
A Provably Correct Sampler for Probabilistic
Programs
Chung-Kil Hur1, Aditya V. Nori2, Sriram K. Rajamani2, and Selva
Samuel3

1 Seoul National University
gil.hur@sf.snu.ac.kr

2 Microsoft Research
{adityan, sriram}@microsoft.com

3 Carnegie Mellon University
ssamuel@cs.cmu.edu

Abstract
We consider the problem of inferring the implicit distribution specified by a probabilistic program.
A popular inference technique for probabilistic programs called Markov Chain Monte Carlo or
MCMC sampling involves running the program repeatedly and generating sample values by
perturbing values produced in “previous runs”. This simulates a Markov chain whose stationary
distribution is the distribution specified by the probabilistic program.

However, it is non-trivial to implement MCMC sampling for probabilistic programs since each
variable could be updated at multiple program points. In such cases, it is unclear which values
from the “previous run” should be used to generate samples for the “current run”.

We present an algorithm to solve this problem for the general case and formally prove that the
algorithm is correct. Our algorithm handles variables that are updated multiple times along the
same path, updated along different paths in a conditional statement, or repeatedly updated inside
loops, We have implemented our algorithm in a tool called InferX. We empirically demonstrate
that InferX produces the correct result for various benchmarks, whereas existing tools such as
R2 and Stan produce incorrect results on several of these benchmarks.

1998 ACM Subject Classification D.2.4 [Software Engineering] Software/Program Verification

Keywords and phrases Probabilistic Programming, Program Correctness, Probabilistic Infer-
ence, Markov Chain Monte Carlo Sampling

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.p

1 Introduction

Recent years have seen a wide variety of languages for writing probabilistic programs, as well
as tools and techniques for performing inference over these programs [7,8,14,16,21,22,24].
One of the main advantages of probabilistic programming is that it allows developers who
are familiar with programming language notation, but unfamiliar with machine learning,
to focus on the specification of the probabilistic model, and not worry about how to
implement inference algorithms over the model. Probabilistic programming tools are able to
automatically generate inference code from specifications written as probabilistic programs,
thus reducing the degree of expertise required to implement a machine learning algorithm.

We focus on sampling-based inference, in particular, Metropolis-Hastings (MH) based
sampling algorithms [3] for probabilistic programming languages. MH based sampling involves
execution of the input program with the characteristic that the sample generated at the
“current run” depends on the sample generated during the “previous run”.

© Chung-Kil Hur, Aditya V. Nori, Sriram K. Rajamani and Selva Samuel;
licensed under Creative Commons License CC-BY

35th International Conference on Foundation of Software Technology and Theoretical Computer Science
(FSTTCS’15).
Editors: Prahladh Harsha and Ganesan Ramalingam; pp. 1–21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 A Provably Correct Sampler for Probabilistic Programs

In a probabilistic program, a variable can be assigned values more than once in a single
path or assigned values along different paths, and it is unclear what “previous value” to use
in generating a “current value” of the variable. For existing probabilistic programming tools
such as R2 [22] and Stan [12], the notion of “previous value” used is incorrect (we give
examples and more details later), and therefore these tools can produce incorrect results.

In this paper, we precisely define a sample drawn from the distribution represented by the
program by specifying a big-step operational semantics for probabilistic programs. We show
that this operational semantics is equivalent to the widely accepted denotational semantics
of probabilistic programs [17].

Based on this notion of a sample, we then propose a simple MH algorithm for probabilistic
programs where a variable can be updated at multiple program points. Our main insight is
to track the ordered list of values that a variable gets assigned during a run, together with
the distributions that were used to generate these values. We present a procedure to make
use of values from such a list generated during a “previous run” to generate samples for the
“current run”, as well as calculate the quantities (such as acceptance ratio) that are needed
for MH sampling. Complications arise because each run of the program can follow different
paths with potentially different number of probabilistic assignments to a variable along each
path resulting in lists of different lengths across different runs. Our algorithm handles all
such cases.

We have implemented our algorithm in a tool called InferX, and compare it with existing
probabilistic programming tools such as R2 and Stan. We prove formally that our algorithm
correctly implements MH for probabilistic programs. We also demonstrate cases where
existing tools produce incorrect results, whereas our algorithm produces correct results in all
cases.

2 Overview

In this section, we first introduce probabilistic programs with an example, and then motivate
our algorithm by describing the complications that arise while performing correct MH
sampling-based inference for probabilistic programs.

Consider the probabilistic program in Figure 1 that is defined over two Boolean variables
x and y. The program tosses two fair coins (modeled by calls to Bernoulli(0.5)) in lines
2 and 3, and assigns the outcomes to the variables x and y respectively. The observe
statement observe(x || y) in line 4 blocks all executions of the program that do not satisfy
the Boolean expression (x || y). The meaning of this program is the distribution over its
return expression (which is the tuple (x, y) conditioned by permitted executions of the
program). This distribution is: Pr(x = false, y = false) = 0, and Pr(x = false, y = true)
= Pr(x = true, y = false) = Pr(x = true, y = true) = 1/3.

1: bool x, y;
2: x ~ Bernoulli(0.5);
3: y ~ Bernoulli(0.5);
4: observe(x || y);
5: return(x, y);

Figure 1 A simple probabilistic pro-
gram.

Inference. Probabilistic inference is the task of de-
termining the distribution implicitly specified by a
probabilistic program. Inference can be performed
by executing the program several times and averag-
ing over the resulting samples. To do this efficiently,
many probabilistic programming tools [8, 12,22] em-
ploy Markov Chain Monte Carlo (MCMC) sampling algorithms [19] and their variants.

To make this paper self-contained, we give a brief overview of the most basic form of an
MCMC algorithm which is the Metropolis-Hastings (MH) algorithm [19]. The MH algorithm
takes a target probability distribution T (x̄) as input, and returns samples that are distributed

C. Hur, A. V. Nori, S. K. Rajamani, and S. Samuel 3

according to this distribution by performing the following steps:
1. First, a proposal distribution Q(vold → vnew) is used to pick a new value vnew for the

variable x̄ by appropriately perturbing its old value vold.
2. Next, a parameter β called the acceptance ratio is computed. It is used to decide whether

to accept or reject the new sampled value vnew for x̄, and is defined as follows:

β = min
{

1, T (vnew)×Q(vnew → vold)
T (vold)×Q(vold → vnew)

}
3. The sample is accepted if a random draw from a Bernoulli distribution with mean β (1

occurs with probability β and 0 occurs with probability 1− β) results in a 1, otherwise it
is rejected.

The MH algorithm executes the above steps iteratively to generate samples.
A probabilistic program P denotes a target distribution T implicitly (see Section 3 for a

formal definition of the target distribution denoted by a probabilistic program).
In order to perform MH sampling on a probabilistic program, we need to run the program

P which results in the state being constructed incrementally, as P executes along a path.
Along the path, the program encounters several probabilistic assignments to variables, and
to generate a new value for each variable, we require the corresponding old value of the
variable from the previous run of the program. Such an association between old and new
values is easy if each variable is assigned only once, or if the program is a single path without
branches or loops.

However, associating old values with new values is non-trivial for the general case. If
the program has branches or loops, the previous value corresponding to a probabilistic
assignment may come from an assignment in a different branch than the one currently
being executed. Also, different branches may generate samples for the same variable from
different distributions. Alternatively, a variable may have been assigned multiple times
during execution of the previous run, and it is sometimes unclear which of these values is to
be used to generate values for the current run. So, care must be taken to compute the MH
acceptance ratio correctly. Due to these reasons, implementing the above 3 steps of the MH
algorithm for a probabilistic program is non-trivial.

We illustrate the difficulties with implementing a correct sampling algorithm via the following
examples.

Example 1 (mixtures). Consider the probabilistic program shown in Figure 2(a). The
program is defined over two variables x and y. The variable y is drawn from a mixture of a
Gaussian distribution and a Gamma distribution (specified by the if-then-else statement in
lines 3–6), whereas the variable x is drawn from another Gaussian distribution (line 2), and
determines the mixture proportion.

Suppose we perform MH sampling for this example. Assume that during run n, the
program follows the path 1, 2, 3, 4, 7. That is, x was assigned a value greater than 0, say
0.1, and the “then” branch of the conditional statement was taken, and y was assigned a
value say 9.6 from the distribution Gaussian(10, 2).

Next, we consider how to execute run n+ 1 using MH sampling. During run n+ 1, at
line 2, in order to generate a current value for x, we need to propose a value for x using a
proposal distribution Qx centered around the old value of x, namely 0.1, and calculate the
parameter βx as the ratio described earlier. Now suppose the current value of x so chosen is
−0.05 which is less than 0, then the “else" branch is taken, and we need to produce a current
value for y.

FSTTCS’15

4 A Provably Correct Sampler for Probabilistic Programs

1: double x, y;
2: x ~ Gaussian(0, 1);
3: if (x > 0) then
4: y ~ Gaussian(10, 2);
5: else
6: y ~ Gamma(3, 3);
7: return y;

(a) (b)

(c) (d)

Figure 2 A probabilistic program for a mixture model together with inference results.

How should we now generate the current value for y? Prior work such as [29] use the
value of y from the most recent run which took the “else” branch, say run n− 3 (assuming
runs n−2 and n−1 took the “then” branch) and use that value to generate the current value
of y. The probabilistic programming tools R2 [22] and Stan [12] follow the same algorithm.

However, if a value from a run other than the previously accepted run is used, then this
would result in the algorithm converging to the incorrect distribution. This is shown in
the plots in Figure 2. Plot 2(b) depicts the distribution inferred by R2 for the program in
Figure 2(a), and plot 2(c) shows the distribution computed by Stan for the same program.
The density function of the correct distribution for this example is shown by the line graph
labelled Actual in each of the plots in Figure 2.

Example 2 (loop). Consider the probabilistic program for a hierarchical model shown in
Figure 3(a). The loop in lines 4–7 constructs a series of Gaussian distributions with the final
answer also being a Gaussian distribution (shown by the line graphs labelled Actual in the
plots of Figure 3). The variable x is assigned 11 times during an execution of the program.

Tools like R2 and Stan use the last value that x was assigned in the previous run
to generate each of the 11 values in the current run. So, these tools produce incorrect
results as shown by the density histogram plots 3(b) and 3(c), respectively. To perform MH
sampling correctly, it is necessary to record each of the 11 values generated for x and use the
corresponding previous value to propose a new value in the current run.

In addition to keeping track of previous values correctly, it is also important to record
the distributions in the corresponding sampling statements whose execution generated those
values. This is necessary so that the density of the previous value may be computed w.r.t.
the correct target distribution while computing the acceptance ratio.

Algorithm. Motivated by the above examples, we desire to come up with an algorithm
which correctly chooses the appropriate value from the previous run to be used to propose
values for the current run, and computes the correct acceptance ratio in all possible scenarios.

Our sampling algorithm, called InferX, is based on a sampling-based operational

C. Hur, A. V. Nori, S. K. Rajamani, and S. Samuel 5

1: double x;
2: int i = 0;
3: x ~ Gaussian(0, 1);
4: while (i < 10) do {
5: x ~ Gaussian(x, 3);
6: i = i+1;
7: }
8: return x;

(a) (b)

(c) (d)

Figure 3 A probabilistic program for a hierarchical model together with inference results.

semantics for probabilistic programs that specifies the meaning of a sample by clearly
setting out all the values generated in an execution that would need to be tracked. The
operational semantics also specifies how to compute the probability density for the sample
generated in an execution so that the MH acceptance ratio may be computed correctly. In
addition, InferX uses samples from only the previously accepted run to propose new values in
the current run. We also prove that by doing this, InferX computes the correct distribution
specified by any input probabilistic program. We informally describe the main ideas behind
the algorithm next. A more complete and formal description is given in Sections 3 and 4.

InferX uses a list for each variable in the program to keep track of the probabilistic
assignments to that variable during a single run of the program (as opposed to the standard
variable to value mapping). Each element of the list is a pair whose first element is the value
generated for the corresponding variable when a sampling statement was encountered during
the execution of the program. The second element of the pair is used to store information
about the distribution used in the sampling statement and its parameters. This information
about distributions is stored in order to compute the MH acceptance ratio correctly.

Specifically, InferX maintains two lists for each sampled variable x in the program:
1. The first list lpre is used to store the samples generated for x together with the distribution

information at the corresponding sampling statement executed in the most recent run
which produced a sample that was accepted. The values in this list are used to propose
new values for x. The distribution information is used to update the MH acceptance
ratio.

2. The second list lcur is used to store the samples produced for x paired with the distribution
information at the corresponding sampling statement executed in the current run of the
program. When a sample is accepted, lpre is assigned the value of lcur. Otherwise, lcur is
discarded, and constructed again as the program is executed and new values are proposed
for x.

We now informally show how InferX correctly works for the previous examples.

FSTTCS’15

6 A Provably Correct Sampler for Probabilistic Programs

Example 1 (mixtures). For the program in Figure 2(a), the variables x and y are sampled
only once in every run of the program. Therefore, the lpre and lcur lists for both x and y
will each contain one element at the end of every run. The sample value in the lpre and lcur
lists for x is produced by the execution of the probabilistic assignment statement in line 2.
The distribution information for x would note that the distribution at line 2 is a standard
Gaussian distribution.

On the other hand, the sample value and distribution information in the lpre and lcur
lists for y can be generated either by executing line 4 (if the “then” branch is taken) or line 6
(if the “else” branch is taken). This ensures that correct previous values are used to propose
new values of y even when different branches are taken in different runs of the program.

Storing the distribution information also enables the computation of the density of the
previous sample w.r.t. to the correct target distribution which is needed for calculating the
MH acceptance ratio. By doing this, InferX is able to produce the correct answer as shown
by the plot in Figure 2(d).

Example 2 (loop). The program in Figure 3(a) contains one random variable x which is
sampled 11 times during an execution (one at line 3 and ten at line 5). Thus, the lpre and
lcur lists for x will each contain 11 elements at the end of every run.

The first value in lpre is generated by the probabilistic assignment statement in line 3 in
the previous run. This value is used to propose a new value for x when line 3 is executed in
the current run. This new proposed value is added as the first element of the first pair in the
list lcur for x. The corresponding distribution information in both the lists specifies that the
target is the standard Gaussian distribution.

Similarly, the other 10 values in lpre come from the execution of the probabilistic assign-
ment statement in line 5 during the iterations of the while loop in the previous run, and are
used to propose a new value for x when line 5 is executed in the corresponding iteration in
the current run. Each proposed value for x is added to the list lcur as the first element of
the corresponding pair. The distribution information for each of these pairs in both lists
specifies that the target distribution is a Gaussian distribution whose mean is the value of x
before line 5 is executed in that iteration and whose standard deviation is 3.

As noted earlier, the distribution information is used to compute the density of the
previous samples w.r.t. to the correct target distribution to enable the correct computation
of the MH acceptance ratio. InferX computes the correct distribution for this example also
as can be seen in the plot 3(d).

Notice that we only maintain the sequence of values generated for a variable during an
execution. It is not necessary to keep track of the program points which produced these
values. Also, note that different runs of the program may produce lists of different lengths
for a particular variable, since different runs can follow different paths in the program.

If the list lpre for a given variable x has fewer elements than those needed to produce
values for the current run, then, for the extra samples that are produced in the current run,
the algorithm resorts to Metropolis independent sampling [10, 18, 27]. It is a modification to
the MH algorithm in which the proposal distribution is independent of the previous sample
value. The MH acceptance ratio is also updated appropriately.

On the other hand, if the list lpre for a given variable x has more elements than those
needed to produce values for the current run, then, the extra values in lpre are used to
produce some adjustments in the MH acceptance ratio β. These details are explained in
Section 4.

C. Hur, A. V. Nori, S. K. Rajamani, and S. Samuel 7

x ∈ Vars
uop ::= · · · C unary operators
bop ::= · · · C binary operators
ϕ,ψ ::= · · · logical formula

E ::= expressions
| x variable
| c constant
| E1 bop E2 binary operation
| uop E unary operation

S ::= statements
| skip skip
| x = E deterministic assignment
| x ∼ Dist(θ̄) probabilistic assignment
| observe(ϕ) observe

| S1;S2 sequential composition
| if E then S1 else S2 conditional composition
| while E doS while−do loop

P ::= S return (E1, . . . , En) program

Figure 4 Syntax of Prob.

• Unnormalized Semantics for Statements
JSK ∈ (Σ→ [0, 1])→ Σ→ [0, 1]

JskipK(f)(σ) := f(σ)
Jx = EK(f)(σ) := f(σ[x← σ(E)])

Jx ∼ Dist(θ̄)K(f)(σ) :=
∫
v∈Val Dist(σ(θ̄))(v)× f(σ[x← v]) dv

Jobserve(ϕ)K(f)(σ) :=
{

f(σ) if σ(ϕ) = true
0 otherwise

JS1;S2K(f)(σ) := JS1K(JS2K(f))(σ)

Jif E thenS1 elseS2K(f)(σ) :=
{

JS1K(f)(σ) if σ(E) = true
JS2K(f)(σ) otherwise

Jwhile E doSK(f)(σ) := supn≥0 Jwhile E don SK(f)(σ)
where

while E do0 S = observe(false)
while E don+1 S = if E then (S; while E don S) else (skip)

• Normalized Semantics for Programs
JS return (E1, . . . , En)K ∈ (Rn → [0, 1])→ [0, 1]

JS return (E1, . . . , En)K(f) := JSK(λσ. f(σ(E1), . . . , σ(En)))(⊥)
JSK(λσ. 1)(⊥)

where ⊥ denotes the default initial state.

Figure 5 Denotational Semantics of Prob.

3 Probabilistic Programs

We consider a probabilistic programming language called Prob [13] whose syntax is formally
described in Figure 4. A Prob program consists of statements and a return expression.
Variables have base types such as bool, int, float and double, and expressions include
variables, constants, binary and unary operations. Statements include primitive statements
(skip, deterministic assignment, probabilistic assignment, observe) and composite statements
(sequential composition, conditionals and loops). Features such as arrays, pointers, structures
and function calls can be incorporated in the language, but for the sake of brevity, we omit
these features from the core language.

A popular choice of the specification of formal semantics of probabilistic programs is the
denotational semantics introduced by Kozen in [17]. This is summarized in Figure 5. The
denotational semantics specifies the meaning of a probabilistic program by defining the joint
distribution over the output state of the program, where a state σ of a program is a partial
valuation of all its variables. The set of all states (possibly infinite) is denoted by Σ.

However, in order to design an MCMC algorithm, we need to have a distribution over
program executions. To this end, we introduce a big-step operational semantics for Prob.
The operational semantics defines the probability density of a sample. It is interesting to
note here that each sample (a sequence of program states) uniquely determines a program

FSTTCS’15

8 A Provably Correct Sampler for Probabilistic Programs

(skip, σ) ⇓ε (1, σ) (x = E , σ) ⇓ε (1, σ[x← σ(E)])
σ(ϕ) = true

(observe(ϕ), σ) ⇓ε (1, σ)

v ∈ Val p = Dist(σ(θ̄))(v) > 0
(x ∼ Dist(θ̄), σ) ⇓x 7→[v] (p, σ[x← v])

(S1, σ) ⇓s1 (p1, σ1) (S2, σ1) ⇓s2 (p2, σ2)
(S1;S2, σ) ⇓s1·s2 (p1 × p2, σ2)

σ(E) = true (S1, σ) ⇓s1 (p1, σ1)
(if E thenS1 elseS2, σ) ⇓s1 (p1, σ1)

σ(E) = false (S2, σ) ⇓s2 (p2, σ2)
(if E thenS1 elseS2, σ) ⇓s2 (p2, σ2)

σ(E) = false
(while E doS, σ) ⇓ε (1, σ)

σ(E) = true (S; while E doS, σ) ⇓s (p, σ)
(while E doS, σ) ⇓s (p, σ)

where
ε = λu. []

x 7→ [v] = λu. if u = x then [v] else []
s1 · s2 = λu. s1(u) ++ s2(u), and ++ denotes list concatenation

Figure 6 Sampling-based operational semantics of Prob.

execution. We will also assume that all program executions terminate with probability 1.
The operational semantics thus gives rise to a distribution over these program executions.

From this distribution, the distribution over the output state can be derived by marginalizing
out the intermediate values. We also show that this distribution is the same as that defined
by the denotational semantics.

Sampling-based Operational Semantics. We now inductively define the sampling-based
operational semantics of Prob in Figure 6, which will form the basis of our MH-based
sampling algorithm presented in Section 4.

The relation (S, σ) ⇓s (p, σ′) intuitively means that if we run the program statement S
with initial state σ, it may internally draw a sample s ∈ S from the associated distributions
and terminate with output state σ′, with probability density p. Here the sample space S
is defined as Γ → List(Val) with Γ the set of variables and Val = Z] R. Notice that, as
explained earlier, a sample consists of a list of values associated with each random variable.

All rules of the sampling-based operational semantics are standard except for probabilistic
assignment, observe, and sequential composition statements. The probabilistic assignment
statement draws a sample v from the given distribution with the associated density p and
sets the variable x to v. The observe statement proceeds only when the given condition ϕ is
met. The sequential composition statement executes the sub-statements in order, and then
multiplies the associated densities and concatenates the generated samples.

4 Algorithm

Given a program P written in Prob, and κ (the number of samples to be generated) as input,
InferX (shown in Algorithm 1) returns a sequence of samples from the distribution specified
by P. Note that the parameter κ controls the accuracy of the algorithm—the greater the
number of samples generated by the algorithm, the better is the approximation to the actual
distribution specified by P. InferX uses standard ideas from MH sampling, which were
reviewed in Section 2. The program P is executed for κ times, and every execution produces
a sample (as defined by the operational semantics), and a value β which determines whether
the sample will be accepted or rejected.

In line 1 of Algorithm 1, InferX initializes variables Ω and Θacc. The list Ω is initialized
to an empty list, and is used to store the values of the return expression at the end of each
accepted run of the program. The map Θacc is used to store the most recently accepted
sample and is initialized to the empty map. Θacc maps each sampled variable to a list of pairs

C. Hur, A. V. Nori, S. K. Rajamani, and S. Samuel 9

Algorithm 1 InferX(P, κ)
Input: A Prob program P, and κ, the number of samples to be generated.
Output: Samples from the distribution specified by P.

1: Ω := [], Θacc := ε
2: for i = 1 to κ do
3: β := 1.0, Θpre := Θacc, Θ := ε
4: σ := ⊥, ret := ()
5: S return(E1, . . . , En) := P
6: (σ, β,ΘPre,Θ) := Eval(S, σ, β,Θpre,Θ)
7: ret := (σ(E1), . . . , σ(En))
8: for x in Γ do (* Γ is the set of variables in P *)
9: while Θpre(x) 6= [] do
10: (vpre,∆pre) := Head(Θpre(x))
11: Θpre(x) := Tail(Θpre(x))
12: β := β × Prop(∆pre)(vpre)

∆pre(vpre)
13: end while
14: end for
15: if ret 6= () ∧ (Ω = [] ∨ β ≥ 1 ∨Bernoulli(β)) then
16: Ω := ret :: Ω
17: Θacc := Θ
18: else
19: if Ω 6= [] then Ω := Head(Ω) :: Ω endif
20: end if
21: end for
22: return Ω

generated for that variable in the last accepted execution of the program. The first element
of each pair in the list is the sample value v that is assigned to the variable. The second
element is the probability distribution from which the value v of the variable is drawn and is
used to compute the MH acceptance ratio β. Thus, the samples generated by Algorithm 1
conform to the definition of the sample specified by the operational semantics.

Lines 2–21 generate κ samples—each sample is either accepted or rejected based on the
value of the parameter β (lines 15–20 which encode the standard MH acceptance criterion).
Note that the first sample (represented by the test for empty Ω in line 15) is always accepted.
If a sample is rejected, then the program sample generated from the previous execution
of P is added to Ω (line 19). The maps ΘPre and Θ (initialized in line 3) have the same
type as Θacc. The map ΘPre is initialized to the previously accepted sample and is used
to determine the proposal distribution to use at each sampling statement and to compute
the acceptance ratio β correctly. The map Θ is used to build up the sample for the current
execution of the program.

Note that InferX has the same high level structure as the standard MH procedure.
The recursive procedure Eval (called in line 6) operates over the syntactic structure of the
program P. It defines the transitions of the Markov chain constructed by Algorithm 1.

The procedure Eval is described by the rules in Figure 7. Given a statement S, a
program state σ (which is a partial map from variables to values), a parameter β (which is
used to decide whether the sample generated is to be accepted or rejected), the map Θpre
and the map Θ, the procedure Eval(S, σ, β,Θpre,Θ) computes new values for σ, β, Θpre
and Θ obtained after executing statement S.

For instance, consider the assignment statement x = E . Upon executing this from a state
σ, we obtain the state σ[x← σ(E)], i.e., the value corresponding to the variable x in σ is set
to the evaluation of E over σ. The values of β, Θpre and Θ remain unchanged. The rules for
the other statements also proceed in a similar manner.

The rule for the probabilistic assignment statement “x ∼ Dist(θ̄)" in Eval specifies how

FSTTCS’15

10 A Provably Correct Sampler for Probabilistic Programs

Eval(x = E , σ, β,Θpre,Θ) = (σ[x← σ(E)], β,Θpre,Θ)
Eval(skip, σ, β,Θpre,Θ) = (σ, β,Θpre,Θ)

Eval(S1;S2, σ, β,Θpre,Θ) = let (σ′, β′,Θ′pre,Θ′) = Eval(S1, σ, β,Θpre,Θ) and
let (σ′′, β′′,Θ′′pre,Θ′′) = Eval(S2, σ

′, β′,Θ′pre,Θ′) in
(σ′′, β′′,Θ′′pre,Θ′′)

Eval(if E then S1 else S2, = if σ(E) then Eval(S1, σ, β,Θpre,Θ)
σ, β,Θpre,Θ) else Eval(S2, σ, β,Θpre,Θ)

Eval(x ∼ Dist(θ̄), σ, β,Θpre,Θ) = let ∆ = Dist(σ(θ̄)) and
let (v, β′,Θ′pre) =
if Θpre(x) = [] then

let v ∼ Prop(∆) and
let β′ = β × ∆(v)

Prop(∆)(v) in (v, β′,Θpre)
else

let (vpre,∆pre) = Head(Θpre(x)) and
let v ∼ Prop(∆, vpre) and
let β′ = β × ∆(v) × Prop(∆pre,v)(vpre)

∆pre(vpre) × Prop(∆,vpre)(v) in
(v, β′,Tail(Θpre))

in
(σ[x← v], β′,Θ′pre,Θ(x) ++ [(v,∆)])

Eval(observe (ϕ), σ, β,Θpre,Θ) = if σ(ϕ) then (σ, β,Θpre,Θ) else (σ, 0,Θpre,Θ)

Eval(while E do S, σ, β,Θpre,Θ) = let (σ′, β′,Θ′pre,Θ′) = Eval(S, σ, β,Θpre,Θ) in
if σ(¬E) then

(σ, β,Θpre,Θ)
else

Eval(while E do S, σ′, β′,Θ′pre,Θ′)

Figure 7 Given a statement S and parameters σ, β, Θpre, and Θ, Eval computes a tuple of
parameters evaluated over S which are used by Algorithm 1 .

to generate a sample and update β appropriately. As seen in Figure 7, in this case, first the
variable ∆ is set to the probability distribution function Dist(θ̄) with respect to the current
state σ (i.e., the parameters of the distribution θ̄ are evaluated at the state σ). Next, a value
v is sampled, and an update to β is performed based on the following conditions:

Previous value for x is not available. This condition is represented by the predicate
Θpre(x) = [], which says that there are no values associated with the variable x from
the previous execution of P. A new value v for x is drawn from a proposal distribu-
tion Prop(∆) that only depends on the target distribution ∆. In essence, this is the
Metropolized independent sampling algorithm [18] which is a modification to the MH
algorithm in which the proposal distribution is independent of the previous sample value.
There are a number of choices for the proposal distribution, and in our implementation
we set Prop(∆) to be the target distribution ∆.

The updated value β′ of β is the usual update for an MH algorithm. Intuitively, it
is helpful to think of the previous sample value as a special value that is drawn from
a distribution which produces this value with probability 1. If the proposal for this
distribution is taken to be the distribution itself, then the MH acceptance ratio for x
reduces to ∆(v)

Prop(∆)(v) .
Previous value for x is available. This means that the list associated with the variable x in

the map Θpre is not empty. In particular, the previous value vpre for x and the probability
density function ∆pre from which vpre is drawn are at the head of the list for x in the map
Θpre. Therefore, a new value for x is drawn from a proposal distribution Prop(∆, vpre)
that depends on the previous value vpre for x.

C. Hur, A. V. Nori, S. K. Rajamani, and S. Samuel 11

The updated value β′ of β is the usual update for an MH algorithm. As noted
earlier, ∆pre(vpre) is used for updating β and so, it is important to also keep track of the
distribution from which a sample is drawn.

Finally, the state σ is updated to σ[x← v], the entry for x in the map Θ is appended with the
value (v,∆), and the tuple (σ[x← v], β′, Tail(Θpre), Θ(x)++[(v,∆)]) is returned (where
++ denotes list concatenation).

It is also important to note that lines 8–14 in Algorithm 1 update β to take care of cases
where the current value for a variable is undefined and the previous value is defined. This
can be intuitively understood in a similar way as the update of β when a previous value is
not available.

The following theorem states that for a probabilistic program P , InferX(P, κ), computes
answers that are consistent with JPK.

I Theorem 4.1. For a program P, the expectation of its return expression computed with
respect to the samples generated by InferX(P, κ) approaches its denotational semantics JPK,
as κ→∞.

5 Evaluation

First, we show that InferX computes correct answers for a set of micro-benchmark prob-
abilistic programs. For these programs, other sampling based tools such as R2 and Stan
compute answers that deviate significantly from the actual or analytically computed answers.
Next, to demonstrate the practical applicability of InferX, we also show that it is able to
work effectively for three real-world benchmark programs. All experiments were performed
on a PC with a 2.00 GHz Intel 3rd Generation Core i7 processor and 8 GB RAM and running
Microsoft Windows 8.1.

The first two micro-benchmarks that we consider are the programs in Figures 2(a) and 3(a).
As can be seen in the plots 2(d) and 3(d), InferX is able to estimate the correct answers.
As discussed in Section 2, both R2 and Stan produce incorrect answers for these programs.

The other micro-benchmarks that we consider are shown in Figure 8. The benchmark (a)
includes two assignments to the same variable x. The benchmark (b) is interesting because
the variable x can be assigned different number of times across different runs of the program.
If line 2 produces a value greater than 0.5, x is sampled again at line 4. On the other hand,
if a sample value less than or equal to 0.5 is generated at line 2, then line 4 is not executed
and x gets assigned only once. The benchmark (c) is a hierarchical model in which the prior
distribution is estimated by means of a mixture of Gaussian distributions.

As seen from these figures, InferX estimates distributions that coincide with the actual
or analytically computed distributions. On the other hand, R2 and Stan produce incorrect
results for all of the micro-benchmarks due to their lack of properly handling multiple
sampling for the same variable and sampling from different execution paths.

To demonstrate that InferX is a practical algorithm, we also evaluate it on the following
real-world benchmarks that are frequently used to test the robustness and scalability of
Bayesian inference algorithms. As seen from the times reported below, InferX is quite
efficient on these benchmarks and therefore a practical solution.

Linear regression: This is the standard Bayesian formulation of the linear regression
model for fitting 1000 points [28] (time taken by InferX: 12.55 seconds).
HIV: This is a multi-level or hierarchical linear model with varying slope and intercept.
This model is for inferring the immunity levels in HIV-positive patients. The data

FSTTCS’15

12 A Provably Correct Sampler for Probabilistic Programs

1: double x;
2: x ~ Gaussian(10, 20);
3: x ~ Gaussian(20, 30);
4: return x;

(a) Multiple assignments.

1: double x;
2: x ~ Gaussian(0, 1);
3: if (x > 0.5) then
4: x ~ Gaussian(10, 2);
5: return x;

(b) Mixture model 1.

1: double x, y, z;
2: x ~ Gaussian(0, 1);
3: if (x > 0.5) then
4: y ~ Gaussian(10, 2);
5: else
6: y ~ Gamma(3, 3);
7: z ~ Gaussian(y, 3);
8: return z;

(c) Mixture model 2.

Figure 8 Micro-benchmarks

comprises of 369 measurements taken over a two-year period on 84 patients [6] (time
taken by InferX: 4.36 seconds).

Halo: This is a skill rating system for a tournament of the Halo video game among 35
teams, with 2 players per team, and 500 games played between the teams [11] (time taken
by InferX: 5809 seconds).

6 Related work

There has been significant progress in the development of probabilistic programming languages
and tools in recent years [1, 7–9,12,21,22,24]. There are several approaches to performing
inference for programs written in these languages: (1) by using static analysis techniques [4,
20, 26] such as abstract interpretation and data flow analysis, (2) by using dynamic analysis
techniques [2,8,12,22] such as MCMC sampling algorithms [19], or (3) by using Bayesian
techniques where the program is compiled to a probabilistic model such as a Bayesian
network [15] and inference is performed using probabilistic inference techniques such as belief
propagation [23] over the probabilistic model [21].

We have observed that for techniques based on dynamic analysis, MH sampling based
approaches in particular, tracking an ordered list of values that a variable gets assigned during
a run of a program together with the distributions that were used to generate these values
results in a correct sampling procedure for probabilistic programs. It might be tempting to
consider a variable renaming scheme such as the static single assignment form (SSA) [5], or
a variable indexing scheme [29] based on line numbers, distribution types, etc. (implemented
in Stochastic Matlab). However, such schemes are inadequate to determine all values in the
previous run that must be kept track of in order to propose a new value in the current run.
This is clearly seen in Example 2 in Section 2.

For other inference techniques such as those based on static analysis [26] or Bayesian
inference [21], it would be interesting to study analogous techniques for implementing provably
correct inference algorithms.

C. Hur, A. V. Nori, S. K. Rajamani, and S. Samuel 13

7 Summary

We have highlighted the difficulties encountered in implementing a correct sampling-based
inference engine for imperative probabilistic programs via several examples. We have designed
an algorithm InferX that overcomes these challenges, and generates samples from the correct
distribution specified by the corresponding input probabilistic program.

Our algorithm is general and works for all probabilistic programs. We have also formally
proved the correctness of our algorithm. We have implemented it in a tool called InferX,
and have shown empirically that it works in all cases by comparing it with existing tools
such as R2 and Stan. We have also shown that InferX is a practical solution by evaluating
it on real-world benchmarks.

7.1 Acknowledgements
We are grateful to Johannes Borgström for his valuable feedback on this paper.

References
1 Johannes Borgström, Andrew D. Gordon, Michael Greenberg, James Margetson, and Jur-

gen Van Gael. Measure transformer semantics for Bayesian machine learning. In European
Symposium on Programming (ESOP), pages 77–96, 2011.

2 Arun T. Chaganty, Aditya V. Nori, and Sriram K. Rajamani. Efficiently sampling proba-
bilistic programs via program analysis. In Artificial Intelligence and Statistics (AISTATS),
2013.

3 Siddhartha Chib and Edward Greenberg. Understanding the Metropolis-Hastings algo-
rithm. American Statistician, 49(4):327–335, 1995.

4 Guillaume Claret, Sriram K. Rajamani, Aditya V. Nori, Andrew D. Gordon, and Johannes
Borgström. Bayesian inference for probabilistic programs via symbolic execution. In Foun-
dations of Software Engineering (FSE), 2013.

5 Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.
An efficient method of computing static single assignment form. In Principles of Program-
ming Languages (POPL), pages 25–35, 1989.

6 Andrew Gelman and Jennifer Hill. Data Analysis Using Regression and Multilevel/Hierar-
chical Models. Cambridge University Press, 2006.

7 W. R. Gilks, A. Thomas, and D. J. Spiegelhalter. A language and program for complex
Bayesian modelling. The Statistician, 43(1):169–177, 1994.

8 Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B.
Tenenbaum. Church: a language for generative models. In Uncertainty in Artificial Intel-
ligence (UAI), pages 220–229, 2008.

9 Andrew D. Gordon, Mihhail Aizatulin, Johannes Borgström, Guillaume Claret, Thore
Graepel, Aditya V. Nori, Sriram K. Rajamani, and Claudio Russo. A model-learner pattern
for Bayesian reasoning. In Principles of Programming Languages (POPL), pages 403–416,
2013.

10 W. K. Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57(1):97–109, 1970.

11 Ralf Herbrich, Tom Minka, and Thore Graepel. TrueSkill: A Bayesian skill rating system.
In Neural Information Processing Systems (NIPS), pages 569–576, 2006.

12 Matthew D. Hoffman and Andrew Gelman. The no-U-turn sampler: Adaptively setting
path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, in press,
2013.

FSTTCS’15

14 A Provably Correct Sampler for Probabilistic Programs

13 Chung-Kil Hur, Aditya V. Nori, Sriram K. Rajamani, and Selva Samuel. Slicing probabilis-
tic programs. In Programming Languages Design and Implementation (PLDI), 2014.

14 S. Kok, M. Sumner, M. Richardson, P. Singla, H. Poon, D. Lowd, and P. Domingos. The
Alchemy system for statistical relational AI, 2007. http://alchemy.cs.washington.edu.

15 D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques.
MIT Press, 2009.

16 D. Koller, D. A. McAllester, and A. Pfeffer. Effective Bayesian inference for stochastic
programs. In National Conference on Artificial Intelligence (AAAI), pages 740–747, 1997.

17 Dexter Kozen. Semantics of probabilistic programs. Journal of Computer and System
Science (JCSS), 22:328–350, 1981.

18 Jun S. Liu. Metropolized independent sampling with comparisons to rejection sampling
and importance sampling. Statistics and Computing, 6(2):113–119, 1996.

19 David J. C. MacKay. Information Theory, Inference & Learning Algorithms. Cambridge
University Press, New York, NY, USA, 2002.

20 P. Mardziel, S. Magill, M. Hicks, and M. Srivatsa. Dynamic enforcement of knowledge-
based security policies using probabilistic abstract interpretation. Journal of Computer
Security, 2013.

21 Tom Minka, John Winn, John Guiver, and Anitha Kannan. Infer.NET 2.3, November 2009.
Software available from http://research.microsoft.com/infernet.

22 Aditya V. Nori, Chung-Kil Hur, Sriram K. Rajamani, and Selva Samuel. R2: An efficient
MCMC sampler for probabilistic programs. In AAAI Conference on Artificial Intelligence
(AAAI), 2014.

23 Judea Pearl. Probabilistic Reasoning in Intelligence Systems. Morgan Kaufmann, 1996.
24 Avi Pfeffer. The design and implementation of IBAL: A general-purpose probabilistic

language. In Lise Getoor and Ben Taskar, editors, Introduction to Statistical Relational
Learning. MIT Press, 2007.

25 Walter Rudin. Principles of mathematical analysis. McGraw-Hill, 1976.
26 S. Sankaranarayanan, A. Chakarov, and S. Gulwani. Static analysis of probabilistic pro-

grams: Inferring whole program properties from finitely many executions. In Programming
Languages Design and Implementation (PLDI), 2013.

27 Luke Tierney. Markov chains for exploring posterior distributions. Annals of Statistics,
22(4):1701–1728, 1994.

28 Gero Walter and Thomas Augustine. Bayesian linear regression - different conjugate models
and their (insensitivity) to prior-data conflict. Technical report, University of Munich, TR-
069, 2009.

29 David Wingate, Andreas Stuhlmüller, and Noah D. Goodman. Lightweight implementa-
tions of probabilistic programming languages via transformational compilation. In Artificial
Intelligence and Statistics (AISTATS), 2011.

http://alchemy.cs.washington.edu
http://research.microsoft.com/infernet

C. Hur, A. V. Nori, S. K. Rajamani, and S. Samuel 15

A Correctness of Sampling-based Operational Semantics

A.1 Probability Density Function (PDF)
Unnormalized PDF. From the operational semantics, we derive an unnormalized PDF PS
on the sample space S for a program statement S. First, we note that defining a probability
distribution on S is equivalent to defining the distribution over program executions as every
valid program execution can be uniquely determined by a sample in S. Next, the PDF PS is
defined as follows:

PS(σ, s) =
{
p if (S, σ) ⇓s (p, σ′)
0 otherwise

PS is well-defined, and this follows from Lemma 1.1 below. We also define an output function
OS as follows:

OS(σ, s) =
{
σ′ if (S, σ) ⇓s (p, σ′)
⊥ otherwise

The output function OS gives the output state produced by the program when it starts from
input state σ and generates sample s. Then, the unnormalized expectation function ES is
defined as follows:

ES(f)(σ) =
∫
s∈S

PS(σ, s)× f(OS(σ, s)) ds

Note that the sample space S = Γ→ List(Val) is equipped with a natural measure since it is
isomorphic to the measure space (

⊎
n∈N(Z] R)n)Γ, which is constructed from the measure

spaces Z and R by taking disjoint unions and countable products.

Normalized PDF. The normalized PDF PP and the normalized expectation EP for a
program P = S return (E1, . . . , En) are defined as follows:

PP(s) = PS(⊥, s)
ES(λσ. 1)(⊥)

and

EP(f) = ES(λσ. f(σ(E1), . . . , σ(En)))(⊥)
ES(λσ. 1)(⊥)

A.2 Correctness
In this section, we show that the denotational semantics of a program is equivalent to its
expectation from the probability distribution induced by the sampling-based operational
semantics.

To prove this, we begin by showing that samples in S uniquely determine program
executions.

I Lemma 1.1.

(S, σ) ⇓s (p1, σ1) ∧ (S, σ) ⇓s (p2, σ2) =⇒ p1 = p2 ∧ σ1 = σ2.

Proof: One can first prove the following by a straight-forward induction on the structure of
the relation (S, σ) ⇓s1 (p1, σ1).

s1 · s′1 = s2 · s′2 ∧ (S, σ) ⇓s1 (p1, σ1) ∧ (S, σ) ⇓s2 (p2, σ2)
=⇒ s1 = s2 ∧ p1 = p2 ∧ σ1 = σ2.

FSTTCS’15

16 A Provably Correct Sampler for Probabilistic Programs

Then, the lemma follows by setting s1 = s2 = s and s′1 = s′2 = ε.

Now, we show that the expectation computed using the probability distribution induced
by the sampling-based operational semantics of the program is the same as that obtained by
using the denotational semantics.

I Lemma 1.2.

E(while E doS1);S2(f)(σ) = supn≥0 E(while E don S1);S2(f)(σ).

Proof: One can first show, by induction on n, that

((while E don S1);S2, σ) ⇓s (p, σ′)
=⇒ ((while E doS1);S2, σ) ⇓s (p, σ′).

(1)

Also, the following can be shown by induction on the depth of the derivation tree of
((while E doS1);S2, σ) ⇓s (p, σ′):

((while E doS1);S2, σ) ⇓s (p, σ′)
=⇒ ∃n0. ∀n ≥ n0. ((while E don S1);S2, σ) ⇓s (p, σ′).

(2)

From (1) and (2), it follows that

P(while E doS1);S2(σ, s)× f(O(while E doS1);S2(σ, s))
= lim
n→∞

P(while E don S1);S2(σ, s)× f(O(while E don S1);S2(σ, s)).

Thus, by the dominated convergence theorem [25], we have

E(while E doS1);S2(f)(σ) = lim
n→∞

E(while E don S1);S2(f)(σ)

≤ supn≥0 E(while E don S1);S2(f)(σ).

By (1), we also have

E(while E doS1);S2(f)(σ) ≥ supn≥0 E(while E don S1);S2(f)(σ),

which completes the proof.

I Corollary 1.3.

Ewhile E doS1(f)(σ) = supn≥0 Ewhile E don S1(f)(σ).

Proof: By Lemma 1.2, we have

Ewhile E doS1(f)(σ)
= E(while E doS1);skip(f)(σ)
= supn≥0 E(while E don S1);skip(f)(σ)
= supn≥0 Ewhile E don S1(f)(σ).

C. Hur, A. V. Nori, S. K. Rajamani, and S. Samuel 17

I Lemma 1.4.

ES1;S2(f) = ES1(ES2(f)).

Proof: We prove the goal by induction on S1.
When S1 = skip:

Eskip;S2(f)(σ) = ES2(f)(σ) = Eskip(ES2(f))(σ).

When S1 = (x = E):

Ex=E;S2(f)(σ) = ES2(f)(σ[x← σ(E)]) = Ex=E(ES2(f))(σ).

When S1 = (x ∼ Dist(θ̄)):

Ex∼Dist(θ̄);S2 (f)(σ)

=
∫
s∈S

Px∼Dist(θ̄);S2 (σ, s)× f(Ox∼Dist(θ̄);S2 (σ, s)) ds

=
∫
s∈Sx

Px∼Dist(θ̄);S2 (σ, s)× f(Ox∼Dist(θ̄);S2 (σ, s)) ds

where Sx = { s ∈ S | s(x) 6= [] } and
since ∀s ∈ S \ Sx. Px∼Dist(θ̄);S2 (σ, s) = 0

=
∫

(v,s)∈Val×S
Px∼Dist(θ̄);S2 (σ, (x 7→ [v]) · s)× f(Ox∼Dist(θ̄);S2 (σ, (x 7→ [v]) · s)) d(v, s)

since, for all measurable B ⊆ Sx,
|B| = |{ (v, s) ∈ Val× S | (x 7→ [v]) · s ∈ B }|

=
∫
v∈Val

∫
s∈S

Dist(σ(θ̄))(v)×PS2 (σ[x← v], s)× f(OS2 (σ[x← v], s)) ds dv

=
∫
v∈Val

Dist(σ(θ̄))(v)×ES2 (f)(σ[x← v]) dv

= Ex∼Dist(θ̄)(ES2 (f))(σ).

When S1 = observe(ϕ):

If σ(ϕ) = true,

Eobserve(ϕ);S2(f)(σ) = ES2(f)(σ) = Eobserve(ϕ)(ES2(f))(σ) .

Otherwise,

Eobserve(ϕ);S2(f)(σ) = 0 = Eobserve(ϕ)(ES2(f))(σ) .

When S1 = S ′1;S ′′1 :

E(S′1;S′′1);S2(f)(σ)
= ES′1;(S′′1 ;S2)(f)(σ)
= ES′1(ES′′1 ;S2(f))(σ) (by induction hypothesis w.r.t. S ′1)
= ES′1(ES′′1 (ES2(f)))(σ) (by induction hypothesis w.r.t. S ′′1)
= ES′1;S′′1 (ES2(f))(σ) (by induction hypothesis w.r.t. S ′1)

FSTTCS’15

18 A Provably Correct Sampler for Probabilistic Programs

When S1 = if E thenS ′1 elseS ′′1 :

If σ(E) = true,

E(if E thenS′1 elseS′′1);S2(f)(σ)

= ES′1;S2(f)(σ)
= ES′1(ES2(f))(σ) (by induction hypothesis w.r.t. S ′1)
= Eif E thenS′1 elseS′′1 (ES2(f))(σ) .

Otherwise,

E(if E thenS′1 elseS′′1);S2(f)(σ)

= ES′′1 ;S2(f)(σ)
= ES′′1 (ES2(f))(σ) (by induction hypothesis w.r.t. S ′′1)
= Eif E thenS′1 elseS′′1 (ES2(f))(σ) .

When S1 = while E doS ′1:

By Lemma 1.2 and Corollary 1.3, we have

E(while E doS′1);S2(f)(σ) = supn≥0 E(while E don S′1);S2(f)(σ)
Ewhile E doS′1(ES2(f))(σ) = supn≥0 Ewhile E don S′1(ES2(f))(σ)

Thus, it suffices to show that

∀n. E(while E don S′1);S2(f) = Ewhile E don S′1(ES2(f)) .

We prove it by induction on n. The base case holds trivially. The step case holds as
follows. If σ(E) 6= true,

E(while E don+1 S′1);S2(f)(σ)
= ES2(f)(σ)
= Ewhile E don S′1(ES2(f))(σ)

If σ(E) = true,

E(while E don+1 S′1);S2(f)(σ)
= E(S′1;while E don S′1);S2(f)(σ)
= ES′1;((while E don S′1);S2)(f)(σ)
= ES′1(E(while E don S′1);S2(f))(σ) (by ind. hyp. w.r.t. S ′1)
= ES′1(Ewhile E don S′1(ES2(f)))(σ) (by ind. hyp. w.r.t. n)
= ES′1;while E don S′1(ES2(f))(σ) (by ind. hyp. w.r.t. S ′1)
= Ewhile E don+1 S′1(ES2(f))(σ)

I Lemma 1.5.

ES = JSK.

C. Hur, A. V. Nori, S. K. Rajamani, and S. Samuel 19

Proof: We prove this by induction on S.
When S = skip:

Eskip(f)(σ) = f(σ) = JskipK(f)(σ).

When S = (x = E):

Ex=E(f)(σ) = f(σ[x← σ(E)]) = Jx = EK(f)(σ).

When S = x ∼ Dist(θ̄):

Ex∼Dist(θ̄)(f)(σ)

=
∫
v∈Val

Dist(σ(θ̄))(v)× f(σ[x← v]) dv

= Jx ∼ Dist(θ̄)K(f)(σ).

When S = observe(ϕ):

If σ(ϕ) = true,

Eobserve(ϕ)(f)(σ) = f(σ) = Jobserve(ϕ)K(f)(σ).

Otherwise,

Eobserve(ϕ)(f)(σ) = 0 = Jobserve(ϕ)K(f)(σ).

When S = S1;S2:

By Lemma 1.4 and the induction hypothesis, we have

ES1;S2(f) = ES1(ES2(f)) = JS1K(JS2K(f)) = JS1;S2K(f).

When S = if E thenS1 elseS2:

From the induction hypothesis, we have that if σ(E) = true,

Eif E thenS1 elseS2(f)(σ)
= ES1(f)(σ)
= JS1K(f)(σ)
= Jif E thenS1 elseS2K(f)(σ).

Otherwise,

Eif E thenS1 elseS2(f)(σ)
= ES2(f)(σ) = JS2K(f)(σ)
= Jif E thenS1 elseS2K(f)(σ) .

When S = while E doS1:

By Corollary 1.3, we have

Ewhile E doS1(f)(σ) = supn≥0 Ewhile E don S1(f)(σ)
Jwhile E doS1K(f)(σ) = supn≥0 Jwhile E don S1K(f)(σ)

FSTTCS’15

20 A Provably Correct Sampler for Probabilistic Programs

Thus, it suffices to show that

∀n. Ewhile E don S1 = Jwhile E don S1K.

We prove this by induction on n. The base case holds trivially. The step case holds as
follows. If σ(E) 6= true,

Ewhile E don+1 S1(f)(σ) = f(σ) = Jwhile E don+1 S1K.

If σ(E) = true,

Ewhile E don+1 S1(f)(σ) = ES1;while E don S1(f)(σ)
= ES1(Ewhile E don S1(f))(σ) (by Lemma 1.4)
= JS1K(Jwhile E don S1K(f))(σ) (by induction hypothesis

w.r.t. S1, n)
= Jwhile E don+1 S1K(f)(σ).

I Theorem 1.6. The expectation from the probability distribution induced by the sampling-
based operational semantics of a probabilistic program P is equivalent to that computed using
the denotational semantics. In other words,

EP = JPK.

Proof: For P = S return (E1, . . . , En), we have

EP(f) = ES(λσ. f(σ(E1), . . . , σ(En)))(⊥)
ES(λσ. 1)(⊥)

= JSK(λσ. f(σ(E1), . . . , σ(En)))(⊥)
JSK(λσ. 1)(⊥)

= JPK(f).

C. Hur, A. V. Nori, S. K. Rajamani, and S. Samuel 21

B Proof of Theorem 4.1

I Theorem 4.1. For a program P, the expectation of its return expression computed with
respect to the samples generated by InferX(P, κ) approaches its denotational semantics JPK,
as κ→∞.
Proof: The proof proceeds according to the following steps. First, we show that InferX(P, κ)
computes the acceptance rate β correctly (as prescribed by the MH algorithm). This
shows that InferX is a sound or correct instance of the MH algorithm. Next, it is easy
to show that the target distribution for InferX is the PDF specified by the sampling-
based operation semantics defined in Appendix A. Finally, the theorem follows from the
correspondence between the denotational semantics and the sampling-based operational
semantics (Theorem 1.6).

To show the correctness of the acceptance rate β, first, by induction, it is easy to show
that the unnormalized PDF PS(⊥, s) (defined in Appendix A) of sample s ∈ (Γ→ List(Val))
satisfies the following equality:

PS(⊥, s) =
∏

x∈Γ(S)

(∏
0≤i<|s(x)|

∆s,x,i(s(x)[i])
)

where s(x)[i] is the ith value in the list for variable x in s, and ∆s,x,i is the distribution from
which s(x)[i] is drawn during the execution that generates the sample s. Also, it is easy to
see that the PDF of the proposal distribution Q(spre, s) used by InferX (i.e., the PDF used
to propose a new sample s from spre) is defined as follows:

Q(spre, s) =
∏

x∈Γ(S)

(∏
0≤i<|s(x)|

Prop(∆s,x,i, spre(x)[i])(s(x)[i])
)

where

Prop(∆, vpre)(v) =
{

Prop(∆, vpre)(v) if vpre is defined
Prop(∆)(v) if vpre is undefined

Therefore, the acceptance rate β for proposing s from spre is calculated as follows (note that
the first expression is exactly the MH calculation for β that is also described in Section 2):

β = PS(⊥,s)×Q(s,spre)
PS(⊥,spre)×Q(spre,s)

=
∏
x∈Γ(S)

(∏
0≤i<|s(x)|

∆s,x,i(s(x)[i])∏
0≤i<|spre(x)|

∆spre,x,i(spre(x)[i])

×
∏

0≤i<|spre(x)|
Prop((∆spre,x,i),s(x)[i])(spre(x)[i])∏

0≤i<|s(x)|
Prop((∆s,x,i),spre(x)[i])(s(x)[i])

)
=
∏
x∈Γ(S)(∏

0≤i<n
∆s,x,i(s(x)[i])×Prop((∆spre,x,i),s(x)[i])(spre(x)[i])

∆spre,x,i(spre(x)[i])×Prop((∆s,x,i),spre(x)[i])(s(x)[i]) (1)

×
∏
n≤i<|s(x)|

∆s,x,i(s(x)[i])
Prop(∆s,x,i)(s(x)[i]) (2)

×
∏
n≤i<|spre(x)|

Prop(∆spre,x,i)(spre(x)[i])
∆spre,x,i(spre(x)[i])

)
(3)

where n = min(|s(x)|, |spre(x)|).

InferX calculates the acceptance rate β exactly in this way. The expressions in (1) and (2)
are used for computing β in the rules for Eval in Figure 7, and the expression in (3) occurs
in line 12 of Algorithm 1. Therefore, this shows that InferX is a sound and consistent
instance of the MH algorithm, which proves the theorem.

FSTTCS’15

	Introduction
	Overview
	Probabilistic Programs
	Algorithm
	Evaluation
	Related work
	Summary
	Acknowledgements

	Correctness of Sampling-based Operational Semantics
	Probability Density Function (PDF)
	Correctness

	Proof of Theorem 4.1

