
Mobile Device Interaction with Force Sensing

James Scott, Lorna M. Brown�, and Mike Molloy

Microsoft Research, Cambridge, UK

Abstract. We propose a new type of input for mobile devices by sens-
ing forces applied by users to device casings. Deformation of the devices
is not necessary for such “force gestures” to be detectable. Our proto-
type implementation augments an ultra-mobile PC (UMPC) to detect
twisting and bending forces. We describe examples of interactions using
these forces, employing twisting to perform application switching (alt-
tab) and interpreting bending as page-down/up. We present a user study
exploring users’ abilities to reliably apply twisting and bending forces to
various degrees, and draw implications from this study for future force-
based interfaces.

Keywords: Force, sensors, mobile devices, interaction.

1 Introduction

Many pervasive computing applications rely on mobile devices. To give three ex-
amples, such devices can be used in the control of intelligent environments, they
can be used to locate users and objects and provide location-aware applications,
and they can be used for communications to support applications requiring per-
vasive connectivity. Thus, improving users’ experience of interacting with mobile
devices is a key ingredient in pervasive computing.

For mobile devices such as tablet or slate PCs, ultra-mobile PCs (UMPCs),
PDAs, or new smart phones such as the iPhone, much of the surface of the device
is devoted to the screen. The trend for increasing screen sizes is continuing, since
larger screens facilitate better information presentation. However, since users
also want their devices to be small, less and less space is available for physical
controls such as numeric or alphanumeric keys, buttons, jog dials, etc. While
these devices typically have touch-sensitive screens, dedicating a portion of the
screen to an input interface reduces the available screen area for information
presentation.

In contrast, the sensing of physical forces made by the hands grasping a mobile
device can provide an input mechanism for devices without taking up screen
space or requiring external controls mounted on the surface area of on the device.
By sensing forces such as bending or twisting that users apply to the device casing
itself, input can be provided to the device’s operating system or applications.
The body of the device does not need to actually bend for forces to be detectable,
so this sensing mechanism is compatible with today’s rigid devices.
� Now at Vodafone.

H. Tokuda et al. (Eds.): Pervasive 2009, LNCS 5538, pp. 133–150, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

134 J. Scott, L.M. Brown, and M. Molloy

In this paper, we describe the concept of force sensing as a user input. We
detail our prototype implementation based on a UMPC using thin load sensors.
We present examples of device interactions where force sensing may prove useful,
namely to provide functionality normally associated with shortcut keys such
as alt-tab and page-down/up on mobile devices without keyboards. We then
describe our user study into the capability of users to control the forces applied
to devices, allowing us to evaluate the usefulness of force sensing as an input
mechanism.

2 Related Work

In the past decade there has been a move to consider new interaction techniques for
mobile devices beyond the use of physical or virtual on-off buttons, including work
using accelerometers, e.g.Rekimoto [1] andHinckley et al. [2], or inertial sensing [3].

The Gummi concept and prototype [4] propose a vision for a fully flexible
mobile computer. The elastic deformation of such a device can be used to interact
with it, e.g. to zoom in and out by bending it like a lens. Our work differs in that
users do not actually bend the device significantly when they apply forces to it,
allowing for simpler integration with current device designs which incorporate
many rigid components.

Previous work on force sensing for rigid devices uses direct pressure (see Fig-
ure 1, top left), whereas our work explores several different types of forces such
as bending and twisting (Figure 1, bottom left and right). Researchers at Xerox
PARC used pressure sensors [5] both as a physical “scroll bar” so that squeez-
ing 2/3 of the way along the top edge would navigate 2/3 of the way along
a document, and to detect which side a user was gripping a device to inform
“handedness-aware applications”. Direct pressure input has also been explored
in the context of a touchpad [6] or touch screen [7]. Jeong et al. [8] also used
direct pressure applied to a force sensor mounted on a 3D mouse to control
movement speed in virtual environments.

A number of input devices have been proposed which use force sensing in
various ways but do not have any computing or display electronics. The Haptic
media controller by Maclean et al. [9] uses orthogonal force sensing (using strain
gauges) to sense forces applied to different faces of a thumb wheel in addition
to rotation of the wheel to provide richer interactions. The haptic rotary knob
by Snibbe et al. [10], which can sense the rotational forces applied by a user.
TWEND [11] and Bookisheet [12] are flexible input peripherals which can sense
the way they are bent.

Another related field of work is that of Tangible User Interfaces [13], which
if defined widely can include any type of physical UI such as force sensing. In
Fishkin’s terminology [14], the current focus of our work is on “fully embodied”
interaction in that the output is shown on the device itself, in contrast to the
input-only systems above. However, our ideas could in future also be applied to
augment passive objects while retaining their rigidity, e.g. to provide computer
inputs for the control of intelligent environments.

Mobile Device Interaction with Force Sensing 135

Fig. 1. Four force gestures that can be sensed

3 Sensing User-Applied Forces

Physical forces that users apply to device casings can be sensed and used as
input for applications or the operating system running on such devices, with
graphical, audible, haptic or other types of feedback provided to the user. Such
forces can be detected with a variety of sensors including load sensors which
sense direct mechanical compression between parts of the casing, strain gauges
which sense the elastic stretching of the case due to the force applied, or pressure
sensors sensing gaseous or liquid pressure in a channel in the device.

Users can apply various types of force, with four examples shown in Figure 1.
Each force can be applied in two directions (the way indicated by the arrows
and the opposite directions), and can be applied to a variable degree. Forces can
be applied along different axes (e.g. vertically as well as horizontally) and to
different parts of a device. Thus, force sensing can potentially be a rich source of
input information and is not limited to the simple presence or absence of force.
In this work, we focus on two of the forces shown, namely bending and twisting.

Unlike with flexible technologies such as Gummi, detecting force does not re-
quire that the device must actually bend significantly, or be articulated around
a joint. The device can be essentially rigid, with only very small elastic deforma-
tions due to the applied pressure. This is crucial as it allows force sensing to be
deployed in many types of device which rely on current-day components such as
LCD screens or circuit boards which are rigid, and avoids the need to use less
mature or more expensive flexible technologies in a device.

3.1 Qualities of Force Sensing Input

Force sensing has some intrinsic qualities that make it an interesting alternative to
other forms of input. With force sensing, the user interacts with the casing of the
device, turning an otherwise passive component that just holds the device together
into an active input surface. Forces applied to the casing are mechanically trans-
mitted through it and parts attached to it. Therefore, unlike for physical controls

136 J. Scott, L.M. Brown, and M. Molloy

such as keys or dials, force sensors do not necessarily need to be located at the ex-
ternal surface of the device in the part of the device that the user holds, and device
cases can be made with fewer holes for physical switches, which can facilitate more
robust, more easily manufactured, and smaller form factor devices. Force sensing
shares this advantage with accelerometer-based input and similar sensors.

Another advantage of force sensing over other physical controls is the ability to
apply an input in many places or ways. When physical controls are present on a
device, their positions lead to an implied orientation and grip for the device, while
with force sensing, the device can be easily made more symmetric, allowing a device
to avoid having an intrinsic “right way up” which may be useful in some scenarios.

We can also compare force sensing with other types of input such as touch
or multi-touch input on the screen, the use of accelerometers or other physical
sensors, etc. Compared to shaking or tilting the device or using a touch screen,
force sensing allows the screen to be kept at the most natural viewing angle,
unobscured by a finger or stylus. During force sensing input the device can be
essentially stationary, thus inputs can be made subtly which may be useful in
some situations (e.g. during a meeting).

One potential disadvantage of force sensing is its ability to be triggered acci-
dentally, e.g. while the device is being carried or handled. This is in common with
many other input mechanisms for mobile devices, such as accelerometer-based,
touch-based or even button-based. With force sensing, it may be necessary to use
a “hold” button or “keylock” key-combination for users to indicate that input
(including force sensing input) should be ignored.

Another disadvantage of force sensing may be in the need for using two hands,
which is the mode of operation of our prototype based on a UMPC (see be-
low). One can envision one-handed use of force sensing, e.g. using another ob-
ject/surface as an anchor, or using a device small enough to both support and
apply forces to in a single hand. However, the desirability and usability of this
for input remain questions for future work; advantages such as the ability to
keep the screen at the correct viewing angle and unobscured may be lost.

A further issue with force sensing is in the effects of repeated shearing and
bending forces that the user applies to the device over time. While this may
result in higher mechanical demands on the casing of the device, there is also an
advantage to the device being “aware” of its physical environment, so that it can
warn the user (e.g. audibly) if excess forces are applied, either during force-based
user interface actions or otherwise (e.g. placing heavy books on the device).

Although this section compares force sensing to other forms of input, it is impor-
tant to note that an either-or decision is not implied, as many input mechanisms
can be built in to the same device. Mobile computers are general-purpose toolswith
many applications, and thus the inputs required are complex. By employing multi-
ple input mechanisms with separate functionalities, we can avoid overloading any
one input mechanism. The best choice of input mechanism at any given time will
depend on the application, the user, the usage scenario, the environment/context
of use, and so on. Thus, we present force sensing as a mechanism to add to the
richness of input on a device rather than a way of replacing another input.

Mobile Device Interaction with Force Sensing 137

Fig. 2. Force sensing prototype using augmented UMPC

4 Prototype Force Sensing Hardware

We built a prototype force sensing device by augmenting a Samsung Q1 UMPC
with a custom additional casing incorporating four force sensors, as shown in
Figure 2. We used an additional casing rather than an integrated solution for
feasibility reasons; UMPCs are tightly packed with components and have pre-
cisely fitted cases, making it difficult to incorporate force sensing hardware inter-
nally. However, in an device with force sensing designed in from the beginning,
an additional casing would be unnecessary. We pilot-tested both strain gauges
(which detect tension forces) and pressure sensors (which detect compression
forces) and found the latter to be easier to obtain useful data from and easier to
integrate in the mechanical construction of a first prototype.

The additional casing comprises an exterior acrylic section made of layers
cut with a laser cutter, screwed together and hand-filed to round the corners.
This tightly surrounds a central hand-cut metal layer (magnesium alloy) which
is rigidly attached to the body of the UMPC at the same screw points that hold
the top and bottom half of the UMPC casing together.

For the force sensors we use four FlexiForce 0-25 lb load sensors from TekScan
Inc. These are small (the sensing area is 10mm wide and can be made smaller)
and thin (0.2mm) making them simple to incorporate into the prototype, and
in future work to incorporate into a redesigned device casing. The force sensors
are placed tightly between “tongues” on the metal layer and the acrylic layers
(using blobs of epoxy to make sure of a good fit), two on each side of the metal
layer, at the top and bottom. The placement of the force sensors and shape of
the tongues and casing are dictated by the forces that we intended to sense; this
prototype was built to sense “twist” and “bend” gestures (see Figure 2).

The Flexiforce sensors lower their electrical resistance from over 30 MΩ when
no pressure is applied to around 200 kΩ when squeezed hard between a thumb
and finger. We apply a voltage to one contact of each Flexiforce sensor and
measure the voltage at the other, with a 1 MΩ pull-down resistor. These voltages
are measured in the prototype using analog to digital converters in a Phidgets

138 J. Scott, L.M. Brown, and M. Molloy

Analog Interface Kit which is attached to the back of the UMPC (as shown in
Figure 2) and software on the UMPC queries the force values through a USB
interface.

4.1 Determining Force Gestures Using Sensors

With load sensors we can detect only compression forces. We could, of course,
preload a sensor so we can detect release from compression, or even load a sensor
to halfway to detect both compression and release of compression. However,
initial experiments showed this to be unreliable since friction causes the “zero”
point to move each time the device is manipulated. Therefore, the prototype
design senses only compression.

When building the casing described above we had intended to sense each of
the four gestures (twisting and bending in two directions each) using the sum of
inputs from two force sensors. Twisting in each direction should compress two
diagonally opposite sensors, while bending should compress either the two front
sensors or the two back sensors. The initial gesture magnitude calculations were
therefore done according to the following rules:

TwistClockwise = BottomBack + TopFront

TwistAnticlockwise = BottomFront + TopBack

BendTowards = TopBack + BottomBack

BendAway = TopFront + BottomFront

where TwistClockwise etc are the gesture magnitudes and TopFront etc indi-
cate the raw sensor values (which rise with increased pressure). However, this
did not work as well as expected. After some experimentation, we found that
pressure was concentrated at the edges of the metal tongues and not centred on
the tongues where we had placed the force sensors. We derived a more optimal
positioning whereby the top tongue’s two sensors were placed at the side edge
of the tongue, to best detect the bending gestures, while the bottom tongue’s
two sensors were placed at the top and bottom edges of the tongue, to best
detect twist gestures. Thus, the second term in each of the equations above was
removed. However, while this greatly improved the true positive rate, it did not
eliminate false positives, i.e. the sensors also sometimes trigger when the wrong
gesture is applied, e.g. the BottomFront sensor indicating TwistAnticlockwise
would sometimes trigger for BendAway. We therefore further modified the rules,
such that when two sensors trigger, the gesture detected corresponds to the
one compatible with these two sensors, and the other gesture is “damped” by
subtraction. This results in reliable performance in practise.

TwistClockwise = BottomBack - TopBack

TwistAnticlockwise = BottomFront - TopFront

BendTowards = TopBack - BottomFront

BendAway = TopFront - BottomBack

4.2 Interaction Using Force Sensing

Force sensing is a general input mechanism providing a number of scalar values
that can be mapped onto any desired functionality. To illustrate the potential

Mobile Device Interaction with Force Sensing 139

Fig. 3. Two examples of force-based interactions: (left) bending for page turning and
(right) twisting for application-switching, with visual feedback

usefulness of force sensing, we built demo software showing how it can be used
for one class of interactions, that of replacing “shortcut keys”.

Our motivation for considering this example compelling is as follows. Mobile
devices such as UMPCs are capable of running applications that desktop PCs
run, but have reduced I/O capabilities. One of the implications of this is that the
convenient shortcut keys that users may normally employ with a full keyboard
may be unusable on a UMPC since they keys are not present or difficult to use
quickly due to their size or placement. Force-based interactions are an interesting
alternative, taking advantage of the fact that UMPCs are designed to be gripped
by the hands during use.

Page-Down and Alt-Tab Force-Based Interactions. We implemented two
force-based shortcut key interactions on the UMPC, as shown in Figure 3. The
bend action is used to indicate “page down”, and the twist action is used to
change foreground application (i.e. “alt-tab” under Windows). With both ges-
tures we provide an accompanying visual feedback which mimics a real-life inter-
action with the application window or document in question. For page-down, we
provide visual feedback as if the user was flicking through a book (by bending
the book and allowing pages to flick across). Thus, right hand page appears to
flip up and over to the left hand side. For the inverse action, page-up, we use
the inverse force, i.e. the user bends the device as if to see the backs of their
hands. For alt-tab, we twist the window vertically from one side of the screen
to the other, revealing the virtual reverse side of the window, which is the next
window. The windows are kept in a persistent order, unlike alt-tab which puts
least-recently-used first. This is so a user can go forwards or backwards from
the window they are on in a consistent fashion. Users receive differing visual
feedback with the twist direction matching the direction of the force applied.

For prototyping purposes we implemented these gestures as mock-ups rather
than integrating them into a running system. They are implemented using C#
with .NET 3.5 and the Windows Presentation Foundation (WPF) library and we
use Windows Vista as the UMPC’s operating system. A single 3D polygon mesh

140 J. Scott, L.M. Brown, and M. Molloy

is used for alt-tab, while two meshes are used for the page-down visualisation (the
current page and the next page). We have since integrated the alt-tab gesture
with Windows Vista so that twisting causes a screenshot of the current and next
applications to be captured and the animation to be run with those images.

For both interactions, we have currently implemented the interaction by
changing a single page/application at a time, and the user can control how
far along the animation the system goes by applying a harder or softer force.
If the user applies sufficient force to move to the end of the animation (when
the new page/application is fully revealed) this is committed and as the force
returns to zero the new page/application will continue to be visible. If the user
releases the force before they have made the animation reach the end, then the
animation goes back to the beginning as the user releases the force, without any
persistent change, i.e. the same page/application is in view. This allows users to
apply small forces to see the potential effects (e.g. seeing which window would
appear when twisting that way) before committing with a larger force.

The UMPCs were used for a demo event at Microsoft where hundreds of novice
users tried it. Many were able to use the device with no explicit instruction (by
watching it being used by someone else, or reading instructions on a poster),
and nearly all users were able to operate it with a few seconds of coaching.

Other Interactions. We do not claim that the mappings chosen are in any
way “best”, merely that they illustrate the potential of force sensing as an input.
Other mappings could, of course, be used instead, e.g. twisting could be used to
indicate “cut” and bending “paste”.

We did choose the mappings based on the ease of providing visual feedback
that has strong physical analogies with the applied forces, as we expected (and
found during demos) that this made force-based interaction intuitive to discover
through observation, and easy to remember and to use. Such physical analogies
are popular choices in past work, e.g. Harrison’s page turning gesture [5]. This
analogous feedback could be extended to other interaction mappings, e.g. twist
for “cut” could involve the cut text twisting in on itself, and bend for “paste”
could involve the the document visually bending and splitting to make space
for the pasted text to appear at the cursor. Again, we expect that the visual
mapping will assist users in remembering which force performs which UI action.

Another modification to be explored is that, instead of different force levels
being used to move through the animation of a single change, different force
levels can indicate levels of change or rates of change. For example, the bend
force could cause pages to flip over at a slow rate if applied weakly (such that
one page could be flipped at a time), or at a quick rate if a strong force was
applied, giving the effect of rapidly flipping through a book.

Aside from visual feedback, the current prototype provides a click sound when
enough force is applied to reach the end of the animation and lock in the new
view. Richer audio cues can be incorporated in future, e.g. cues which also match
the physical action taken such as a crumpling sound or page-flicking sound.
Haptic feedback can also be used, particularly since the user is known to be
gripping the device, furthering the analogy with physical movements.

Mobile Device Interaction with Force Sensing 141

While these are all exciting possibilities, before looking further into them,
in this paper we wish to address more basic questions: how repeatably and
accurately can a number of users apply forces such as bending and twisting to
devices. A study of these issues is the subject of the rest of this paper.

5 User Study

We conducted a quantitative user study to assess the capabilities of force sensing
as an input method using our prototype. We chose this form of study so as to
gain understanding of the fundamental capabilities of users to apply forces in a
controlled fashion to mobile devices, thus informing the design of force sensing
interfaces. The study aimed to assess the number of distinct levels of force that
a user could reliably “hit”, and the speed at which they could do this, for both
twisting and bending forces. The methodology was based on that used by Ramos
et al. [15]. A screenshot of the software used in the study is shown in Figure 4.

5.1 Participants

Twenty participants were recruited from within our research lab for a between
groups study with two conditions: in the Bend condition users used the bend
gesture to interact with the device, while in the Twist condition they used the
twist gesture. Ten participants (5 male, 5 female) were assigned to the Twist con-
dition and ten (6 male, 4 female) to the Bend condition. 80% of the participants
were aged 25-35, the remaining participants divided between the following age
groups: 20-24 (1 participant), 36-40 (1 participant) and 50-55 (2 participants).
All but one of the participants were right handed. Around half of the partici-
pants were researchers and the others came from a range of job roles, including
IT support, human resources and marketing. Participants were each given a box
of chocolates worth around 5 GBP in thanks for their time.

While conducting the tests, participants were provided with an office chair
with adjustable arms and a desk and could choose to sit in any comfortable

Fig. 4. Screenshot of software for user trials

142 J. Scott, L.M. Brown, and M. Molloy

way. Some participants leaned on the desk, some sat back in the chair, and some
changed positions during the trial.

5.2 Methodology

Each user trial consisted of a familiarization phase, a training phase, and an
experimental phase. After the first and second phases, device calibration was
undertaken allowing the user to choose their preferred maximum force values to
allow for differences in individual strength.

In the familiarization phase, we explained the operation of the device, demon-
strated the force gesture being studied, and asked the users to experiment with
applying forces for a period lasting a minimum of two minutes. Whilst applying
forces, users received feedback in the form of a visual “force cursor”, represent-
ing the magnitude of the force applied, moving along a horizontal bar. At zero
force, the cursor was in the middle of the bar, and the user moved the cursor in
either direction by twisting/bending one way or the other. The mapping from
twisting/bending to left/right was decided by observing the most natural map-
ping in pilot tests; this was not a source of confusion to the participants after
the training phase.

During the calibration that followed, users configured the device with chosen
maximum forces by applying a comfortable but hard force in each direction
a minimum of three times. We considered the maximum force a user to be
comfortable with to be an individual personalization setting (akin to mouse
sensitivity).

Both the training and test phases involved the same overall structure of blocks
of tests, with the training phase simply allowing the user to become accustomed
to the type of tests being applied. This method was based on the discrete task
variation of the Fitts’ Law task [16]. A block of tests involved a set number
of targets on the screen uniformly filling the space between zero force and the
maximum configured force in each direction (i.e. for “two target” tests there
were actually two targets in each direction). Figure 4 illustrates a test with four
targets on each side (i.e. targets with the same width but varying “amplitudes”
in the normal Fitts’ Law terminology). For each test, the user was first made
to keep the device at zero force for two seconds which left the cursor at the
home position in the centre of the screen. Then, a single target was coloured
purple and the user was asked to move the force cursor as quickly as possible
into the coloured target, and then to hold the force cursor inside the target for
2 seconds. To aid the user, the currently-aimed-at target was highlighted with a
yellow glow. After the target was acquired (i.e. the force cursor was kept inside
the target for 2 continuous seconds), the purple marking disappeared and the
user was instructed on screen to return the force to zero before the next target
appeared.

We deliberately chose not to include a button for users to click on a tar-
get as soon as they enter it, for three main reasons. First, because the trial
was conducted using a two-handed grip, adding a button would add a significant

Mobile Device Interaction with Force Sensing 143

new demand on one of the hands applying forces. Second, with force sensing
users can change the position and grip style of their hands, so it was not clear
where a button would be placed. Third, we wanted to explore the potential for
button-free interaction with force sensing.

In a given block of tests, users had to acquire each target precisely once,
though the targets were presented in random order during a block. During a
block of tests the targets were presented immediately one after the other (with
a minimum 2-second zero-force period in between). After each block of tests was
completed, the user was offered the chance to take a break, and had to press a
touch screen button to continue to the next block.

During the training phase there were four blocks with 2, 4, 6 and then 8
targets in each direction, allowing the user to become accustomed to the system
through progressively harder tasks. After the training phase, the user was given
the opportunity to recalibrate the force maximums.

During the main experiment phase, the number of targets in a given block
was varied between 2, 3, 4, 5, 6, 7 and 8 targets in each direction, with blocks
for each number of targets appearing three times, once during each of three
cycles. During the cycles, the order of number of targets was randomized. In
total, each participant was asked to acquire 210 targets during the experiment
phase, covering a wide range of widths and amplitudes. The total duration of
the study was around 50 minutes per participant.

In case of major difficulty in acquiring a target, after 10 seconds a “skip” touch
screen button became available for the user along with on-screen instructions
that they could skip the target if they were finding it too difficult.

6 Results from the User Study

In all the times presented below, the final two seconds are not included, i.e. the
time is reported until the target is entered by the force cursor at the beginning
of the two continuous seconds required for the test to be complete.

One participant’s data has been excluded from the Bend condition as the
prototype broke during the trial and it had to be aborted. The prototype was
subsequently repaired before further trials. Therefore the data reported herein
is only for the remaining nine participants.

Analysis of the data for the Twist condition showed outlier behaviour for
one participant (average times more than two standard deviations worse than
the mean for the majority of targets). Therefore, this data has been excluded
to allow analysis of the behavior of the non-outlying participants. At the same
time, we must conclude that some users may have difficulty using a force sensing
system and may be more comfortable with another input mechanism.

In this section we present the raw results and statistical analysis, discussing
their implications in the next section. We do not present or analyse data from the
training phase except where specially noted. While we offered users the ability
to skip targets, in a total of 3780 experiment-phase targets presented to the 18
non-excluded participants, only 10 were skipped (0.3%).

144 J. Scott, L.M. Brown, and M. Molloy

Fig. 5. Effect of participant experience on target acquisition time

6.1 Learning Effects and Effects of Gesture Type

Figure 5 shows the effect of the cycle on the average target acquisition time (cycle
0 is the training phase). Two within groups ANOVAs (analyses of variance)
were carried out, one for each gesture type, to investigate whether there was
any significant learning effect. For the Bend gesture, the ANOVA showed no
significant difference between cycles. The ANOVA for the twist gesture, on the
other hand, showed a significant effect of cycle (F(3,24)=7.09, p<0.01). Post-hoc
Tukey tests showed that there was a significant difference (p<0.01) between the
training cycle and cycles 2 and 3.

Excluding the training phase, the mean target acquisition time (across all
targets) was 1.6 seconds for Bend and 3 seconds for Twist. A between groups
ANOVA showed that the average time was significantly faster for the bend ges-
ture F(1,16)=14.34, p<0.01).

6.2 Effect of Number of Targets/Target Width

Figure 6 shows the effect of number of targets on the average target acquisition
time, with error bars indicating the standard deviation for variation between
participants. Since targets in a given block of tests filled the whole force bar,
the number of targets is inversely proportional to the width of each target. Note
that in the figures and discussion, we describe the number of targets in each
direction, i.e. there are twice as many targets on the screen.

The graph shows that, for both conditions, the average target acquisition
time increased as the number of targets increased (and width decreased). Two
within-group ANOVAs were carried out, one for each gesture. These showed sig-
nificant effects of number of targets on performance for both gestures (for Bend,
F(6,160) = 55.11, p<0.01 and for Twist, F(6,160) = 23.06, p<0.01). Post hoc
Tukey tests showed significant (p<0.05) differences between numbers of targets
as follows.

Mobile Device Interaction with Force Sensing 145

Fig. 6. Effect of different numbers of targets on average target acquisition time

For Bend:
2 was significantly faster than 4, 5, 6, 7 and 8
3 was significantly faster than 5, 6, 7 and 8
4 and 5 were significantly faster than 6, 7 and 8
6 and 7 were significantly faster than 8

For Twist:
2 was significantly faster than 4, 5, 6, 7 and 8
3 was significantly faster than 5, 6, 7 and 8
4 and 5 were significantly faster than 7 and 8

6.3 Effects of Target Position

Figure 7 plots the effect of target position, direction, and number of targets in
each direction on target acquisition time. For the Bend condition, overall, the
time taken to acquire a target decreased as the distance increased (although it
can be seen that this effect is less when fewer targets are present). It can be
observed that the most difficult target to acquire was the closest target to the
left of the zero force position. This is borne out by the analysis. Within-groups
ANOVAs were performed for each number of targets and showed that, for every
number of targets except 3 and 4 targets, there was a significant effect of target
position (p<0.05). Post hoc Tukey tests showed that this was due almost entirely
to the first target to the left being significantly slower to acquire than almost all
other targets.

A similar pattern is observed for the Twist condition. The first target to
the left is again the hardest to acquire. The analysis confirms this: individual
ANOVAs for each number of targets showed a significant effect of target position
(p<0.05) for all numbers of targets except when there were only 2 targets. Post
hoc Tukey tests again revealed that, apart from a few other isolated cases, this
result was due to the first target to the left taking significantly longer to acquire

146 J. Scott, L.M. Brown, and M. Molloy

Fig. 7. Target acquisition times for different numbers of targets and target positions.
Note different y axis scales.

Mobile Device Interaction with Force Sensing 147

than almost all other targets. It should be noted that “left” for twist and bend
are two very different gestures.

We also observe an increase in the time taken for the furthest target to the
left in the Twist condition, especially when 5–8 targets are present. However,
ANOVA tests found no significant difference between these points and any other
positions. Nonetheless it is interesting to note that there is a slight difference
between bend and twist for the highest-force targets. Bending remains at the
same level of ease, while twisting hard enough to reach the furthest targets
seems more difficult.

7 Discussion

Our data shows that target acquisition is significantly faster in the Bend condi-
tion than in the Twist condition. The Bend gesture was learned faster, and also
performed better throughout the experiment. There are a number of possible
causes of this difference. Despite designing for stiffness, our prototype deforms
noticeably during bending but much less so for twisting, which may make it
easier for users to apply force in the direction that our force sensors are aligned
with, i.e. the deformation acts as a guide. This deformation also meant that users
may have avoided setting maximum bend force too high for fear of breaking the
prototype, thus making the “far” targets simpler to reach. Twisting performance
improved significantly during the experiment, so it is possible that with everyday
use a user might reach equivalent proficiency in both gestures.

7.1 Fitts’ Law

As Fitts’ Law is applicable to many input devices and its implications affect the
design of user interfaces, we tested its applicability for force sensing. The Fitts’
Law model (Shannon formulation [16]) is expressed as follows, where ID is the
index of difficulty, A is the amplitude or distance to the target and W is the
target width (inversely proportional to the number of targets).

ID = log2(A/W + 1)

If Fitts’ Law were to apply to force-based interfaces, we would expect that
the target acquisition time would increase as the number of targets increased,
and this was borne out by our results. However, Fitts’ Law would also cause us
to expect that target acquisition time would increase as the distance to target
increased. Our data shows that this is not the case: acquisition time does not
increase as distance to target increases, and for the case of the closest-left target
for both gestures, it actually significantly decreases for further away targets.
MacKenzie [16] noted that force-based devices (e.g. isometric joysticks) undergo
negligible limb motion compared to a device like a mouse, and that Fitts’ Law
may be a poor fit for modeling the performance of such devices; our results
confirm that this is true for twisting and bending forces.

148 J. Scott, L.M. Brown, and M. Molloy

7.2 Reaction Time, Movement Time and Jitter

To further understand our results, we looked at a breakdown of target acquisition
time into several stages: reaction time before any movement occurred, movement
time until the target was first entered, and jitter time during which the target
was left and re-entered any number of times before the final entry (when the
force level was held in-target for 2 seconds continuously). Reaction times were
generally low (0.6s for bend, 0.8s for twist) and consistent (they do not change
based on size or position of target). The exceptions to this are for the lowest-
force targets for which reaction times are slightly higher, which can be explained
by the user attempting to apply a very small force, and therefore applying an
undetectably small force to start with. This reinforces the conclusion that small
forces are harder to apply than large forces.

Movement time to first entering a target generally shows a minor increase
as the distance to the target increases. The exception is for the far-left case
in many-target cases of the Twist condition, for which the average time spikes
higher. By observing participants we could see that this was due to participants
sometimes being unable to reach these targets despite applying hard force, and
later finding that they needed to be more precise about the angle at which the
force was applied. This may be eliminated with practise by the user or with a
further refined implementation which is more forgiving with regards to the angle
that the force is applied.

Reaction time plus movement time typically accounts for up to 1 second of
acquisition time for bend targets, and up to 1.5 seconds for twist targets. There-
fore, by examining Figure 7 we can see that jitter time accounts for much of
the acquisition time with 5 targets or more. Unlike other input systems such
as a mouse which requires zero effort to hold in one place, the user must apply
active effort to hold the force in one place for 2 seconds, and errors in keeping a
constant force cause jitter.

We can speculate as to a number of sources of the high jitter time when users
apply low forces for both gestures. The prototype device experiences some elastic
deformation which interferes with sensing at small force levels, however, the fact
that the same result is found for two different force gestures suggests that it is not
a problem with the particular sensor mounting used. Some degree of elasticity is
present in all devices. Another explanation is that, given the users are already
applying a force with their hands to support the weight of the UMPC, it may
be difficult for users to modulate the forces they apply by small amounts while
keeping the UMPC balanced in their hands, and it is easier to apply larger forces
of similar or greater magnitude than the supporting forces.

7.3 Implications for Design of Force-Based Interfaces

A number of implications for the design of interfaces using force sensing can be
drawn out of these results. The bend gesture performs significantly better than
the twist gesture and, therefore, can be used when more targets are required.
Target acquisition time increases as the number of targets increases, so there is

Mobile Device Interaction with Force Sensing 149

a tradeoff between speed and number of targets. Since acquisition time increases
for targets with low force, user interfaces should use avoid the use of such targets,
or use wider targets at low forces.

To avoid jitter time overhead in force sensing based systems, we could explore
adding a “select” mechanism which might be a button, another force gesture
(e.g. a squeezing gesture), or something else. Alternatively, as with our example
use of force sensing for alt-tab and page-down/up, we can make the interactions
threshold-based, therefore eliminating any jitter as the force can immediately go
back to zero after the threshold is reached.

8 Conclusions

Force sensing can be used for user inputs through applying physical forces such
as twist and bend to mobile devices. We described a prototype implementation
using pressure sensors added to a UMPC, and example uses of force sensing
to perform shortcut key functionality that is otherwise missing from mobile
PCs, for application switching (alt-tab) and page turning (page down/up). These
interactions benefit from visual feedback which is related to the physical forces
the user applies, therefore making them easier to learn and use.

We presented a user study into human abilities to apply bending and twisting
forces at certain levels. We found that users performed bending quicker than
twisting, that up to 4-5 separate levels of force were applyable by users without
excess “jitter” in holding the force at that level, and that low levels of force were
more difficult for users to apply than higher levels of force.

This work opens up a rich set of further research into force sensing as an
interaction mechanism. One area of exploration is how best to map force inputs
to user interface actions, for shortcut key replacement or otherwise. Alongside
this it will be useful to investigate how best to integrate visual, audio and haptic
feedback for force-based interaction. Future work can also explore other types of
force sensor and how best to integrate force sensing into mass-produced mobile
devices. Finally, it will be interesting to see how force sensing can be used in
combination with other input types (e.g. touch-based or position/orientation-
based) in order to take best advantage of each mechanism.

References

1. Rekimoto, J.: Tilting operations for small screen interfaces. In: Proceedings of
UIST 1996. ACM Press, New York (1996)

2. Hinckley, K., Pierce, J., Sinclair, M., Horvitz, E.: Sensing techniques for mobile
interaction. In: Proceedings of UIST 2000 (2000)

3. Williamson, J., Murray-Smith, R., Hughes, S.: Shoogle: Excitatory multimodal
interaction on mobile devices. In: Proceedings of CHI 2007. ACM Press, New York
(2007)

4. Schwesig, C., Poupyrev, I., Mori, E.: Gummi: a bendable computer. In: Proceedings
of CHI 2004. ACM Press, New York (2004)

150 J. Scott, L.M. Brown, and M. Molloy

5. Harrison, B.L., Fishkin, K.P., Gujar, A., Mochon, C., Want, R.: Squeeze me, hold
me, tilt me! an exploration of manipulative user interfaces. In: Proceedings of CHI
1998. ACM Press, New York (1998)

6. Rekimoto, J., Schwesig, C.: Presenseii: bi-directional touch and pressure sensing
interactions with tactile feedback. In: Extended Abstracts of CHI 2006. ACM Press,
New York (2006)

7. Mizobuchi, S., Terasaki, S., Keski-Jaskari, T., Nousiainen, J., Ryynanen, M., Sil-
fverberg, M.: Making an impression: force-controlled pen input for handheld de-
vices. In: Extended Abstracts of CHI 2005. ACM Press, New York (2005)

8. Jeong, D.H., Jeon, Y.H., Kim, J.K., Sim, S., Song, C.G.: Force-based velocity
control technique in immersive v. e. In: Proceedings of GRAPHITE 2004. ACM
Press, New York (2004)

9. MacLean, K.E., Shaver, M.J., Pai, D.K.: Handheld haptics: A usb media controller
with force sensing. In: Proceedings of HAPTICS 2002. IEEE, Los Alamitos (2002)

10. Snibbe, S.S., Shaw, R., Roderick, J.: Haptic techniques for media control. In: Pro-
ceedings of UIST 2001. ACM Press, New York (2001)

11. Herkenrath, G., Karrer, T., Borchers, J.: Twend: Twisting and bending as new
interaction gesture in mobile devices. In: Extended Abstracts of CHI 2008. ACM
Press, New York (2008)

12. Watanabe, J., Mochizuki, A., Horry, Y.: Bookisheet: Bendable device for brows-
ing content using the metaphor of leafing through the pages. In: Proceedings of
UbiComp 2008 (2008)

13. Ishii, H., Ullmer, B.: Tangible bits: Towards seamless interfaces between people,
bits and atoms. In: Proceedings of CHI 1997. ACM Press, New York (1997)

14. Fishkin, K.: A taxonomy for and analysis of tangible interfaces. Personal and Ubiq-
uitous Computing 8(5), 347–358 (2004)

15. Ramos, G., Boulos, M., Balakrishnan, R.: Pressure widgets. In: Proceedings of CHI
2004. ACM Press, New York (2004)

16. MacKenzie, I.S.: Movement time prediction in human-computer interfaces. In:
Readings in human-computer interaction, 2nd edn. Kaufmann, San Francisco

	Mobile Device Interaction with Force Sensing
	Introduction
	Related Work
	Sensing User-Applied Forces
	Qualities of Force Sensing Input

	Prototype Force Sensing Hardware
	Determining Force Gestures Using Sensors
	Interaction Using Force Sensing
	Page-Down and Alt-Tab Force-Based Interactions.
	Other Interactions.

	User Study
	Participants
	Methodology

	Results from the User Study
	Learning Effects and Effects of Gesture Type
	Effect of Number of Targets/Target Width
	Effects of Target Position

	Discussion
	Fitts' Law
	Reaction Time, Movement Time and Jitter
	Implications for Design of Force-Based Interfaces

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

