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ABSTRACT @

We introduce a direct model for speech recognition that assumes an| | Contains 'restaurant'? |

unstructuredi.e., flattext output. The flat model allows us to model
arbitrary attributes and dependences of the output. This is differe
from the HMMs typically used for speech recognition. This con-
ventional modeling approach is based on sequential data and makes
rigid assumptions on the dependences. HMMs have proven to bg
convenient and appropriate for large vocabulary continuous speet

recognition. Our task under consideration, however, is the Windowlgig 1. Conventional HMMvs. flat model. Left: dependence graph
L'Ye seamh for Mobile (WLS4.M) task [1.]' Thisis a cellphone aP" 4t a conventional HMM for speech recognition, nodes represent var
plication that allows users to interact with web-based information

- . . . ablesw,, (word), s; (hidden state), and, (feature), arcs indicate
portals. In particular, the set of valid outputs can be considered dis; . oo . .
crete and finite (although probably larges., unseen events are an dependences between variables. Right:Wiawith attributes.

issue). Hence, a flat direct model lends itself to this task, making the .
adding of different knowledge sources and dependences straightfo  N€Xt, we address some of the general concemns about this ap-
ward and cheap. Using.g. HMM posterior, m-gram, and spotter proach. First, that the computational complexity is prohibitive be-

features, significant improvements over the conventional HMM sys¢@use arbitrary features are allowed. The complexity, however, can
tem were observed. be reduced by suitable search strategéeg.(rescoring and special

task described above) and a reasonable choice of features. In addi-
tion, the straightforward parallelization of such models also allevi-
ates this problem. Second, it might be not clear how to cope with
unseen events,e., eventsi¥ that are not covered by the training

1. INTRODUCTION data. An unseen event can be recognized if the associated attributes
This work focuses on the definition, implementation, and test of énave been observed in training. Hence, solving the generalization
flat direct model for the Windows Live Search for Mobile (WLS4M) problem in this context requires a reasonable granularity of the fea-
task [1]. Here, a flat model refers to a model with a fully unstructuredtures e.g. utterancerss. word spotters. Finally, it should be noted that
text output and thus, clearly differs from a sequential and structurethis approach does not require a number of features proportional to
model. the number of outputdV. In the ideal case, each attribute divides

The most prominent example for sequential models are HMMsthe text output space into twe,g. 25 attributes can discriminate up

The special structure of HMMs allow for efficient training and searchto 10M eventsc¢f. yellow pages.
algorithms,e.g. dynamic programming. Furthermore, the model- Related work can be found in [2] where Dynamic Time Warping
ing on sub-word units makes it possible to recognize unseen evenTW) spotters and HMM scores are considered in the maximum
One of the great disadvantages of HMMs is the adding of deperentropy framework on an isolated digit recognition task. Single word
dences, which is possible only to some limited extent and is ass@letectors are investigated in [3]. The detectors are combined in a
ciated with high modeling and engineering costs. Opposed to thinear fashion. Some of the features used in our work are similar to
sequential models, the flat models are completely unstructured modiscriminative language modeling.g. [4, 5, 6].
els. All structural information and dependences are encoded by the The remainder of the paper is organized as follows. First, the
features which represent attributes of the flat text output The  flat model is introduced more formally and discussed in more detail
differences between a sequential and the flat model are depicted iin Sec. 2. The features considered in this work are defined in Sec. 3
Fig. 1. The incorporation of all structural information into the fea- and tested in Sec. 4. The paper concludes with a summary on the
tures makes this approach very flexible. In particular, adding deperdifferent improvements.
dences is straightforward and cheap. Furthermore, the discriminative
formulation better fits the nature of pattern recognition. For the flat 2. FLAT MODEL
approach, the set of valid outputs is assumed to be discrete and finite, ) . i .
e.g.the 10M entries of the yellow pages. This is an important differ-IN this section, the flat model is defined in a more formal way. The
ence from a typical large vocabulary continuous speech recognitiofiat model assumes audio inplitand text outputy’. The input may

task. In particular, it allows for refined modeling approaches. be sequentialX' = (1, 2,...). In contrast to the conventional
structural approach, the outpUt is considered an object without

*The author performed the work while at Microsoft Research. explicit structure, see Fig. 1.

| Ends with an 's’? |
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the n-best listj.e., Uy (X) = p(V|X). Finally, the DTW feature
for hypothesid/ is the DTW distance between this instance and the
closest template. More formally/y(X) = minyez, {d(X,Y)}
where7y, denotes the set of templatesiof2, 9]. Keep in mind that

in generalV is not the same as the text outpiit, e.g. pronunciation
Table 2. lllustration of generalization issue using word spotters. variants or parts of/’.

Table 1. A simple feature example.
o(W) Y(X) f(W, X)
W containsfood | foodhas been spoken word spotter

Attributes (word spotters) The text and acoustic features introduced in the last two sub-
{chinese, food, mexican, restaur@atWv sections can be combined to create more complex features. The
Seen events/ Unseen events covered by word spotters  confusion features defined as the product of the utterance text
mexican restaurant mexican food feature (1-gram feature on utterance level) and the rank 1 feature,
chinese food chinese restaurant fov (W, X) = 6(W,V) - o(rankV"’, 1)). The acoustic dat&

enters this feature implicitly through the rank feature. This feature is
used to describe typical confusion pairs in the n-best lists. Another
In this work, the flat model is implemented by log-linear modelsexample of a combined feature is thpotter feature The spotter
feature consists of an m-gram text feature and some acoustic feature
exp(3_; Xifi(W, X)) , (1) toindicate the acoustic confidence of the m-gram under considera-
2w exp(30; Aifi( W, X)) tion. In the simplest case, this might be the HMM posterior feature.

) . . This ratherad hocchoice shall be replaced with the DTW distance
The feature functiong; (W, X) can represent arbitrary attributes in the next section to refine the spotter feature.

of W and X. Here, the features are assumed to be of the form
f(W, X) = &(W)¥(X), i.e, can be decomposed into a text fea- 3 2. Nearest Neighbor DTW Spotters

ture@(W) and an acoustllcfe.atu@(?()., see Tab. 1f9r an example. Next, we focus on Nearest Neighbor (NN) DTW spotter features.
To achle_ve good g_enere_lllzatlon, !t Is important to find features thaIt_ike other NN approaches and in contrast to other spotter features
aﬁhprem;e (Sricx _|I§hziisi|ggedﬁ&}/ Iirl]l th?reft(rjceir:?_cgs;) and general (e.g. GMM-based spotters), these features have the advantage to be
a 'I?hsa ed | e St a Zzefs )\gs %e Th ap. 2. " completely parameter-free and to show good asymptotic behavior.
_'N€ mode! parameters afe= { i € }- These parameters are Here, we investigate utterance and m-gram word spotters. The utter-
estlmated. n the usua}l way, including L2J-rnorm regularlg?tlon W'thance spotters detect a certain utteramnee, indicate whether some
some positive regularization constaiite R™ (e.9.C' =107°) [7] utterance has been spoken or not. In addition to the detection prob-
c lem, m-gram word spotters also need to find the segmentation of the
A = ag max {Z log pa(Wa|X,) — 5 Z )\f} , m-gram in the utterance. But we believe that the coverage of the data
n T

pa(W[X)

is better for m-gram word spotters.
First, we study the utterance spotters because of their simplic-
The optimization of this objective function is performed with ity Then, the utterance spotters are extended to the m-gram word
Rprop [8]. For the setups under consideration, convergence igpotters. A critical issue in practice is the intrinsically high com-
reached after about 30 iterations. This corresponds to training tim‘?ﬂexity of the NN DTW spotter features. The complexity arises from
below 20 minutes (without the generation of the spotter features). the warped distance calculation and the search of the nearest neigh-
bor(s). The first source of complexity is solved by (variants of) the
3. FEATURES dynamic time warping algorithm and the NN search is made feasible

The features considered in this work consist of a text feafufié’) D different optimization strategies discussed in Sec. 3.2.3.
and an acoustic featunb(X), f(VV7 X) = (I)(W)\I/(X) The text 3.2.1. Utterance spotters

features are prior-like and are similar to a discriminative language,q Dynamic Time Warping (DTW) is a common technique to cal-
model[4, 5, 6]. Observe that pure acoustic features cancel in € pog|5te the distance between two real-valued sequences of different
terior pa (W|X) (f:(W, X) = fi(X), i.e., constant factor both in jengih ¥, andX,,.. The warped distance can be efficiently cal-
t_he numerator a_nd de_nomlnato_r in Eqg. (1)) and thus,_ are only effecs|ated using dynamic programming,g. [2, 9]. For the experi-

tive in combination with (non-trivial) text features. First, we focus ments, we used symmetric transition constraints. The complexity of

on the simpler text features and then, investigate the more complgyig algorithm isO(| X1p1| - | Xnyp|), i.€., it is basically quadratic in

acoustic (spotter) features. the length of the sequences.

3.1. “Simple” Features Cheating experiments using the oracle distance

Them-gram featurab, (W) counts the number of occurrences of the Yy (X) = 1-4(V,transcription
m-gramgin W. The m-grams can be defined on different levelg,
word or letter m-grams. Example: the choige= aurant (6-gram
letter) andW = restaurant leads to®,(W) = 1. This type of
features is similar to an m-gram language model. [Ehgth feature
returns the length off’, ®iengn( W) = |W].

Therank featureindicates if hypothesi$” has rankr, and is
bounded above by,..: ¥y, (X) = §(min{rank(V), 7maz},7),  3-2.2. M-gram word spotters
whered(i, 7) denotes the Kronecker delta which is one foe j The approach for m-gram word spotters is similar to that for utter-
and zero otherwise. Similar features were used for the inverse ranknce spotters but with the additional difficulty of determining the
There were two sources of obtaining hypotheses. The type featureggmentation of the m-gram. The m-gram word segmentation di-
indicate which source the hypothesis comes from. HINBM poste-  rectly follows from a time alignment, for instance. Here, we imple-
rior feature of hypothesis/ is the HMM posterior normalized over mented an integrated approach that provides both the DTW distance

suggested that m-gram word spotters are probably more suitable for
this task. Note that the absolute difference between the correct and
the competing hypotheses is irrelevant for log-linear models. This is
because the scaling of the feature is compensated by the respective
model parameteX; in Eq. (1).



Table 3. Speed-ups (pruning does not change DTW distances). Table 5. Test utterance error rates for simple features, ‘6g‘ stands

[ Description [ Fet. ] for ‘6-gram letters'.
Discard non-speech frames at utterance bounddries2 Add. | TestUtt. Err. [%]
Consider each 10th template (except for extreme Setup . #Feat.| Actual | Total
counts), consider frequently seen spotters 10 GHMM baseline - 17.4 39.6
Prune DTW partial paths with score worse than +type +rank + 6g w/o post 50k | 15.0 37.8
currently best total score, cache distances to avoid +type + rank + 6gw/post| S0k | 142 372
duplicate calculations 10 + HMM posterior 1| 134 367
Compiler intrinsics 2 + confusion w/ post 100 134 36.6
+ length 1 13.5 36.7
Table 4. Corpus statistics. Oracle - 0.0 26.9
Corpus | Period #Utt. | Audio data [h]
Train | Oct 2007 - Eeb 2008 | 550k ~350 Table 6. Accuracy and HMM overlap of utterance DTW.
Dev | Mar 2008 - May 2008| 310k ~200 Test Acc. [%] | HMM overlap [%]
Test | Feb 2008 - Mar 2008| 21k ~10 k=1 72.6 64.8
k=1, scaled 71.9 64.4
— —4
and the optimal segmentation. To avoid an explicit search over all k=10,6 = 10 73.8 65.8
valid segmentations with complexit (| Xy,,|?), we introduce a GHMM 710 -

slightly modified version of the above DTW distance calculation. A o

special feature is added at the beginning and at the endXof,,, baseline in a second pass. There were no parameters to tune on the
resulting in the augmented input vector, Xy, ). The feature development data. So, this data was used as additional training data.
* has the property to match any other featur@, always provides

zero distance. The complexity of the original algorithm remains un4.2. “Simple” Features

changed. As a consequence, an explicit segmentation is only needegh, 5 gives an overview of the relative contributions from the dif-
for the templates but not the hypotheses. Furthermore, this int§grent features in Sec. 3.1. We distinguish between the ‘Total* and
grated approach does not require models for events that we are ngl ‘actual' utterance error rate. The first refers to the utterance
interested ing.g. non-speech models. It also avoids the combina-grror rate on the complete test data. Utterances for which the tran-
torial c_omplexny that the concatenation of sub-utterance template§cription is not in the list of hypotheses always lead to recognition
would introduce [9]. errors in rescoringcf. the oracle error rate of the n-best lists). In
3.2.3. Speed-ups our case, this concerns approximat_ely a fourth of the_ test utterances.
Fpor this reason, the second error is introduced. It is the utterance

speed-ups were required to make this approach feasible. On the ofor rate limited to the test utterances that can be correctly recog-

hand, the amount of data to process can be reduced. On the otHH,Fed in the ideal caseeg., the oracle error rate on this subset is 0%,

hand, the distance calculation can be optimized. Tab. 3 provide§ee Tab. 5. The baseline is the cqnvention_al GHMM system. The
pe and rank features are always included in the flat model to guar-

an overview of the different techniques and the respective speed-l} he baseli § The eff £ th f
factors used to make the DTW distance calculation faster. With thes&t€€ 1 € baseliné pertormance. e effect o .t ese two e?““res'
owever, is marginal. On this setup, the confusion features did not

speed-ups, the computation time on a single CPU and for all da ) ) >
amounts to a few days/months for the utterance/m-gram spotters. elp. U_smg these featur_es upon the ‘5-gram letters w/post’ system
(suboptimal, not shown in the tables), reduces the error rate from
4. EXPERIMENTAL RESULTS 15.0% to 14.3%. We conclude from this that the optimal m-gram
letter features are sufficiently general to capture this effect, making
The different features defined in the last section were tested on fese confusion features redundant.
voice search task.

4.1. Windows Live Search for Mobile (WLS4M) 4.3. Utterance Spotters

The experiments were done on the voice search task WLS4M [1First, the quality of the DTW distances is checked. This was done
This application consists of look-ups of the yellow pages via aby rescoring the n-best lists with these DTW distances. Obviously,
speech interface. The user is prompted with a list of hypotheses arttis is possible only for utterances that are covered by the spotters.
then, can confirm the input by a click. 2,500 spotters cover 54% of the test transcriptions and 16% of the
The training and test data are the users’ histories from differentest hypotheses. For this reason, the utterance accuracies in Tab. 6
periods, see Tab. 4. To reduce text normalization issues, the manglade not directly comparable with the above error rates. The num-
text was usede.g. words were concatenated and the text was allber of nearest neighbors considered for the distance calculation is
lower case. Transcriptions were available for the test but not for theenoted byk. Fork > 1, the distance is smoothed over thaear-
training and development data. For this reason, we used the click hgst neighborsy . ., yw exp(—8d(X,Y)). Furthermore, unscaled
pothesis as the true transcription for the training. Gender-dependef(ite.,no whitening matrix) features were used unless otherwise stated
GHMMs using conventional MFCC features (projected to 36 dimen{‘scaled‘). Our interest is not in the classification using the isolated
sions by HLDA\) served as baseline model. The MFCC features werBTW distances but rather in using these distances in combination
projected down to 36 dimensions by HLDA. The GHMM consistedwith other featurese.g. HMM scores. Hence, the overlap of the
of about 3,000 senones and 16 Gaussians per mixture. This GHMBTW with the HMM system is probably more meaningful measure
baseline system yields about 40% utterance error rate on the test cam-this context. The HMM overlap in Tab. 6 is defined to be the prob-
pus. The flat models were used for rescoring (no direct indexing) thiability that an utterance is correctly recognized both by the HMM

Finally and as pointed out at the beginning of this subsection, sever



Table 7. Spotter features. First block: utterance spotters on simple Table 8. Cheating experiments for spotters.

setup,d the denotes normalized distandgmax{|X:pi/, | Xnyp|}- Setup Train Utt. | Test Utt. Err. [%]
Second block: utterance spotters on best setup. Third block: 2-gran Err. [%] | Actual Total
word spotters on best setup. type+rank+6g+HMM post] 13.1 13.6 36.8
Setup Add. | Test Utt. Err. [%] +3k utterances 11.5 12.4 35.9
#Feat.| Actual Total + all 150k utt. (w/o reg.) 0.0 13.8 36.9
GHMM baseline - 17.4 39.6 +10k 2-gram words 9.8 11.2 35.1
+type+rank+HMM posterior 15 15.8 38.4 +14k 3-gram words 9.3 11.0 34.9
+utteranceq, 2.5k 14.6 37.6 . ) )
+utterances, 14.0 371 terance spotters observed in the cheating experiments does not carry
+utterances) 13.7 36.9 over to the real DTW distances. The setup for the m-gram DTW dis-
: . tances is probably not optimal yet. The error rates also suggest that
+6-gram letters w/ post 50k 13.6 36.8 . o
the m-gram word spotter features might suffer from overfitting (the
*utterances, 2.5k 13.3 36.6 training and test error rates are even more unbalanced for 3-gram
+utterances,HMM post 135| 367 9 9
N word spotters).
+utterancesg, 13.0 36.3
+dev data 12.8 36.2 5. SUMMARY
+2-gram words, 10k 134 36.7 This work is considered a first step towards a flat direct model for
+2-grarrcljwordsi 13.2 36.5 speech recognition. Here, we have tested the effect of combining
+dev data 12.9 36.3 m-gram features, HMM scores, DTW spotters, etc. The relative

) ) improvement of these features over the GHMM baseline is 9% on
and the DTW system. This overlap corresponds to 4% difference ghe test data. Each the text features.(the m-gram features re-
the test error rate and reduces to 2% for the best setup in Tab 5. |5ted with a discriminative language model) and the acoustic features

Next, these DTW distances with = 1 and without scaling (HMM posteriors, spotters) contribute approximately 50%. How-
were used as features on a simple setup without the 6-gram legyer, the effect of the DTW spotters is marginal compared with the
ters, see first block in Tab. 7. The experiments clearly demonstraigest setup without spotters. Finally, it should be repeated that this is
that the effect is not only due to the text feature (‘utterarices, only the first step in this unconstrained framework. Future work will
and that the normalization of the distances helps (‘utteradces, jnclude the consideration of the flat model in a first pass decoding

vs. ‘utterances]/max{| Xtpi, | Xnyp|}). Later experiments have rather than in a second pass rescoring. Additional features will be
shown that usingxp(—0d) instead ofd as features performs com- jnyestigated as well.

parably but appears to be less sensitive to the hormalization. Similar
experiments were conducted on the best setup from Tab. 5, and are
shown in the second block of Tab. 7. Unfortunately, we used slightly ) )
different 6-gram letter features here such that the results are only] A-Acero, N. Bernstein, R. Chambers, Y.C. Ju, X. Li, J. Odell,
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