in Section 4.1) and an AB
metric such as AB. For N repetitions, a bootstrap sample S of
size |C| is taken from C. On this sample we compute ŵ using
Equation (9) for all w we consider. We validate the agreement that
this weight vector ŵ gives on unseen data and we report the mean ŵ
and mean agreement. In our experiments N = 100 and we consider
w = (wi ∈ {0, 0.01 . . . 1}, . . . , wn).

We use the same procedure to optimize the parameters ts of the
parameterized credit functions described in Section 5.3. Instead
of computing the argmax on Line 5 over all w, we compute the
optimal t̂s:

t̂s = arg max
ts

∑
(A,B)∈S

1(Ots
TDI(A,B) = OAB(A,B)). (10)

6. EXPERIMENTS AND RESULTS
In Section 4, we examined the agreement between TDI and AB

metrics, and the sensitivity of both types of comparison methods.
Depending on the AB metric, agreement ranges from random up to
75%, while sensitivity of TDI is on average two orders of magnitude
higher than that of AB metrics. In this section we evaluate our
new interleaving credit functions. First, we analyze what level of
agreement can be reached by matching interleaving credit functions
with the parameters of AB metrics. Second, we evaluate our param-
eterized credit functions, and our method for optimizing agreement
with AB metrics.

6.1 Matching AB Credit
In our first set of experiments, we evaluate our matching credit

functions. These are designed to match the parameters of the AB
metric that we wish to optimize, as explained in Section 5.2. For
instance, for the target AB metric ABS we classify observed clicks
on interleaving impressions using the same classifier used by the AB
comparison, and only assign interleaving credit for satisfied clicks.



Table 4: Agreement of matching interleaving credit functions (designed to match AB metric parameters). Boldface indicates values
significantly different from 0.5 (two-sided binomial test, p = 0.05). On the diagonal are metrics for which parameters are designed to
match (gray background). Best agreement per AB metric is underlined.

Interleaving Credit
AB Metric TDI TDI@1 TDIS TDIS@1 TDIT TDIT @1 TDIT,S TDIT,S@1

AB 0.63 0.66 0.84 0.66 0.61 0.61 0.58 0.53
AB@1 0.71 0.68 0.76 0.63 0.63 0.47 0.55 0.55
ABS 0.71 0.68 0.87 0.68 0.68 0.58 0.61 0.55
ABS@1 0.76 0.68 0.82 0.63 0.74 0.53 0.61 0.50
ABT 0.53 0.55 0.47 0.55 0.71 0.55 0.68 0.58
ABT @1 0.45 0.47 0.45 0.58 0.63 0.58 0.61 0.61
ABT,S 0.47 0.55 0.53 0.71 0.66 0.66 0.58 0.53
ABT,S@1 0.42 0.50 0.53 0.66 0.61 0.66 0.58 0.58

101 102 103 104 105 106 107 108 109 1010 1011 1012

Number of samples
0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r TDI

TDI@1
TDIS
TDIS@1
TDIT
TDIT@1
TDIT ,S

TDIT ,S@1

Figure 2: Power for TDI with matching credit functions (assum-
ing two-sided t-test with p = 0.05, as described in Section 4.2).
The black line denotes ABS , the AB metric with most power.
As we study 8 AB metrics, this gives rise to 8 possible variants of
TDI with matching credit functions.

Table 4 shows the agreement between each AB metric and each
variant of TDI. In the first column, we see the agreement between
baseline TDI and each AB metric, computing each as previously
defined. The lowest agreement is observed between the original
TDI and the AB metricABT,S@1, at 42%. The highest agreement
is observed between TDIS and the AB metric it is designed to opti-
mize (ABS), with 87%. Given the small sample of 38 comparisons,
only the agreement rates above 68% are statistically significantly
different from random agreement, and are shown in bold in the table.
These compare favorably with typical inter-judge agreement rates
in offline evaluations of around 65% [32], and with the bounds on
AB self-agreement ABSub, ABUp in Table 2.

We note that using different credit functions often increases agree-
ment between AB metrics and TDI, but interestingly the maximal
agreement is often not seen when the AB metric matches the credit
function used for interleaving. This can be observed by comparing
the metrics that match in terms of their parameters (indicated by the
gray cells in Table 4), to the ones that achieved highest agreement
(underlined). For example, agreement with ABS is maximized by
TDIS , but agreement with ABT,S is maximized by TDIS@1. A
reason for this is the interplay between bias and noise. By more
aggressively removing noise in the interleaving comparison (in this
case, by only considering SAT clicks at the top position), we may
increase agreement with related AB metrics, even those for which
there is bias due to a slight mismatch between the interleaving and
AB metric.

Our results show that agreement between interleaving and AB
comparisons can be substantially improved by matching interleav-
ing credit parameters to those of the target AB metrics. We also

need to ensure that in doing so, we do not decrease the sensitivity of
interleaving. Intuitively, removing observations (e.g., clicks beyond
the first position) may reduce sensitivity. On the other hand, if the
removed observations are noisy, the interleaving signal may actu-
ally become more discriminative, and sensitivity can be increased.
Figure 2 shows the power for TDI with replaced scoring functions.
We see that TDI with matching credit functions typically has lower
power than standard TDI. In particular, sensitivity decreases for
time-based metrics, which may also explain the relatively lower
agreement between time-based interleaving credit functions and AB
metrics. However, the power of these variants of TDI is still 1 to 2
orders of magnitude larger than the power of the AB metric with
most power. Sensitivity is increased by TDIS , the credit function
that also shows highest agreement. This result indicates that fo-
cusing interleaving credit on low-noise clicks is a very promising
way to achieve both high sensitivity and good agreement with user
satisfaction metrics.

The results of the analysis in this section motivate the next set of
questions. Given a target AB metric, what is the best credit function
that should be applied to TDI? Just as the correct credit function
may not be the same as the target AB metric, the parameters of the
credit function may need to be tuned. And, once we automatically
optimize the parameters of interleaving credit functions, to what
degree do optimal values generalize to unseen ranker comparisons?
We address these questions next.

6.2 Parameterized Credit Functions
One way to increase agreement of TDI with AB metrics is to take

an interleaving credit function with parameters (see Section 5.3)
and tune the parameters towards a given AB metric. For instance,
previous work has shown that it is possible to estimate the probability
that a given click indicates user satisfaction [16]. While an AB
metric such as ABS must incorporate a threshold below which
clicks are not considered to indicate user satisfaction, the threshold
for TDI need not be the same. Rather, we can find the optimal
threshold ts for TDItsS at which to consider a click as satisfied.
This optimization procedure might lead to reduced variance, and
thereby increase agreement with AB metrics.

We use the maximization procedure described in Section 5.5 and
in particular Equation (10) to find an optimal threshold for each AB
metric we consider. Note that, as opposed to experiments in the
previous section, here we obtain averages over N = 100 iterations
of the maximization procedure, instead of averages over the 38
comparisons. This allows us to perform statistical significance
testing using a one-sample two-sided student’s t-test. In our result
table we indicate statistically significant improvements over TDI
by N (p < 0.01) (losses H). Also, as opposed to before, we now



Table 5: Agreement for TDItsS , TDItsT,S , and TDIwT,S . Parameters ts and w are chosen to maximize agreement with the AB metrics
on held out data. Higher agreement than TDI is bold. Stat. sig. improvements over TDI are indicated by N (p < 0.01) (losses H).

(a) TDItsS (b) TDItsT,S (c) TDIwT,S

AB Metric TDI Agreement ts Agreement ts Agreement w1 w2

AB 0.63 0.82 N 0.76 (0.09) 0.53 H 0.52 (0.40) 0.84 N 1.00 (0.00) 0.00 (0.00)
AB@1 0.71 0.79 N 0.74 (0.19) 0.54 H 0.40 (0.32) 0.75 N 1.00 (0.00) 0.05 (0.22)
ABS 0.71 0.84 N 0.76 (0.09) 0.48 H 0.29 (0.31) 0.85 N 1.00 (0.00) 0.00 (0.00)
ABS@1 0.76 0.84 N 0.68 (0.24) 0.48 H 0.37 (0.32) 0.82 N 1.00 (0.00) 0.02 (0.14)
ABT 0.53 0.47 H 0.67 (0.28) 0.67 N 0.54 (0.27) 0.68 N 0.99 (0.11) 0.90 (0.30)
ABT @1 0.45 0.49 N 0.57 (0.35) 0.62 N 0.61 (0.34) 0.56 N 0.96 (0.22) 0.79 (0.41)
ABT,S 0.47 0.46 0.46 (0.38) 0.61 N 0.41 (0.30) 0.63 N 0.91 (0.30) 0.88 (0.33)
ABT,S@1 0.42 0.52 N 0.30 (0.39) 0.62 N 0.42 (0.34) 0.50 N 0.06 (0.65) 0.25 (0.41)
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Figure 3: Power for (a) TDItsS , (b) TDItsT,S , and (c) TDIwT,S . Parameters ts and w maximize agreement with AB metrics (in
brackets) on held out data, see Table 5. The upper black line denotes TDI , the lower ABS , the AB metric with most power.
measure how far our optimized credit functions generalize to unseen
data.

The results for maximizing agreement of TDItsS are shown in
column (a) in Table 5. In the table, we see substantially and signfi-
cantly increased agreement rates of up to 84% for the AB metrics
that only depend on clicks, reducing disagreement rates by between
6% and 20%. E.g. in Table 5, for ts = 0.76 in the first row means
that clicks predicted to have less than a 76% chance of indicating
satisfaction are ignored. This causes 58% of clicks to be ignored
on average. We see that across many folds, the optimal value is
between 0.67 and 0.85, and we found that the precise value does not
impact the outcome significantly.

Interestingly, the optimal threshold at which clicks should be
included in the score calculation are around ts = 0.75, which is
lower than the ts = 0.8 which is used in the ABS and ABS@1
AB metrics. It is equally interesting that learning such a threshold
changes agreement between TDI and time-based AB metrics much
less but generally decreases it, and selects a ts threshold that is much
lower.

In contrast, if we take the credit function TDItsT,S , that does take
time as well as satisfaction into account and if we learn the same
threshold ts, then in column (b) of Table 5 we see a very different
result than before in column (a). Now, the agreement between TDI
and AB metrics that incorporate time increases substantially and
significantly (from 42-53% to 61-67%, a net disagreement error
reduction of between 4% and 22%) while disagreement increases
significantly with the non-time based metrics. Now, for the time
based metrics we also outperform the baseline ABSub which uses
as many query impressions as TDI does (see Table 2).

These changes in agreement exhibit the same pattern as seen when
tuning a simpler threshold on satisfaction (as reported in column
(a) in Table 5). In particular, the deterioration in agreement from
tuning a feature that does not represent a measure included in the
AB metric reduces agreement. We hypothesize that this is due
to the maximization procedure failing to find a optimal value that
generalizes well to unseen data, as the target AB metrics that are
based only on clicks have low correlation with the credit function we

are optimizing. These results motivate our next approach: optimize
a combination of interleaving credit functions that best matches a
given AB metric.

But first, we look at what happens to the power of TDI when we
optimize parameters of a credit function. Results are in Figures 3 (a)
and 3 (b). We see that again, the power for our adjust interleaving
credit functions lies between standard TDI and the AB metric with
the highest power. In other words, we increased agreement while
maintaining an advantage in terms of power over AB comparisons.

6.3 Combined Credit Functions
As we saw in the previous section and in columns (a) and (b)

in Table 5, for different types of AB metrics we need different
interleaving credit functions to increase agreement. Optimizing a
single parameter (ts) for a single credit function proved not powerful
enough. In this section we use the maximization procedure described
in Section 5.5 and in particular Equation (9) to find weights w
for a weighted combination of already optimized credit functions
that maximizes agreement. That is, we take for each AB metric
the threshold ts that in the previous section maximized agreement.
Note that we only optimize a weighted combination of two credit
functions, namely, we learn w1 for TDI t̂sS and w2 TDI

t̂s
T,S . The

intuition behind this simple model is that it should be able to capture
attributes of each of the AB metrics.

We obtain the results presented in column (c) in Table 5. Where in
the previous section, in columns (a) and (b) in Table 5, we obtained
average agreement of 65% and 57% respectively, now we obtain
an average agreement of 70%. Agreement with all individual AB
metrics increased significantly from 42-76% to 50-85%. Interest-
ingly, we see that the weights w1 and w2 that are the result of the
optimization procedure are mostly selecting (w2 ≈ 0) the TDI t̂sS
credit function for the click based AB metrics. While the time based
AB metrics additionally put weight (w2 � 0) on the time based
credit function TDI t̂sT,S .

Lastly, turning to the sensitivity, in Figure 3 (c) we see that also
for the combined credit functions sensitivity stayed 1 to 2 orders of
magnitude higher compared to AB metrics.



7. CONCLUSION
In this paper, we showed how to optimize interleaving outcomes

to agree better with a given target AB metric, while maintaining
the sensitivity advantage of interleaved comparisons over AB tests.
We started by analyzing the agreement of team draft interleaving
(TDI) with a set of 8 AB metrics based on combinations of click
count, click positions, satisfied clicks, and time to click signals. To
enable this analysis, we introduced a method for comparing AB and
interleaved comparison metrics in terms of power and agreement
across varying sample sizes. We found that, while TDI is very
sensitive, its agreement with user satisfaction AB metrics on realistic
ranking evaluations is low, from random up to 76%.

Results of this analysis motivated our approach. We proposed to
replace the default credit function of TDI with novel credit functions
that take richer user signals into account. In particular, we designed
sets of credit functions that (1) match the parameters of AB met-
rics, (2) are parameterized and (3) combine (parameterized) credit
functions. To automatically tune the parameters of these last credit
functions, we further introduced a bootstrapping algorithm that can
automatically maximize agreement with arbitrary AB metrics.

Our empirical results, obtained on 38 paired experiments with a
total of 3 billion clicks, showed that our approach can substantially
and significantly increase agreement with AB metrics. In particular,
learning a combination of parameterized credit functions resulted in
agreement of up to 85%, improving the agreement with AB metrics
by up to 22% (almost halving these disagreements). We also showed
that the sensitivity for all our adapted versions of TDI is still 1 to 2
orders of magnitude higher than that of AB metrics.

The most important implication of our results is that it enables,
for the first time, the integration of rich user satisfaction signals with
highly sensitive interleaved comparison methods. This will dramati-
cally reduce the required sample sizes, and therefore cost, of such
online evaluations. Opportunities for future work include the devel-
opment of yet more sophisticated (learned) credit functions, e.g., to
take into account session-level or task-level features. Furthermore,
more accurate prediction of AB outcomes may be possible by addi-
tionally taking into account the magnitude and uncertainty of AB
metrics of individual experiments. Finally, it would be interesting
to see where disagreements between interleaving and AB outcomes
are highest; for what queries and for what kind of comparisons.
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