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ABSTRACT

We introduce a direct model for speech recognition that assumes an
unstructured,i.e., flattext output. The flat model allows us to model
arbitrary attributes and dependences of the output. This is different
from the HMMs typically used for speech recognition. This con-
ventional modeling approach is based on sequential data and makes
rigid assumptions on the dependences. HMMs have proven to be
convenient and appropriate for large vocabulary continuous speech
recognition. Our task under consideration, however, is the Windows
Live Search for Mobile (WLS4M) task [1]. This is a cellphone ap-
plication that allows users to interact with web-based information
portals. In particular, the set of valid outputs can be considered dis-
crete and finite (although probably large,i.e., unseen events are an
issue). Hence, a flat direct model lends itself to this task, making the
adding of different knowledge sources and dependences straightfor-
ward and cheap. Usinge.g. HMM posterior, m-gram, and spotter
features, significant improvements over the conventional HMM sys-
tem were observed.

Index Terms— maximum entropy, language model, nearest
neighbor, voice search, speech recognition

1. INTRODUCTION

This work focuses on the definition, implementation, and test of a
flat direct model for the Windows Live Search for Mobile (WLS4M)
task [1]. Here, a flat model refers to a model with a fully unstructured
text output and thus, clearly differs from a sequential and structured
model.

The most prominent example for sequential models are HMMs.
The special structure of HMMs allow for efficient training and search
algorithms,e.g. dynamic programming. Furthermore, the model-
ing on sub-word units makes it possible to recognize unseen events.
One of the great disadvantages of HMMs is the adding of depen-
dences, which is possible only to some limited extent and is asso-
ciated with high modeling and engineering costs. Opposed to the
sequential models, the flat models are completely unstructured mod-
els. All structural information and dependences are encoded by the
features which represent attributes of the flat text outputW . The
differences between a sequential and the flat model are depicted in
Fig. 1. The incorporation of all structural information into the fea-
tures makes this approach very flexible. In particular, adding depen-
dences is straightforward and cheap. Furthermore, the discriminative
formulation better fits the nature of pattern recognition. For the flat
approach, the set of valid outputs is assumed to be discrete and finite,
e.g.the 10M entries of the yellow pages. This is an important differ-
ence from a typical large vocabulary continuous speech recognition
task. In particular, it allows for refined modeling approaches.
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Fig. 1. Conventional HMMvs. flat model. Left: dependence graph
of a conventional HMM for speech recognition, nodes represent vari-
ableswn (word), st (hidden state), andxt (feature), arcs indicate
dependences between variables. Right: flatW with attributes.

Next, we address some of the general concerns about this ap-
proach. First, that the computational complexity is prohibitive be-
cause arbitrary features are allowed. The complexity, however, can
be reduced by suitable search strategies (e.g. rescoring and special
task described above) and a reasonable choice of features. In addi-
tion, the straightforward parallelization of such models also allevi-
ates this problem. Second, it might be not clear how to cope with
unseen events,i.e., eventsW that are not covered by the training
data. An unseen event can be recognized if the associated attributes
have been observed in training. Hence, solving the generalization
problem in this context requires a reasonable granularity of the fea-
tures,e.g.utterancevs.word spotters. Finally, it should be noted that
this approach does not require a number of features proportional to
the number of outputsW . In the ideal case, each attribute divides
the text output space into two,e.g.25 attributes can discriminate up
to 10M events,cf. yellow pages.

Related work can be found in [2] where Dynamic Time Warping
(DTW) spotters and HMM scores are considered in the maximum
entropy framework on an isolated digit recognition task. Single word
detectors are investigated in [3]. The detectors are combined in a
linear fashion. Some of the features used in our work are similar to
discriminative language modeling,e.g. [4, 5, 6].

The remainder of the paper is organized as follows. First, the
flat model is introduced more formally and discussed in more detail
in Sec. 2. The features considered in this work are defined in Sec. 3
and tested in Sec. 4. The paper concludes with a summary on the
different improvements.

2. FLAT MODEL

In this section, the flat model is defined in a more formal way. The
flat model assumes audio inputX and text outputW . The input may
be sequential,X = (x1, x2, . . . ). In contrast to the conventional
structural approach, the outputW is considered an object without
explicit structure, see Fig. 1.



Table 1. A simple feature example.
Φ(W ) Ψ(X) f(W, X)

W containsfood foodhas been spoken word spotter

Table 2. Illustration of generalization issue using word spotters.
Attributes (word spotters)

{chinese, food, mexican, restaurant}⊂W

Seen eventsW Unseen eventsW covered by word spotters
mexican restaurant mexican food

chinese food chinese restaurant

In this work, the flat model is implemented by log-linear models

pΛ(W |X) =
exp(
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The feature functionsfi(W, X) can represent arbitrary attributes
of W and X. Here, the features are assumed to be of the form
f(W, X) = Φ(W )Ψ(X), i.e., can be decomposed into a text fea-
tureΦ(W ) and an acoustic featureΨ(X), see Tab. 1 for an example.
To achieve good generalization, it is important to find features that
are precise (eachX is assigned aW in the extreme case) and general
at the same time. This tradeoff is illustrated in Tab. 2.

The model parameters areΛ = {λi ∈ R}. These parameters are
estimated in the usual way, including L2-norm regularization with
some positive regularization constantC ∈ R

+ (e.g.C = 10−8) [7]
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The optimization of this objective function is performed with
Rprop [8]. For the setups under consideration, convergence is
reached after about 30 iterations. This corresponds to training times
below 20 minutes (without the generation of the spotter features).

3. FEATURES

The features considered in this work consist of a text featureΦ(W )
and an acoustic featureΨ(X), f(W, X) = Φ(W )Ψ(X). The text
features are prior-like and are similar to a discriminative language
model [4, 5, 6]. Observe that pure acoustic features cancel in the pos-
terior pΛ(W |X) (fi(W, X) ≡ fi(X), i.e., constant factor both in
the numerator and denominator in Eq. (1)) and thus, are only effec-
tive in combination with (non-trivial) text features. First, we focus
on the simpler text features and then, investigate the more complex
acoustic (spotter) features.

3.1. “Simple” Features
Them-gram featureΦg(W ) counts the number of occurrences of the
m-gramg in W . The m-grams can be defined on different levels,e.g.
word or letter m-grams. Example: the choiceg = aurant (6-gram
letter) andW = restaurant leads toΦg(W ) = 1. This type of
features is similar to an m-gram language model. Thelength feature
returns the length ofW , Φlength(W ) = |W |.

The rank featureindicates if hypothesisV has rankr, and is
bounded above byrmax: ΨV r(X) = δ(min{rank(V ), rmax}, r),
whereδ(i, j) denotes the Kronecker delta which is one fori = j
and zero otherwise. Similar features were used for the inverse rank.
There were two sources of obtaining hypotheses. The type features
indicate which source the hypothesis comes from. TheHMM poste-
rior featureof hypothesisV is the HMM posterior normalized over

the n-best list,i.e., ΨV (X) = p(V |X). Finally, the DTW feature
for hypothesisV is the DTW distance between this instance and the
closest template. More formally,ΨV (X) = minY ∈TV

{d(X, Y )}
whereTV denotes the set of templates ofV [2, 9]. Keep in mind that
in general,V is not the same as the text outputW , e.g.pronunciation
variants or parts ofW .

The text and acoustic features introduced in the last two sub-
sections can be combined to create more complex features. The
confusion featureis defined as the product of the utterance text
feature (1-gram feature on utterance level) and the rank 1 feature,
fV V ′(W, X) = δ(W, V ) · δ(rank(V ′, 1)). The acoustic dataX
enters this feature implicitly through the rank feature. This feature is
used to describe typical confusion pairs in the n-best lists. Another
example of a combined feature is thespotter feature. The spotter
feature consists of an m-gram text feature and some acoustic feature
to indicate the acoustic confidence of the m-gram under considera-
tion. In the simplest case, this might be the HMM posterior feature.
This ratherad hocchoice shall be replaced with the DTW distance
in the next section to refine the spotter feature.

3.2. Nearest Neighbor DTW Spotters
Next, we focus on Nearest Neighbor (NN) DTW spotter features.
Like other NN approaches and in contrast to other spotter features
(e.g. GMM-based spotters), these features have the advantage to be
completely parameter-free and to show good asymptotic behavior.
Here, we investigate utterance and m-gram word spotters. The utter-
ance spotters detect a certain utterance,i.e., indicate whether some
utterance has been spoken or not. In addition to the detection prob-
lem, m-gram word spotters also need to find the segmentation of the
m-gram in the utterance. But we believe that the coverage of the data
is better for m-gram word spotters.

First, we study the utterance spotters because of their simplic-
ity. Then, the utterance spotters are extended to the m-gram word
spotters. A critical issue in practice is the intrinsically high com-
plexity of the NN DTW spotter features. The complexity arises from
the warped distance calculation and the search of the nearest neigh-
bor(s). The first source of complexity is solved by (variants of) the
dynamic time warping algorithm and the NN search is made feasible
by different optimization strategies discussed in Sec. 3.2.3.

3.2.1. Utterance spotters

The Dynamic Time Warping (DTW) is a common technique to cal-
culate the distance between two real-valued sequences of different
length,Xhyp andXtpl. The warped distance can be efficiently cal-
culated using dynamic programming,e.g. [2, 9]. For the experi-
ments, we used symmetric transition constraints. The complexity of
this algorithm isO(|Xtpl| · |Xhyp|), i.e., it is basically quadratic in
the length of the sequences.

Cheating experiments using the oracle distance

ΨV (X) = 1 − δ(V, transcription)

suggested that m-gram word spotters are probably more suitable for
this task. Note that the absolute difference between the correct and
the competing hypotheses is irrelevant for log-linear models. This is
because the scaling of the feature is compensated by the respective
model parameterλi in Eq. (1).

3.2.2. M-gram word spotters

The approach for m-gram word spotters is similar to that for utter-
ance spotters but with the additional difficulty of determining the
segmentation of the m-gram. The m-gram word segmentation di-
rectly follows from a time alignment, for instance. Here, we imple-
mented an integrated approach that provides both the DTW distance



Table 3. Speed-ups (pruning does not change DTW distances).
Description Fct.

Discard non-speech frames at utterance boundaries2
Consider each 10th template (except for extreme
counts), consider frequently seen spotters 10
Prune DTW partial paths with score worse than
currently best total score, cache distances to avoid
duplicate calculations 10
Compiler intrinsics 2

Table 4. Corpus statistics.
Corpus Period #Utt. Audio data [h]
Train Oct 2007 - Feb 2008 550k ≈350
Dev Mar 2008 - May 2008 310k ≈200
Test Feb 2008 - Mar 2008 21k ≈10

and the optimal segmentation. To avoid an explicit search over all
valid segmentations with complexityO(|Xhyp|

2), we introduce a
slightly modified version of the above DTW distance calculation. A
special feature⋆ is added at the beginning and at the end ofXhyp,
resulting in the augmented input vector(⋆, Xhyp, ⋆). The feature
⋆ has the property to match any other feature,i.e., always provides
zero distance. The complexity of the original algorithm remains un-
changed. As a consequence, an explicit segmentation is only needed
for the templates but not the hypotheses. Furthermore, this inte-
grated approach does not require models for events that we are not
interested in,e.g. non-speech models. It also avoids the combina-
torial complexity that the concatenation of sub-utterance templates
would introduce [9].

3.2.3. Speed-ups

Finally and as pointed out at the beginning of this subsection, several
speed-ups were required to make this approach feasible. On the one
hand, the amount of data to process can be reduced. On the other
hand, the distance calculation can be optimized. Tab. 3 provides
an overview of the different techniques and the respective speed-up
factors used to make the DTW distance calculation faster. With these
speed-ups, the computation time on a single CPU and for all data
amounts to a few days/months for the utterance/m-gram spotters.

4. EXPERIMENTAL RESULTS

The different features defined in the last section were tested on a
voice search task.

4.1. Windows Live Search for Mobile (WLS4M)
The experiments were done on the voice search task WLS4M [1].
This application consists of look-ups of the yellow pages via a
speech interface. The user is prompted with a list of hypotheses and
then, can confirm the input by a click.

The training and test data are the users’ histories from different
periods, see Tab. 4. To reduce text normalization issues, the mangled
text was used,e.g. words were concatenated and the text was all
lower case. Transcriptions were available for the test but not for the
training and development data. For this reason, we used the click hy-
pothesis as the true transcription for the training. Gender-dependent
GHMMs using conventional MFCC features (projected to 36 dimen-
sions by HLDA) served as baseline model. The MFCC features were
projected down to 36 dimensions by HLDA. The GHMM consisted
of about 3,000 senones and 16 Gaussians per mixture. This GHMM
baseline system yields about 40% utterance error rate on the test cor-
pus. The flat models were used for rescoring (no direct indexing) this

Table 5. Test utterance error rates for simple features, ‘6g‘ stands
for ‘6-gram letters‘.

Add. Test Utt. Err. [%]
Setup #Feat. Actual Total
GHMM baseline - 17.4 39.6
+ type + rank + 6g w/o post 50k 15.0 37.8
+ type + rank + 6g w/ post 50k 14.2 37.2

+ HMM posterior 1 13.4 36.7
+ confusion w/ post 100 13.4 36.6
+ length 1 13.5 36.7

Oracle - 0.0 26.9

Table 6. Accuracy and HMM overlap of utterance DTW.
Test Acc. [%] HMM overlap [%]

k=1 72.6 64.8
k=1, scaled 71.9 64.4
k=10,β = 10−4 73.8 65.8
GHMM 71.0 -

baseline in a second pass. There were no parameters to tune on the
development data. So, this data was used as additional training data.

4.2. “Simple” Features

Tab. 5 gives an overview of the relative contributions from the dif-
ferent features in Sec. 3.1. We distinguish between the ‘Total‘ and
the ‘Actual‘ utterance error rate. The first refers to the utterance
error rate on the complete test data. Utterances for which the tran-
scription is not in the list of hypotheses always lead to recognition
errors in rescoring (cf. the oracle error rate of the n-best lists). In
our case, this concerns approximately a fourth of the test utterances.
For this reason, the second error is introduced. It is the utterance
error rate limited to the test utterances that can be correctly recog-
nized in the ideal case,i.e., the oracle error rate on this subset is 0%,
see Tab. 5. The baseline is the conventional GHMM system. The
type and rank features are always included in the flat model to guar-
antee the baseline performance. The effect of these two features,
however, is marginal. On this setup, the confusion features did not
help. Using these features upon the ‘5-gram letters w/post‘ system
(suboptimal, not shown in the tables), reduces the error rate from
15.0% to 14.3%. We conclude from this that the optimal m-gram
letter features are sufficiently general to capture this effect, making
these confusion features redundant.

4.3. Utterance Spotters

First, the quality of the DTW distances is checked. This was done
by rescoring the n-best lists with these DTW distances. Obviously,
this is possible only for utterances that are covered by the spotters.
2,500 spotters cover 54% of the test transcriptions and 16% of the
test hypotheses. For this reason, the utterance accuracies in Tab. 6
are not directly comparable with the above error rates. The num-
ber of nearest neighbors considered for the distance calculation is
denoted byk. Fork > 1, the distance is smoothed over thek near-
est neighbors,

P

Y is k NN exp(−βd(X, Y )). Furthermore, unscaled
(i.e.,no whitening matrix) features were used unless otherwise stated
(‘scaled‘). Our interest is not in the classification using the isolated
DTW distances but rather in using these distances in combination
with other features,e.g. HMM scores. Hence, the overlap of the
DTW with the HMM system is probably more meaningful measure
in this context. The HMM overlap in Tab. 6 is defined to be the prob-
ability that an utterance is correctly recognized both by the HMM



Table 7. Spotter features. First block: utterance spotters on simple
setup,d̂ the denotes normalized distanced/max{|Xtpl|, |Xhyp|}.
Second block: utterance spotters on best setup. Third block: 2-gram
word spotters on best setup.

Setup Add. Test Utt. Err. [%]
#Feat. Actual Total

GHMM baseline - 17.4 39.6
+type+rank+HMM posterior 15 15.8 38.4

+utterances,1 2.5k 14.6 37.6
+utterances,d 14.0 37.1
+utterances,̂d 13.7 36.9

+6-gram letters w/ post 50k 13.6 36.8
+utterances,1 2.5k 13.3 36.6
+utterances,HMM post 13.5 36.7
+utterances,̂d 13.0 36.3

+dev data 12.8 36.2
+2-gram words,1 10k 13.4 36.7
+2-gram words,d 13.2 36.5

+dev data 12.9 36.3

and the DTW system. This overlap corresponds to 4% difference of
the test error rate and reduces to 2% for the best setup in Tab 5.

Next, these DTW distances withk = 1 and without scaling
were used as features on a simple setup without the 6-gram let-
ters, see first block in Tab. 7. The experiments clearly demonstrate
that the effect is not only due to the text feature (‘utterances,1‘)
and that the normalization of the distances helps (‘utterances,d‘
vs. ‘utterances,d/max{|Xtpl|, |Xhyp|}‘). Later experiments have
shown that usingexp(−βd) instead ofd as features performs com-
parably but appears to be less sensitive to the normalization. Similar
experiments were conducted on the best setup from Tab. 5, and are
shown in the second block of Tab. 7. Unfortunately, we used slightly
different 6-gram letter features here such that the results are only
consistent within the subsections. The utterance spotters help on this
much better setup as well although the improvement is significantly
smaller than on the suboptimal setup. In addition, we replaced
the DTW distances with the HMM posteriors (‘utterances,HMM
post‘) to make sure that the same effect cannot be achieved by much
simpler acoustic “confidences”. Finally, we added the data from
the development corpus to the training data (‘+dev data‘). Further
tuning of the DTW setup has not shown any improvements so far,
e.g.using more utterance spotters or considering more than only the
nearest neighbor.

4.4. Cheating Experiments

The cheating experiment using oracle distances in Tab. 8 (‘+3k utter-
ances‘) indicates that the potential for further improvement of these
utterance spotters is limited. To find a more promising setup, we
performed some more cheating experiments, see Tab. 8. Without
regularization and using all utterance spotters of the training data
yields 0% error rate on the training data. However, the generaliza-
tion ability is poor. The results are more balanced including the reg-
ularization term but do not improve over the limited number of utter-
ance spotters. This is why we resorted to sub-utterance spotters,e.g.
m-gram words. These m-gram word spotters seem to have more po-
tential than the utterance spotters. The results for the m-gram word
spotters shown in Tab. 8 are for a trimmed setup.

4.5. M-Gram Word Spotters

First results for m-gram word spotters can be found in Tab. 7. Un-
fortunately, the improvement for m-gram word spotters over the ut-

Table 8. Cheating experiments for spotters.
Setup Train Utt. Test Utt. Err. [%]

Err. [%] Actual Total
type+rank+6g+HMM post 13.1 13.6 36.8
+3k utterances 11.5 12.4 35.9
+ all 150k utt. (w/o reg.) 0.0 13.8 36.9
+10k 2-gram words 9.8 11.2 35.1
+14k 3-gram words 9.3 11.0 34.9

terance spotters observed in the cheating experiments does not carry
over to the real DTW distances. The setup for the m-gram DTW dis-
tances is probably not optimal yet. The error rates also suggest that
the m-gram word spotter features might suffer from overfitting (the
training and test error rates are even more unbalanced for 3-gram
word spotters).

5. SUMMARY

This work is considered a first step towards a flat direct model for
speech recognition. Here, we have tested the effect of combining
m-gram features, HMM scores, DTW spotters, etc. The relative
improvement of these features over the GHMM baseline is 9% on
the test data. Each the text features (i.e., the m-gram features re-
lated with a discriminative language model) and the acoustic features
(HMM posteriors, spotters) contribute approximately 50%. How-
ever, the effect of the DTW spotters is marginal compared with the
best setup without spotters. Finally, it should be repeated that this is
only the first step in this unconstrained framework. Future work will
include the consideration of the flat model in a first pass decoding
rather than in a second pass rescoring. Additional features will be
investigated as well.
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