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Abstract—In distributed meeting applications, microphone ar-
rays have been widely used to capture superior speech sound and
perform speaker localization through sound source localization
(SSL) and beamforming. This paper presents a unified maximum
likelihood framework of these two techniques, and demonstrates
how such a framework can be adapted to create efficient SSL. and
beamforming algorithms for reverberant rooms and unknown
directional patterns of microphones. The proposed method is
closely related to steered response power-based algorithms, which
are known to work extremely well in real-world environments.
We demonstrate the effectiveness of the proposed method on
challenging synthetic and real-world datasets, including over six
hours of recorded meetings.

Index Terms—Beamforming, directional mics, microphone
array, sound source localization.

I. INTRODUCTION

LECTRONICALLY steerable arrays of microphones

have recently found a variety of new applications, such
as human-computer interaction [1], [2], and intelligent rooms
[3]-[5]. A microphone array-based system has a number of
advantages over a single microphone system. For instance, it
may be electronically aimed to capture an audio signal from a
desired source location and simultaneously attenuate environ-
mental noises. It can also be used to localize an active speaker
nearby, allowing computer controlled devices to provide a
speaker location-aware user interface. To give a more concrete
example, a distributed meeting device called RoundTable [6]
is shown in Fig. 1(a). It has a six-element circular microphone
array at the base, and five video cameras at the top. The captured
videos are stitched into a 360-degree panorama, which gives a
global view of the meeting room (but at low resolution due to
bandwidth constraints). The microphone array is there not only
to capture superior sounds, but also to detect the sound source
location and generate a high-resolution video of the speaker for
a better viewing experience. The device enables remote group

Manuscript received February 16, 2007; revised December 2, 2007. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Dr. Cha Zhang.

C. Zhang, D. Floréncio, and Z. Zhang are with Microsoft Research, Red-
mond, WA 98052 USA (e-mail: chazhang @microsoft.com; dinei @microsoft.
com; zhang @microsoft.com).

D. E. Bais with the Department of Electrical Engineering and Computer Sci-
ence, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2008.917406

Fig. 1. RoundTable and its captured images. (a) RoundTable device. (b) Two
images captured by the device.

members to hear and view meetings live online. In addition,
the meetings can be recorded and archived, allowing people to
browse them afterwards.

The key technologies involved in microphone arrays are
sound source localization (SSL) and beamforming, both having
been active research topics since the 1970s [7]-[9]. A large
number of SSL and beamforming algorithms have been pro-
posed in the literature, of varying degrees of accuracy and
computational complexity. In this paper, we limit our atten-
tion to algorithms that are applicable in distributed meeting
scenarios, such as the set of microphones in the RoundTable
device. These microphone arrays often bear the following set
of characteristics.

* The number of microphones in a single device is often lim-
ited, e.g., four, six, or eight. Linear arrays and circular ar-
rays are the most popular ones.

* Both omnidirectional and directional microphones are
popular. In the case of the circular array in RoundTable,
directional microphones are preferred due to their superior
sound capture capability.

* Microphones in distributed meeting devices tend to be
spaced at distances of around 10 cm. The difference
in source energy at the microphone locations is not
significant.
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* Meeting rooms can receive special sound-treatment, or not.
In the latter case, reverberation could be significant due to
common reflective objects such as whiteboards or displays.

e Many distributed meeting devices need to function prop-
erly without a linked computer. The available computa-
tional resources are thus very limited.

Given these characteristics, the choices for SSL and beam-
forming algorithms are very limited. For instance, SSL
algorithms that rely on sensing the difference in source energy
among different microphones cannot be applied due to the
close distance between microphones. If the distributed meeting
device is to be mass produced, measuring the microphones’ di-
rectional response patterns for each device would be extremely
difficult if not impossible, hence the algorithm must adapt to
microphones with unknown gains. The algorithm also has to be
very robust to reverberation, which could change significantly
from room to room in the real world. Lastly, any algorithm used
in such devices has to be computationally very efficient.

In this paper, we present a maximum likelihood (ML) frame-
work for microphone array sound source localization and beam-
forming. While this is not the first time ML estimation is ap-
plied for SSL or beamforming [10]-[13], this paper builds a
much stronger connection between the proposed ML-based SSL
(ML-SSL) and the popular steered response power (SRP) based
algorithms, which are known to work extremely well in practical
environments [3], [14], [15] and have very low computational
cost. We demonstrate within the ML framework how reverbera-
tion can be dealt with by introducing an additional term during
noise modeling, and how the unknown directional patterns of
microphone gains can be compensated for from the received
signal and the noise model. The result is a new and efficient SSL
algorithm that can be applied to various kinds of microphone ar-
rays, even for challenging cases such as circular directional ar-
rays with unknown directional patterns (e.g., the array in Round-
Table). The effectiveness of the proposed method is shown on
both synthetic and real-world data. The synthetic data allows a
more precise study of the influence of noise level and reverber-
ation in the algorithm performance. The extensive real-world
data corroborates the improvement in relevant scenarios. This
data consists of 99 sequences, totaling over six hours of meet-
ings, recorded in over a dozen different meeting rooms.

Additionally, our ML derivation demonstrates that the tra-
ditional minimum variance distortionless response (MVDR)
beamforming technique is equivalent to the ML-SSL. In other
words, we show that the result of ML-SSL is the same as if one
used multiple MVDR beamformers to perform beamforming
along multiple hypothesis directions and picked the output di-
rection which results in the highest signal-to-noise ratio (SNR).
The technique proposed above to handle unknown directional
patterns of microphone gains can thus be extended to MVDR.
We call the revised algorithm enhanced MVDR (eMVDR), and
show that it outperforms the traditional method for circular
directional microphone arrays.

The rest of the paper is organized as follows. We review
a number of related SSL and beamforming approaches in
Section II. The ML framework is derived in Section III. Using
the proposed framework, we derive an efficient SSL algorithm
and compare it with various existing approaches in Section I'V.

eMVDR is discussed in Section V. Experimental results and
conclusions are given in Sections VI and VII, respectively.

II. REVIEW OF EXISTING APPROACHES

We now review some existing SSL and beamforming ap-
proaches that are closely related to the proposed algorithm.

A. SSL

For broadband acoustic source localization applications, such
as teleconferencing, a number of SSL techniques are popular,
including those based on the steered-beamformer (SB), high-
resolution spectral estimation, time delay of arrival (TDOA) [9],
and learning [16]. Among them, the TDOA-based approaches
have received extensive investigation [3], [9], [17]-[20].

Consider an array of P microphones. Given a source signal
s(t), the signals received at these microphones can be modeled
as [71, [9], [18], [20]

x;(t) = a;8(t — ;) + ni(¢) €))

where = = 1,..., P is the index of each microphone; 7; is the
propagation delay from the source location to the 7" micro-
phone location; «; is a gain factor (including the effects of the
propagation energy decay, the gain of the corresponding micro-
phone, the directionality of the source and the microphone, etc.),
and n;(t) is the noise sensed by the i** microphone. Depending
on the application, this noise term could include a room rever-
beration term to increase the robustness of the derived algorithm
[15], [19], which will be discussed in detail in Section I'V.

It is usually more efficient to work in the frequency domain,

where we can rewrite the above model as
Xi(w) = ai(w)S(w)e™ T + Ny(w). )
We can rewrite the above equation into a vector form as
X(w) = S(w)G(w) + N(w), 3

where

Among the variables, X(w) represents the received signals,
hence it is known. G(w) can be estimated or hypothesized
during the computation process, which will be detailed later.

The most straightforward SSL algorithm involves taking a
pair of microphones and estimating the difference in time of
arrival by finding the peak of the cross-correlation (the direc-
tion of arrival is obtained by a geometric transformation from
the time of arrival difference and the distance of the mics). For
instance, the correlation between the signals received at micro-
phone 7 and k is

Rulr) = / zi(t)mn(t — 7). .,
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The 7 that maximizes the above correlation is the estimated time
delay between the two signals. In practice, the above cross-cor-
relation function can be computed more efficiently in the fre-
quency domain as

Ruu(r) = / X (@) X7 (@)™ dw 5)

where * represents the complex conjugate. If we substitute (2)
into (5), and assuming noise and source signals are independent,
the 7 that maximizes the above correlation is 7; — 7, which is
the actual delay between the two microphones.

To find the 7 that maximizes (5), one simple and extendable
solution is through hypothesis testing. That is, hypothesize the
source at certain location s, which can be used to compute 7; and
Tk. The hypothesis that achieves the highest cross-correlation is
the resultant source location. When more than two microphones
are considered, we sum over all possible pairs of microphones
(including self pairs) and have

P P
R = 3
o
=> > / Xi(w) X (w)e? ™) dw 6)
=1 k:}j .
/[ ] -
7:1 )
:/ 3 Xi(w)er T | d. )
Toli=1

Again we can solve the maximization problem through hypoth-
esis testing on potential source locations s. Equation (7) is also
known as the steered response power (SRP) of the microphone
array.

To address the reverberation and noise that may affect SSL
accuracy, researchers have found that adding a weighting func-
tion in front of the correlation can greatly help. Equation (6) is
thus rewritten as

Rs) =33 [ U@ X)X @) o @

where ¥, (w) is a weighting function. A number of weighting
functions have been investigated in the literature [7]. Among
them, the heuristic-based PHAT weighting is defined as

1 1
Uip(w) = |Xi () X5 ()] [ Xa(w) ]| Xe(w)|

PHAT has been found to perform very well under realistic
acoustic conditions [3], [15]. Inserting (9) into (8), we get
.2
Z Xi ((U)ijﬂ
| Xi(w)]

R(s) = [ >

This algorithm is called SRP-PHAT [14]. Note that SRP-PHAT
is very efficient to compute, because the time complexity drops
from P? in (8) to P.

)

P
dw. (10)
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A more theoretically-sound weighting function is the ML for-
mulation derived by Brandstein et al. [9] under an assumption
of high SNR and no reverberation. The weighting function of a
microphone pair is defined as

| Xi (W)X (w)]
[Ni (@)X (W) + [N (@) P X (w) 2

\Ifi j (w) = (1 1 )
Equation (11) can be inserted into (8) to obtain an ML-based
algorithm. This algorithm is known to be robust to noises, but
its performance in real-world applications is relatively poor, be-
cause reverberation is not modeled in its derivation. In [15], Rui
and Floréncio developed an improved version by considering
the reverberation explicitly in the noise term. In a manner sim-
ilar to the formulation in [3], the reverberation is treated in [15]
as another type of noise, i.e.,

INF(W)]? = 71 Xi(w)? + (1= 9)|Ni(w)]?

where Nf(w) is now the combined noise or total noise. The
first term on the right side of (12) is based on the assumption
that the reverberation noise energy is proportional to the source
signal energy. Equation (12) is then substituted into (11) (re-
placing N;(w) with Nf(w)) to obtain the new weighting func-
tion. Follow-up work [21] proposed a further approximation to
yield

12)

P ot 2

R(s) :/ 2

2 ¥ Xi(w

whose computational efficiency is close to that of SRP-PHAT.

Note, however, that algorithms derived from (11) are not true
ML algorithms for multiple microphones. This is because the
optimal weight in (11) was derived only for two microphones.
When more than two microphones are used, the adoption of (8)
assumes that pairs of microphones are independent and hence
that their likelihoods can be multiplied together, which is ques-
tionable. In this paper, a true ML algorithm will be developed
for the case of multiple microphones. We will show the connec-
tion between the new algorithm and the existing algorithms in
Section IV.

dw  (13)

B. Beamforming

Beamforming refers to the technique that aims at improving
captured sound quality by exploiting the diversity in the re-
ceived signals of the microphone array. Depending on the lo-
cation of the source and the interference, beamforming sets dif-
ferent gains to each mic to achieve its goal of noise suppres-
sion. Early designs were generally “fixed” beamformers (e.g.,
delay-and-sum), adapting only to the location of the desired
source. More recent designs are based on “null-steering”, and
adapt to characteristics of the interference as well. The min-
imum variance distortionless response (MVDR) beamformer
and its associated adaptive algorithm, the generalized sidelobe
canceler (GSC) [22], [23], are probably the most widely studied
and used beamforming algorithms, and form the basis of some
commercially available arrays [24].

Assuming the direction of arrival (DOA) of the desired signal
is known, we would like to determine a set of weights w(w),
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such that w (w)X(w) is a good estimate of S(w). Note X (w)
and S(w) were defined in (3); the superscript H represents the
Hermitian transpose. The beamformer that results from mini-
mizing the variance of the noise component of w(w)# X (w),
subject to a constraint of unity gain in the DOA direction, is
known as the MVDR beamformer. The corresponding weight
vector w(w) is the solution to the following optimization
problem:

min w(w) 7 Q(w)w(w), s.t. w(w)IG(w) =1

w(w)

(14)

where Q(w) is the covariance matrix of the noise component:

Q(w) = EIN(w)N"(w)]. (15)
In general, Q(w) is estimated from the data and therefore inher-
ently contains information about the location of the sources of
interference, as well as the effect of the sensors on those sources.

The optimization problem in (14) has an elegant closed-form
solution [25] given by

Qw)'G(w)
G(W)"Qw)'G(w)’

ww) =

(16)

Note that the denominator of (16) is merely a normalization
factor which enforces the unity gain constraint in the look
direction.

In practice, the DOA of the desired signal is not known
exactly, which significantly degrades the performance of the
MVDR beamformer [26]. Significant effort has gone into a
class of algorithms known as robust MVDR [25], [27]. As a
general rule, these algorithms work by specifying a region in-
stead of a single look direction where the source has near-unity
gain. Little attention has been paid to the gain term G(w) in
(16), and most existing work assumes that it is either known or
that the «(w) term can be ignored. This works well for linear
arrays of omni-directional or directional microphones, where
the gains of the microphones in the same direction are similar.
However, for the circular geometry such as that of RoundTable,
this directionality is accentuated: each microphone will have
a significantly different direction of arrival in relation to the
desired source. In this paper, we will address this issue by
estimating the «(w) term explicitly during the beamforming
process.

III. THE MAXIMUM LIKELIHOOD FRAMEWORK

To assure a mathematically tractable solution, we assume the
noise of the microphones follows a zero-mean, independent be-
tween frequencies, joint Gaussian distribution, i.e.,

Po(N(@)) = po exp{ - %[N(W)]HQ‘l(w)N(W)} (7)

where p,, is a normalization constant. When the covariance ma-
trix Q(w) can be calculated/estimated from known signals, the
likelihood of the received signals can be written as

p(X|S,G,Q) = [[ po(X()IS(w), G(w), Q(w))  (18)

where

(20)

The goal of the proposed framework is thus to maximize the
above likelihood, given the observations X(w), gain matrix
G(w), and noise covariance matrix Q(w). Note that the gain
matrix G(w) requires information about the location of the
source. Hence, the optimization is usually solved through
hypothesis testing. That is, hypotheses are made about the
source location, which gives G(w). The likelihood is then
evaluated. The hypothesis that results in the highest likelihood
is determined to be the output of the SSL algorithm.

Instead of maximizing the likelihood in (18), we minimize
the following negative log-likelihood:

] dw

where © = fw log p,,dw is a constant. Since we assume the
probabilities over the frequencies are independent of each other,
we may minimize each .J(w) separately by varying the unknown
variable S(w). Given that Q~!(w) is a Hermitian symmetric
matrix Q1 (w) = Q= (w), we may take the derivative of J(w)
with respect to S(w), and set it to zero to yield

J = —logp(X|[$,G,Q)

= —/w [bgpw—¥

1

= 5/ J(w)dw — 6 21

0J(w)
05 (w)

= -G Q" (W[X(w) - S(W)G(w)]" =0. (22)

Therefore

L G(w)Q (@)X (W)
)= G0 Q () G(w)

Interestingly, (23) is identical to the MVDR filter described by
(16). This relationship between the MVDR beamformer and the
ML estimator was discovered earlier in [11].

Substituting the above S(w) into (20), we can write

(23)

J(w) = Ji(w) — Jo(w) (24)

where
Ji(w) =X (0)Q 7 (w)X(w) (25)

o(w) = [GH (w)Q (W)X ()]G (w)Q  (w)X(w)
S G (w)Q (w)G(w '

(26)
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Note that J;(w) is not related to the hypothesized locations
during hypothesis testing. Therefore, the ML-based SSL algo-
rithm shall maximize

Jy = /w Ja(w)dw

[ X QX ),

GH(w)QH(w)G(w)
(27)
Due to (23), we can rewrite J5 as
_ S(w)[?
O R rrmrem LS

The denominator [GH (w)Q~!(w)G(w)]~* can be shown to be
the residue noise power after MVDR beamforming [25]. Hence,
the ML-based SSL algorithm is equivalent to forming multiple
MVDR beamformers along multiple hypothesis directions and
picking that output direction which results in the highest SNR.

IV. AN EFFICIENT SSL ALGORITHM FOR DISTRIBUTED
MEETING APPLICATIONS

The above derived ML framework is very general. For in-
stance, a similar ML SSL framework was presented in [12].
There, the goal was not only to estimate the location of the sound
source, but also its directionality. A model similar to (3) was
used, but the noise covariance matrix was assumed to be diag-
onal, Q(w) = oI, where o is independent of the microphone
index and frequency. This led to a simplified objective function

n- [

It is not difficult to verify that under these assumptions, (29) can
be easily obtained from (27).

On the other hand, (27) cannot be directly applied to perform
SSL in our current distributed meeting applications. In partic-
ular:

* the algorithm is too complex. If a full covariance matrix
Q(w) is used, a P x P matrix inversion has to be conducted
for each frequency bin, and the associated matrix multi-
plication (e.g., G (w)Q~!(w)G(w)) has to be conducted
for each frequency bin and for each hypothesis source lo-
cation,;

¢ reverberation is not modeled in (27);

« for directional microphone arrays, the gain vector G(w)
remains undetermined.

In the following, we will revise the noise model so that it can
take reverberation into consideration. The Q(w) matrix will be
diagonalized for fast computation. The gain vector will be ex-
plicitly estimated from the received signals and the noise model.

P 2

Z o (W) X (w)ed ™ | dw.

i=1

(29)
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A. Reverberation

The reverberation of the room environment can be modeled
as follows:

N"(w) = S(w)H(w) (30)
where H(w) = [Hi(w),...,Hp(w)]” is the room response
function. We define the combined total noise as

N¢w) = N"(w) + N(w) (31)

and we assume the combined noise still follows a zero-mean,
independent between frequencies, joint Gaussian distribution.
The covariance matrix is

= B{N(w)[N°(w)]"}
= E{N(w)N"(w)} + |S(w) " E{H(w)B"

Q(w)
(w)}
(32)

where E{-} stands for expectation. Here we assume the noise
and the reverberation are uncorrelated.

It should be noted that combining the reverberation term and
the noise term to form a combined noise is not the only method
to handle reverberation. In [28], Warsitz and Haeb-Umbarch in-
cluded the room reflection function in the gain term G(w), and
performed beamforming through an optimization algorithm that
can obtain the combined G(w) directly. Nevertheless, their al-
gorithm only computes the G(w) to optimize the beamformer’s
output SNR, which cannot be directly used to derive the actual
sound source location s in (6).

The first term in (32) can be directly estimated from the si-
lence periods of the acoustic signals

E(Ni(w)N; (w)) = lim —ZNtk Hw)  (33)

K—oo K

where k is the index of audio frames that are silent. Note that
the background noises received at different microphones may
be correlated, such as the ones generated by computer fans in
the room. If we believe the noises are reasonably independent
at different microphones, we can simplify the first term of (32)
further as a diagonal matrix
E{N(w)N"(w)} = diag(E{|N1(w)[*}. ..., B{|Np(w)[*}).
(34)
The second term in (32) is related to reverberation. It is gen-
erally unknown. For efficient computation, we assume it is also
a diagonal matrix

|S(w)PE{H(w)H" (v)} ~ diag(A1(w), ..., Ap(w)) (35)
with the i*? diagonal element equal to
Ni(w) = E{|H;(w)[*S(w)]*}
~Y(|Xi()]? = E{INi(w)[*}) (36)
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where 0 < v < 1is an empirically determined parameter. Equa-
tion (36) assumes that the reverberation energy is a fraction of
the difference between the total received signal energy and the
environmental noise energy; the same assumption was used in
[3], [15], and in (12). Note again that (35) is an approximation;
reverberation signals received at different microphones are usu-
ally correlated, and the matrix should have nonzero off-diagonal
elements. Unfortunately, it is generally difficult to estimate the
actual reverberation signals or these off-diagonal elements. In
addition, a nondiagonal noise covariance matrix would be very
expensive to compute in practice.

As a result, we retain a diagonal covariance matrix for the
combined noise

Q¢(w) = diag(k1(w),. .., kp(w)) 37)
with the 7*"" diagonal element
ri(w) = Ni(w) + E{|N:i(w)|*}

=9 Xi(W)? + (1 = E{N:(w)*}.  (38)

Equation (27) can thus be written as

L | arw) 2
a(w .

Iy = / ) (@) | dw. (39)

? w o (w)]2 Z Ki(w)

B. Estimating the Gain Factors

The gain factor «;(w) can be accurately measured in some
applications. For applications where it is unknown, we may as-
sume it is a positive real number and estimate it as follows:

R Xi(w)l -
=(1

i (w) 1S (w)|* ri(w)

= N(Xi(w)]* = E{INi(w)*})

(40)

where both sides represent the power of the signal received at
microphone ¢ without the combined noise (noise and reverber-
ation). Therefore

() = V(I = N(Xi(w)? - E{[N:(w)[*})
i(w) = 5] N5}
Inserting (41) into (39), we get
P . 2
> e /X W)? = E{[N:i (@)}
=1
Jo = / 5 dw.
o ; o (1 Xi(@)?2 = E{|Ni()[?})
(42)

The computational cost of the above SSL algorithm is
slightly higher than that of SRP-PHAT, but still manageable. In
Section VI, we will demonstrate the superior performance of
(42) under various noisy conditions.

C. Discussion

The ML-SSL algorithm proposed in (42) is closely related
to existing SRP SSL algorithms in the literature. For instance,
when the SNR is very high, we have | X;(w)|? > E{|N;(w)|?}.
Subsequently, #;(w) = v|X;(w)|?, (42) thus becomes

n=[L

2

P .
£ Fgoe

dw
IX )
Z AR

2
e]WTz
-1 \2 i

which is equivalent to SRP-PHAT (10). Note that since the re-
verberation parameter -y is a constant factor of .J,, it does not
affect the optimality of SRP-PHAT as long as the noise is very
low.

The connection between the proposed ML-SSL algorithm
and the ML algorithm in (11) may be not immediately evident.
Recall that in their original derivation, Brandstein et al. [9]
estimated the variance of the phase for a particular frequency
as:

dw (43)

B{Ni(w)’}

Var[f;(w)] = X,

(44)

If we ignore reverberation by setting v = 0, and assume noise is
relatively small compared to the signal (the same assumptions
were made in [9]), then (42) can be written as

2

P 0s(w) s
L; BN ()7}

Jo :/ ESTCOTS W (45)
Z EIV T

Therefore, the phase term of each microphone e (“)ei“™ is in-
deed weighted by the inverse of the phase variance, as given
by (44). Hence, the ML algorithm in (11) is conceptually sim-
ilar to the proposed algorithm. On the other hand, the proposed
ML-SSL algorithm differs from (11) by the presence of the ad-
ditional frequency-dependent weighting (denominator in (45)).
Furthermore, it has a more rigorous derivation, which demon-
strates that it is a true ML algorithm for multiple microphones.

To summarize, Fig. 2 shows a relationship digram of the SSL
algorithms mentioned in this paper. Note we use SRP-RUI to
represent the algorithm proposed in [21] (13). The annotations
on the links between algorithms indicate the conditions to sim-
plify or convert one algorithm to the other. Note the proposed
ML-SSL algorithm is the only one in this graph that is optimal
in the ML sense for multiple microphones.

V. ENHANCED MVDR BEAMFORMING (EMVDR)

As presented in Section III, the MVDR algorithm, although
derived from a very different perspective, is indeed identical to
an intermediate step (23) during the derivation of the ML-SSL
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Ignore frequency

Dependent weighting 2Mic ML~
» SSLin [9]
Eq.(11)
Reverberation as part of noise
SRP-RUI
in [21]
Eq.(13)
Zero noise
ML-SSL Zero noise SRP-PHAT
(this paper) > in [14]
Eq.(42) Eq.(10)
Diagonal noise
covariance matrix ML-SSL
» in[12]
Eq.(29)

Fig. 2. Relationship diagram of the SSL algorithms mentioned in this paper.

algorithm. Recent MVDR research has mostly focused on how
to make MVDR robust to source location errors (such errors are
usually caused by SSL). In this section, we propose an eMVDR
approach that tries to address the problem of unknown direc-
tional patterns of microphones. It should be noted that existing
robust MVDR algorithms can still be applied on top of our
method to further improve performance.

Unlike in SSL, where reverberation can cause errors in the
output source location, reverberation in beamforming is usually
less of a concern in distributed meetings, because the reflected
signal can still contain intelligible information. Therefore, in
the following discussion, we ignore the reverberation term in-
troduced during SSL (30), and use a noise covariance matrix
directly estimated from the silence periods of the meeting

Q(w) = E{N(w)N"(w)}. (46)

We start our discussion with (23) and (41).

From (41), it can be seen that a; (w) can be estimated from the
received signal and the noise model, though it is also related to
the actual source energy. Fortunately, in MVDR it is the relative
gains among the sensors that really matter in terms of beam
shaping. Therefore, we define

Ao (w) = a;(w)
041,( ) Z Olj(w) (47)
j=1,me P
\/(|Xi(“-’)|2 — |N;(w)|?) N
X VKPP - IN@)P) (48)
A new gain vector
G(w) = [ar(w)e ™™, ... ap(w)e T (49)

is then inserted into (23) to perform MVDR.

It should be noted that by replacing actual gains with rela-
tive gains, we no longer compensate for the frequency response
of the microphones. For example, if the microphones’ average
gain in a certain frequency is high, this will not be compen-
sated for, and the final output signal will be stronger at that
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Fig. 3. Floor plan of the virtual room for synthetic experiments—distances
shown in meters.

frequency. We believe this is not generally a problem, as most
microphones have reasonably flat frequency responses. Further-
more, any equalization method used with a single mic could be
similarly applied here, after beamforming.

VI. EXPERIMENTAL RESULTS

We now present the results of our SSL and beamforming ex-
periments. We run simulations on both synthetic signals and
with extensive natural data.

A. SSL

We test the performance of the ML-SSL algorithm embodied
in (42), on both synthetic and real-world datasets. The two
benchmark algorithms we use to compare with the ML-SSL
method are SRP-PHAT (10) and its improved version from [21]
(13). Note that SRP-PHAT is a special case of SRP-RUI when
v = 1.0, while SRP-RUI is a special case of the ML-SSL al-
gorithm when «;(w) = a(w),i = 1,..., P, and the frequency
weightings are ignored.

1) Experiments on Synthetic Data: A virtual room with size
7 x 6 x 2.5 meters is created, as shown in Fig. 3. A circular
6-microphone array is placed near the center of the room, at
(3.5, 1.5, 1). The radius of the microphone array is 0.135 m. A
speaker is talking at a distance of 1.5 m from the center of the
microphone array, at an angle 6 from the x-axis in Fig. 3. We in-
troduce two noise sources in the scene. A ceiling fan is mounted
in the middle of the room, at (3.5, 3, 2.5), and a computer is lo-
cated in the corner, at (7, 0, 0.5). The wave signals from the
speaker, the fan and the computer are all recordings from the
real world. The reverberation effect of the room is added to all
signals according to the image model [29].

The SSL algorithm performs hypothesis testing at 4° intervals
in azimuth. The reported results are averaged over ten speaker
locations uniformly distributed around the microphone array
(6 = 0,36°,...,324°). At each location, the signal length is
30 s. The algorithm employs 40-ms windows spacing 20 ms
apart. We sample 100 speech frames from each location and
perform SSL on them. Table I reports the average accuracy, in
terms of what portion of the SSL estimates (out of a total of
100 x 10 = 1000 frames) is within 2° and 10° of the ground
truth angle. To assess the impact of reverberation on SSL per-
formance, we synthesize rooms with 100 and 500 ms reverber-
ation times, as seen in the upper and lower parts of Table I,
respectively.
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TABLE I
EXPERIMENTAL RESULTS OF SSL. ACCURACY ON THE SYNTHETIC DATASET. CELLS WITH BOLD FONTS INDICATE BEST PERFORMANCE
IN THE GROUP. (A) Reverberation = 100 ms. (B) Reverberation = 500 ms.

vy=0.1 vy=03 vy=0.5
ISnIEILlIRt SRP-PHAT SRP-RUI ML-SSL SRP-RUI ML-SSL SRP-RUI ML-SSL
<2° <10° <2° <10° <2° <10° <2° <10° <2° <10° <2° <10° <2° <10°
25dB | 97.6% | 98.9% | 97.2% | 99.1% | 97.9% | 98.8% | 96.8% | 98.9% | 97.9% | 98.9% | 96.2% | 98.8% | 97.8% | 98.9%
20dB | 92.0% | 93.6% | 922% | 94.9% | 92.8% | 94.7% | 92.0% | 94.4% | 93.0% | 94.9% | 91.8% | 94.3% | 92.7% | 94.6%
15dB | 89.0% | 91.4% | 90.8% | 93.7% | 91.6% | 93.9% | 90.2% | 93.3% | 91.5% | 93.8% | 89.5% | 92.6% | 91.2% | 93.7%
10dB | 85.2% | 88.8% | 88.7% | 91.4% | 89.0% | 91.7% | 87.7% | 90.7% | 88.8% | 90.9% | 87.2% | 90.2% | 88.1% | 90.4%
5dB 76.1% | 82.0% | 86.1% | 89.7% | 87.2% | 90.3% | 82.7% | 88.0% | 85.9% | 89.7% | 80.7% | 86.4% | 85.2% | 89.2%
0dB 64.5% | 71.1% | 78.3% | 85.7% | 81.2% | 88.0% | 72.6% | 80.5% | 77.4% | 84.0% | 70.1% | 77.3% | 75.7% | 82.9%
(6]
vy=0.1 vy=0.3 vy=0.5
Isnﬁl;; SRP-PHAT SRP-RUI ML-SSL SRP-RUI ML-SSL SRP-RUI ML-SSL
<2° <10° <2° <10° <2° <10° <2° <10° <2° <10° <2° <10° <2° <10°
25dB | 60.1% | 79.2% | 53.8% | 76.9% | 60.0% | 78.8% | 54.1% | 76.9% | 59.8% | 78.8% | 54.3% | 76.9% | 59.9% | 78.8%
20dB | 59.4% | 78.4% | 54.0% | 77.0% | 60.3% | 78.9% | 53.4% | 76.8% | 59.7% | 78.7% | 53.4% | 77.1% | 59.6% | 78.6%
15dB | 60.3% | 78.0% | 552% | 77.1% | 60.4% | 78.8% | 53.4% | 76.6% | 60.1% | 78.5% | 53.1% | 76.4% | 59.6% | 78.4%
10dB | 58.8% | 77.0% | 54.0% | 76.5% | 59.8% | 77.1% | 53.8% | 76.1% | 59.5% | 77.6% | 52.7% | 75.8% | 592% | 77.7%
5dB 563% | 75.5% | 53.1% | 74.4% | 57.4% | 752% | 52.5% | 73.5% | 572% | 755% | 52.3% | 74.0% | 57.1% | 75.4%
0dB 54.5% | 74.4% | 533% | 73.9% | 56.2% | 74.4% | 52.4% | 74.9% | 55.6% | 74.8% | 52.0% | 74.5% | 55.2% | 75.3%

It can be observed from Table I that SRP-PHAT usually per-
forms as well as ML-SSL when the input SNR is high (20 dB or
above), but its performance drops significantly when the SNR
becomes low. In most indoor (e.g., offices and meeting rooms)
environments, the SNR is above 15 dB, which explains SRP-
PHAT’s satisfactory performance in practice. SRP-RUI is a very
decent and practical SSL algorithm too. In low reverberation
environment [Table I(a)], SRP-RUI has slightly worse perfor-
mance than ML-SSL, and both algorithms significantly outper-
form SRP-PHAT in noisy cases. In high reverberation environ-
ments [Table I(b)], all three algorithms have a significant per-
formance drop. ML-SSL still outperforms both SRP-PHAT and
SRP-RUI, though by a small margin.

For the ML-SSL algorithm, the tunable parameter v does
seem to impact the final performance. This is particularly true
when the reverberation is low. For instance, in Table I(a), when
the reverberation is low (100 ms), when the input SNR is 0
dB, choosing v = 0.1 results in much better performance than
v = 0.5. However, this gap is not significant when reverber-
ation is high (Table I(b), 500 ms). Therefore, for practical ap-
plications, using a fixed ~y ranging from 0.1 to 0.3 can usually
result in satisfactory performance.

2) Experiments on Real-World Data: We next test the
ML-SSL algorithm on 99 real-world meetings captured by the
RoundTable device (Fig. 1). SSL is used in RoundTable to
determine for which speaker the high-resolution video is to
be provided. The main challenge of SSL for the RoundTable
device is that the microphones are directional (in order to
capture better audio) and they are arranged on a circle pointing
in different directions. For microphones pointing away from
the speaker, the estimated phase may be unreliable. In [21],

(b)

the authors attempt to address the issue by selecting a subset
of the microphones for SSL. In this paper, we use all the
microphones, since ML-based SSL weights microphones dif-
ferently based on their SNR automatically. We will compare
our results with [21].

The meetings are each 4 min long, captured in about 50 dif-
ferent meeting rooms in order to test the robustness of the SSL
algorithms in different environments. The noise levels of the
rooms and the distances from the speakers to the devices vary
significantly, causing the input SNR to range from 5 to 25 dB.
The speaker locations of 6706 audio frames are labeled manu-
ally based on the corresponding face locations in the panoramic
image. We report the results on the percentage of frames that
are within 6° and 14° of the ground truth azimuth angle. This is
slightly relaxed from the synthetic experiment but good enough
for detecting speaker orientation in RoundTable.

The experimental results are shown in Table II. It can be
seen that ML-SSL outperforms the other algorithms on this
challenging dataset. The absolute accuracy improvement of
ML-SSL over SRP-PHAT is about 2%. In terms of error rate,
there is a 17% reduction. Fig. 4 shows a detailed accuracy plot
(14° criterion) of the two algorithms on the 99 tested sequences.
The dashed line is the equal accuracy line. It can be seen that
ML-SSL outperforms SRP-PHAT in most sequences, and in
some by a very significant margin.

The algorithm in [21], which selects a subset of microphones
for SSL, is more efficient than SRP-PHAT; however, its perfor-
mance is slightly worse. This shows that although there may be
microphones which point in the opposite direction of the sound
source and which may be very noisy, it may still be beneficial
to include them for SSL.
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TABLE II
EXPERIMENTAL RESULTS OF SSL. ACCURACY ON THE REAL-WORLD DATASET. CELLS WITH BOLD FONTS INDICATE BEST PERFORMANCE IN THE GROUP
y=02 vy=0.5
SRP-PHAT Alg. in[21] SRP-RUI ML SRP-RUI ML
<6° <l4° <6° <14° <6° <14° <6° <l14° <6° <14° <6° <14°
81.73% 88.13% 80.55% 86.85% 83.06% 89.76% 83.49% 90.13% 82.76% 89.31% 83.03% 89.96%
1 3 TABLE IIl
i COMPARISONS, BASED ON SNR (DB), OF BEST MIC SELECTION,
0.9 /’ MVDR AND EMVDR ON TEN AUDIO CLIPS
7
vl [ Clip ID | Best Mic [ MVDR [ eMVDR | SSL Accuracy |
7
0.8 e A 10.6 12.7 13.9 92.5%
o B 19.8 21.5 25.5 95.5%
07 ¥ C 16.2 16.8 19.6 72.6%
7 1 D 22.6 242 252 98.3%
£ ” E 233 22.6 229 73.2%
3 06 ] F 18.8 21.8 24 93.9%
< . G 134 14.2 17.7 82.1%
7 ol H 202 21.1 23 45.1%
% 05 R I 19.3 18.8 24.4 97.6%
s /' J 14 14.9 16.4 54.4%
7’
04 // Avg. 17.8 18.9 21.3 80.5%
4
7’
4
'
03 /,, . . .
L, the beamformer. Case E is a scenario where SSL accuracy is
0.2t ’ not as good as in I. This suggests that, in case E, one of the

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SRP-PHAT Accuracy

Fig. 4. Comparison of the SRP-PHAT accuracy and the ML-SSL accuracy.
Each cross represents one real-world sequence. It can be seen that most of the
crosses are above the diagonal dashed line, indicating that ML-SSL outperforms
SRP-PHAT in most sequences.

B. eMVDR

In this section, we present some experimental results on
beamforming using the circular array of directional micro-
phones in the RoundTable device. Specifically, we compare
the eMVDR beamformer to an MVDR algorithm without gain
compensation as well as to a simple microphone selection
scheme. The latter scheme chooses the microphone with the
highest SNR as the estimate of the desired signal s. We have
seen, based on extensive internal tests, that this scheme per-
forms surprisingly well for the array in question. The SNRs of
the output signals are compared against each other to evaluate
performance.

We randomly picked ten audio sequences from the large
dataset used above. We manually segmented the speech frames
for the computation of the SNR. Table III summarizes the SNR
results of the experiments. It can be seen that the eMVDR
algorithm always outperforms traditional MVDR beamforming
in terms of SNR. The average performance gain is 2.4 dB. The
eMVDR beamformer also outperforms the best mic selection
scheme by an average of 3.5 dB. It is interesting to note that
there are two cases (E and I) where best mic selection does
better than traditional MVDR beamforming and one (E) where
it does better than eMVDR. Sequence I corresponds to a case
with high SSL accuracy, which shows that not compensating
for the directionality of the microphones can turn out to be
expensive at times in terms of degrading the performance of

directional microphones might have been pointing directly at
the source (meaning that the best mic selection scheme might
have had a better estimate of the DOA of the source in case I).
This may explain why, even after compensating for the gain
pattern of the microphones, eM VDR still does slightly worse
than best mic selection in case E. The performance loss in this
case could be attributed to SSL accuracy.

The results presented in Table IIT highlight several important
points. First, they underline the importance of compensating for
the gain pattern of directional microphones when using MVDR
beamforming for speech enhancement. The enhancement of
the proposed algorithm was 3.5 dB, compared to the 1.1-dB
enhancement produced by traditional MVDR beamforming.
Second, very much to our surprise, the best mic selection
scheme does not seem to be such a bad algorithm after all. It
has very low computational complexity and has performance
comparable to that of traditional MVDR beamforming and
similar to that of eMVDR (at least in the high SNR cases).
However, we believe that the advantage of eMVDR beam-
forming over best mic selection comes from the fact that
the average improvement in SNR can allow us to be more
conservative in nonlinear post-processing operations. Since
the post-processing usually distorts the signal when SNR is
not high enough, a few dBs of improvement in SNR through
eMVDR beamforming could actually result in better perceptual
audio quality after post-processing.

VII. CONCLUSION

We have presented a ML framework for sound source lo-
calization and beamforming with microphone arrays. The main
contribution of this paper is the novel adoption of an ML frame-
work, leading to an efficient algorithm which works very well
in practice. In particular, the proposed ML-SSL framework can
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handle reverberant environments and unknown directional pat-
terns of the microphones, and is linear in the number of micro-
phones. Extensive experiments have demonstrated the superior
performance of the proposed ML-SSL methods. The results on
over 400 min of captured audio/video signals showed a 17% re-
duction in error rate, i.e., an increase in accuracy from 88.13%
to 90.13%.

Close inspection of the remaining errors indicates a surpris-
ingly high number of multi-source frames, which happens often
during daily meetings [30]. Future work will include extending
the current framework to multisource scenarios.
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