
Does Automated Refactoring Obviate
Systematic Editing?

Na Meng∗ Lisa Hua∗ Miryung Kim† Kathryn S. McKinley‡
∗The University of Texas at Austin †University of California, Los Angeles ‡Microsoft Research
mengna09@cs.utexas.edu lisahua@utexas.edu miryung@cs.ucla.edu mckinley@microsoft.com

Abstract—When developers add features and fix bugs, they
often make systematic edits—similar edits to multiple locations.
Systematic edits may indicate that developers should instead
refactor to eliminate redundancy. This paper explores this ques-
tion by designing and implementing a fully automated refactoring
tool called RASE, which performs clone removal. RASE (1)
extracts common code guided by a systematic edit; (2) creates
new types and methods as needed; (3) parameterizes differences
in types, methods, variables, and expressions; and (4) inserts
return objects and exit labels based on control and data flow. To
our knowledge, this functionality makes RASE the most advanced
refactoring tool for automated clone removal.

We evaluate RASE with real-world systematic edits and com-
pare to method based clone removal. RASE successfully performs
clone removal in 30 of 56 method pairs (n=2) and 20 of 30
method groups (n≥3) with systematic edits. We find that scoping
refactoring based on systematic edits (58%), rather than the
entire method (33%), increases the applicability of automated
clone removal. Automated refactoring is not feasible in the other
42% cases, which indicates that automated refactoring does not
obviate the need for systematic editing.

I. INTRODUCTION

Developers often apply similar changes to multiple locations.
Systematic editing tools automate this task to reduce the
programming burden of these tedious, error-prone changes.
For instance, simultaneous text editing automates edit actions
in one context by replicating them in other pre-selected
contexts [25]. Linked Editing [30] and Clever [27] keep track
of code clones and propagate changes from one clone to other
clones. Sydit [24] and Lase [23] infer context-aware abstract
transformations from user-selected examples, and then use the
transformations to apply custom changes to user specified or
automatically suggested locations. These systematic editing
tools help developers to make coordinated changes in multiple
locations. However, this practice may encourage developers to
create or maintain duplicated code, when perhaps programs
would be easier to maintain and understand if developers
instead refactored their code. If programmers should always
refactor, then systematic editing tools may be encouraging
poor practices. This paper examines this question, that is,
if systematic edits are obviated by using automated clone
removal refactoring.

We first design and implement a new completely automated
refactoring approach RASE, which takes as input two or
more methods with systematic edits to scope target code, and
then performs clone removal. RASE combines extract method
(pg. 110 in [7]), add parameter (pg. 275 in [7]), introduce

exit label, parameterize type, form template method (pg. 345
in [7]), and introduce return object refactorings to extract
and remove similar code. It creates an abstract refactoring
template that abstracts differences in types, methods, variables,
and expressions from the multiple locations. Based on this
template, as well as control and data flow, RASE creates new
types and methods; inserts and assigns return objects and exit
labels; adds parameters to the new extracted method; and
introduces customized calls to it.

To our knowledge, RASE implements state-of-the-art refac-
toring with respect to its capability to factor and generalize
code. Existing clone removal refactoring tools only implement
some, but not all of the refactoring techniques in RASE [3, 12,
14, 21, 29]. Nor do they combine and study the effectiveness
of automated clone removal. Furthermore, prior work that does
study clone removal did not actually construct an automated
refactoring tool to investigate the refactoring of systematically
changed code [1, 5, 8, 16, 17]. The lack of automation in
prior work introduces the possibility of subjectivity bias. By
automating refactoring, our study substantially improves on
prior methodology for determining the feasibility of clone
removal refactoring.

We evaluate RASE on 56 real-world systematically edited
method pairs (n=2) from prior work [23, 24] and 30 systemati-
cally edited method groups (n≥3) drawn from two open source
projects. RASE automatically refactors 30 of 56 method pairs
(54%) and 20 of 30 (67%) method groups when scoping with
systematic edits. RASE applies sophisticated refactorings with
all six techniques and in multiple different combinations of up
to four techniques at once. On average, RASE automatically
applied 41 lines of edits in our examples, ranging from 6 to
285, with modest code size increases of up to 18 lines of
code, and reductions of up to 149 lines. Not surprisingly, RASE
is most effective at reducing code size for multiple methods.
Manual transformation to attain the same results would require
inserting, deleting, or modifying up to 285 lines of code. Our
evaluation results add to the evidence that removing common
code with variations is challenging in practice and needs
automated tool support.

We compare RASE scoped by systematic edits to RASE
scoped by entire methods: scoping with systematic edits im-
proves the feasibility of automatic clone removal compared to
method-level scoping. With method-level scoping, RASE only
refactors 34% method pairs and 30% method groups. However,
with systematic edit scoping, RASE refactors 54% method

pairs and 67% method groups. Systematic edits thus are a good
clue for refactoring, rather than being obviated by method-
level refactoring. However, RASE cannot automate refactoring
in 46% of pairs and 33% of groups mainly because of language
limitations, semantic constraints, and lack of common code.
We manually checked software version histories after system-
atic edits and found that in many cases, systematically edited
methods are not refactored. They either co-evolve, diverge, or
stay unchanged. Our tool evaluation and software repository
observations indicate that both automated systematic editing
and refactoring are necessary to support software evolution.

This paper designs and implements an automated clone
removal refactoring algorithm and demonstrates refactoring
feasibility. Predicting refactoring desirability is a hard problem
because it depends on complex factors, such as code read-
ability, the frequency and types of changes, future changes
in requirements, and code size. Since RASE automates the
feasibility step and quantifies code size impact, it should help
developers determine refactoring desirability [4, 28, 33] and
help with cost and benefit analysis [22, 26, 34], but we leave
that investigation to future work.

In summary, this paper makes the following contributions.
• We design and implement RASE, an advanced automated

clone removal tool. It takes methods with systematic edits
as inputs and fully automates refactoring to extract com-
mon code with variations in types, methods, variables,
and expressions.

• Evaluation on real-world pairs and groups of methods
shows that RASE effectively automates clone removal in
many cases. This tool evaluation together with our manual
software repository examination reveals that refactoring
is not always applicable or actually applied to every sys-
tematically edited method. Thus, automated refactoring
is unlikely to obviate systematic editing.

• Previous studies find that clone refactoring is not neces-
sary or feasible, but they did not construct an automated
refactoring tool [1, 5, 8, 16, 17]. The lack of automa-
tion introduces potential subjectivity bias. By automating
refactoring, our study improves on the prior methodology
and shows that refactoring is often feasible.

II. MOTIVATING EXAMPLE

This section overviews our approach with an example based
on org.eclipse.compare.CompareEditorInput revisions v-
20061120 and v20061218. Figure 1 shows a systematic edit
on two methods. The unchanged code is in black, added
code is in blue with ‘+’, and deleted code is in red with
‘−’. The two methods perform very similar input processing
and experience similar edits: adding a variable declaration
and updating statements. However, the changes involve using
different type, method, and variable names: IActionBars

vs. ISLocator; getActionBars vs. getServiceLocator;
findActionBars vs. findSite; offset vs. offset2; and
actionBars vs. sLocator.

Given two changed methods, our refactoring tool (RASE)
first invokes LASE [23], which creates an abstract edit script.

1. public class CompareEditorInput {
2. private ICompareContainer fContainer;
3. private boolean fContainerProvided;
4. private Splitter fComposite;
5. public IActionBars getActionBars (int offset) {
6. if (offset == -1)
7. return null;
8. - if (fContainer == null) {
9. + IActionBars actionBars = fContainer.getActionBars();
10.+ if (actionBars==null&&offset!=0&&!fContainerProvided){
11. return Utilities.findActionBars(fComposite, offset);
12. }
13.- return fContainer.getActionBars();
14.+ return actionBars;
15. }
16. public ISLocator getServiceLocator (int offset2) {
17.- if (fContainer == null) {
18.+ ISLocator sLocator = fContainer.getServiceLocator();
19.+ if(sLocator == null&&offset2!=0&&!fContainerProvided){
20. return Utilities.findSite(fComposite, offset2);
21. }
22.- return fContainer.getServiceLocator();
23.+ return sLocator;
24. }
25.}

Fig. 1. An example of systematic changes based on org.eclipse.compare.-
CompareEditorInput from revisions v20061120 and v20061218

1. … …method_declaration(… …) {!
2. … …!
3. INSERT: T$0 v$0 = fContainer.m$0(); !
4. UPDATE: if (fContainer == null) {!!
5. TO: if (v$0==null && v$1!=0 && !fContainerProvided){!
6. … …!
7. } !
8. UPDATE: return fContainer.m$0();! !
9. TO: return v$0;!
10.}

Fig. 2. Abstract edit script inferred by LASE

1. T$0 v$0 = fContainer.m$0();
2. if (v$0==null && v$1!=0 && !fContainerProvided) {
3. return Utilities.m$1(fComposite, v$1);
4. }
5. return v$0;

Fig. 3. Abstract refactoring template of common code created by RASE

The script describes abstractly the edit applied to both meth-
ods. It represents edit operations with AST node inserts,
updates, moves, and deletes. Figure 2 shows the inferred
abstract edit script for this example.

Given an edit script, RASE identifies edited statements
related to the systematic changes. It uses the ranges of edits to
scope its automated factorization and generalization, extracting
the maximum common contiguous clone which encompasses
all systematically edited statements. If similar edits are sur-
rounded by cloned statements, RASE expands the refactoring
scope to the entire method. For our example, in Figure 1,
RASE selects lines 9-12, 14, 18-21, and 23 to refactor. Note
that RASE includes the unchanged lines 11-12 and 20-21 in
order to extract syntactically valid if statements.

Next, RASE creates an abstract refactoring template for the
selected code snippets by matching expressions and identifiers
between them, as shown in Figure 3. It uses the original code
when identifiers or expressions are identical and otherwise
abstracts them (e.g., offset vs. offset2). It records a map
of abstract names to their original concrete identifiers and
expressions to use later.

Based on the template, RASE creates an executable refactor-
ing plan and applies it to transform code, as shown in Figure 4.
RASE performs a parameterize type refactoring because the
type variation T$0 must be handled to work correctly for
the different type variables. The method variations m$0 and
m$1 require a form template method refactoring to invoke the
correct methods depending on the callers. The variation in the
use of a variable name v$1 requires the corresponding variable
to be passed as a parameter to the extracted method. The
variable wildcard v$0 does not need such processing, because
the variable is locally defined and used, and thus invisible to
the extracted method’s callers. RASE performs static analysis
that determines identifier scopes to differentiate these cases.

III. OPPORTUNISTIC REFACTORING

RASE takes systematically edited methods as input. It works
in two phases. Phase I scopes code regions for refactoring,
analyzes variations between them, and outputs an abstract
refactoring template. Phase II constructs and then applies an
executable refactoring plan by handling type, method, variable,
and expression variations in the template and by analyzing
control flow, data flow, and the class hierarchies of original
methods. RASE uses a combination of six different refactoring
operations to extract common code and parameterize differ-
ences while preserving semantics.

A. Phase I: Abstract Template Creation

We use LASE to create an abstract edit script that describes the
input systematic changes [23]. LASE represents the difference
between before and after versions with AST node inserts,
deletes, updates, and moves. It then extracts the common
changes among all methods, and creates a generalized program
transformation. We call this transformation an abstract edit
script. It contains a code pattern describing the context where
the edit is applicable, and a list of edit operations describing
how to make the edit. It also abstracts identifiers used in
the exemplar edits to generally represent those edits even
though they manipulate different identifiers. Figure 2 shows
an exemplar edit script.

To refactor code undergoing systematic edits, RASE iden-
tifies the maximum code clone enclosing the edit in each
method’s new version. RASE requires contiguity in the code
clones, thus it identifies a single AST node (and all its child
subtrees) or a set of contiguous subtrees under the same parent
node. These restrictions guarantee that there is only one entry
to the code region and the cloned code can be extracted as
a method. The maximum code clone identification algorithm
consists of three steps: merge, abstract, and expand.

1) Merge: RASE creates an initial subtree set by identifying
all trees rooted at the edited code. For instance, if a return-
statement is edited, RASE selects the return-statement itself.
However, given an edited condition in an if-statement, RASE
selects the if-statement, which includes the conditional and
the subtrees rooted at the then-branch and else-branch. It then
creates a contiguous region of AST nodes by merging trees
until there is a single tree left or a sequence of adjacent

Newly created classes and methods through clone removal

1. public abstract class TemplateClass<T0>{
2. public T0 extractMethod(int v1, Splitter fComposite,
3. ICompareContainer fContainer,
4. boolean fContainerProvided){
5. T0 v0 = m0(fContainer);
6. if (v0 == null && v1 != 0 && !fContainerProvided){
7. return m1(fComposite, v1);
8. }
9. return v0;
10. }
11. public abstract T0 m0(ICompareContainer fContainer);
12. public abstract T0 m1(Splitter fComposite, int v1);
13.}
14.public class ConcreteTemplateClass0 extends
15. TemplateClass<IActionBars>{
16. public IActionBars m0(ICompareContainer fContainer){
17. return fContainer.getActionBars();
18. }
19. public IActionBars m1(Splitter fComposite, int v1){
20. return Utilities.findActionBars(fComposite, v1);
21. }
22.}
23.public class ConcreteClass1 extends
24. TemplateClass<ISLocator>{
25. public ISLocator m0(ICompareContainer fContainer){
26. return fContainer.getServiceLocator();
27. }
28. public ISLocator m1(Splitter fComposite, int v1){
29. return Utilities.findSite(fComposite, v1);
30.} }

Modifications to the original methods

1. public class CompareEditorInput {
2. private ICompareContainer fContainer;
3. private boolean fContainerProvided;
4. private Splitter fComposite;
5. public IActionBars getActionBars (int offset) {
6. if (offset == -1)
7. return null;
8. return new ConcreteTemplateClass0().extractMethod(
9. offset, fComposite, fContainer,
10. fContainerProvided);
11. }
12. public ISLocator getServiceLocator (int offset2) {
13. return new ConcreteTemplateClass1().extractMethod(
14. offset2, fComposite, fContainer,
15. fContainerProvided);
16.} }

Fig. 4. Code refactoring based on systematic edits

ones under the same parent node in the set. The merging
algorithm picks two subtrees, T1 and T2 with the longest
paths from the root, such as path(Root,N1, N2, T1) and
path(Root,N1, N3, T2). Note that N1, N2, and N3 represent
parent and ancestor nodes of T1 or T2. RASE identifies the
lowest common ancestor where the two paths diverge, N1 in
this case. Next, it adds all subtrees of N1, such as trees rooted
at N2 and N3, into the set of extractable code. For conciseness,
it also moves the original T1 and T2 out of the set because they
are now covered by the newly added trees. In this way, RASE
makes the code regions to extract closer to each other. By
merging subtrees iteratively, RASE finally forms the minimum
contiguous code region involved in the edit.

RASE relies on systematic edits to scope refactoring. If a
systematic edit only deletes code or it cannot find edited code
in any method’s new version, RASE will not refactor.

2) Abstract: RASE then tries to create an abstract template
to guide further refactoring. To successfully create such a
template, RASE requires that (a) the code regions extracted
from different methods have the same number of statements,

and (b) the statements are either identical or differ only in their
use of types, methods, variables, and expressions. Requirement
(a) guarantees that the template reflects the skeleton of all
extracted code. Requirement (b) guarantees that we extract
syntactically similar code.

RASE abstracts any differences in type names, method invo-
cations, variable names, and expressions in the target methods
by using wildcards T$, m$, v$ and u$ respectively. It attempts
to establish a mapping between each concrete identifier and the
abstract version, making sure all methods consistently use and
define these identifiers. If not, RASE does not refactor them.
This analysis checks for syntactic equivalence and consistent
def-use relations between the methods.

3) Expand: To extract as much common code as possi-
ble between similarly changed methods, RASE expands the
identified code clones by tentatively including the subtrees’
parent nodes or siblings. For instance, if the identified code
clones from different methods have similar parent nodes as
well as siblings, RASE expands the refactoring scope to the
tree rooted at the parent node, and then updates the abstract
template without invalidating any established concrete-abstract
mappings. RASE applies Steps 3) and 2) iteratively until no
more common code is appended.

B. Phase II: Clone Removal Refactoring

Based on the abstract template and identifier mappings de-
scribed in the previous section, RASE leverages control and
data flow analysis to determine how to extract common code
and parameterize differences without altering semantics. It
creates and applies an executable refactoring plan, which
consists of one or more of these six refactoring operations:
• extract method extracts common code into a method.
• add parameter handles variations in variables and ex-

pressions.
• parameterize type handles variations in types.
• form template method handles variations in method

calls.
• introduce return object handles multiple output vari-

ables of extracted code.
• introduce exit label preserves control flow in the original

code.
Type Variations: Given a type wildcard (T$) in the

abstract template, RASE applies a parameterize type refac-
toring. It declares a generic type for the newly created class
and modifies each original location to call the extracted
method with type parameters. We define this new term because
Fowler’s catalog does not include it and current refactoring
engines, such as Eclipse, do not support it. Figure 5 shows an
example. When the target code differs in terms of type identi-
fiers, RASE adds explicit type parameters to the new extracted
method. The applicability of this refactoring is affected by
language support for generic types. In our implementation for
Java, the refactoring is not applicable, when any parameterized
type creates an instance by calling its constructors (e.g., new
T()), performs an instanceof check (e.g., v instanceof T)
or gets the type literal (e.g., T.class), because Java does not

public void mA(IC c){ !
 …!
 Insert e = getEdit(c);!
 …!
}!
public void mB(RC c){!
 …!
 Remove e = getEdit(c);!
 …!
}

Code to extract

Code to extract

class C<T0, T1>{!
 public void extractMethod(!
 T1 c){!
 …!
 T0 e = getEdit(c);!
 …!
 }!
}!
public void mA(IC c){!
 new C<Insert,IC>()!
 .extractMethod(c);!
}!
public void mB(RC c){!
 new C<Remove, RC>!
 .extractMethod(c);!
}

T$1 e = getEdit(c);

Generalize

Fig. 5. Parameterize type refactoring

public void add(){ !
 …!
 input.addCompareInput();!
 …!
}!
public void remove(){!
 …!
 input.removeCompareInput();!
 …!
}

abstract class Template{!
 public void extractMethod(!
 …){!
 …!
 m(input);!
 …!
 }!
 public abstract void m(!
 Input input);!
}!
class Add extends Template{!
 public void m(Input input){!
 input.addCompareInput();!
 }  
}!
class Rem extends Template{!
 public void m(Input input){!
 input.removeCompareInput();  
 }!
}!
public void add(){!
 new Add().extractMethod(…);!
}!
public void remove(){!
 new Rem().extractMethod(…);!

Code to extract

Code to extract

input.m$1();

Generalize

Fig. 6. Form template method refactoring

public void foo(){ !
 …!
 String str1 = …;!
 …!
 String str2 = …;!
 System.out.println(str1 + str2);!
}

Code to extract

class RetObj{!
 public String str1;!
 public String str2;!
 public RetObj(String str1, String
str2){!
 this.str1 = str1;!
 this.str2 = str2;!
 }!
}!
public RetObj extractMethod(…){!
 …!
 return new RetObj(str1, str2);!
}!
public void foo(){!
 RetObj retObj = extractMethod(…);!
 String str1 = retObj.str1;!
 String str2 = retObj.str2;!
 System.out.println(str1 + str2);!

Fig. 7. Introduce return object refactoring

public void bar(){ !
 while(!stack.isEmpty()){!
 … !
 elem = stack.pop();!
 if(elem == null)!
 continue;!
 if(elem.equals(known))!
 break;!
 push(elem.next());!
 }!
}

Code to extract

enum Label{CONTINUE, BREAK, FALLTHRU};!
public Label extractMethod(…){!
 …!
 elem = stack.pop();!
 if(elem == null)!
 return Label.CONTINUE;!
 if(elem.equals(known))!
 return Label.BREAK;!
 return Label.FALLTHRU;!
}!

public void bar(){!
 while(!stack.isEmpty()){!
 Flag flag = extractMethod(…);!
 if(flag.equals(Label.CONTINUE))!
 continue;!
 else if(flag.equals(Label.BREAK))!
 break;!
 push(elem.next());!
 }!
}

Fig. 8. Introduce exit label refactoring

support these cases. Even if developers may handle such cases
manually with smart tricks, the resulting refactored code would
have poor readability.

Method Call Variations: Given a method wildcard (m$)
in the abstract template, RASE applies the form template
method (pg. 345 in [7]) refactoring. It creates uniform APIs
that encapsulate the variations and changes the extracted
method to invoke these APIs instead. Figure 6 shows an

example. RASE declares an abstract class which contains
the extracted method and a sequence of abstract methods.
Each abstract method corresponds to a method wildcard. For
each original location, the refactoring declares a concrete
class extending the abstract class so that all abstract methods
are implemented to call the correct corresponding concrete
methods. Each original location is modified to invoke the
extracted method with the corresponding concrete class.

When a method wildcard represents a non-static method
and is invoked via an object (e.g., input.m$1()), the cor-
responding method is declared to place the receiver ob-
ject (e.g., input) as an argument (e.g., m1(Input input)).
Then the actual method (e.g., input.addCompareInput() or
input.removeCompareInput()) is invoked correctly inside
each newly defined method. If any of the variant methods
does not have a modifier public in its method declaration, the
refactoring is not applied, because the method is not accessible
by newly defined methods in the template class. If variant
methods have different numbers of parameters, e.g., foo(int
offset) vs. bar(Object obj, boolean flag), the refactoring
is not applied. Although it is possible to create a long method
signature by merging different input signatures, we believe the
resulting code is too hard to read.

Variable and Expression Variations: Given variations in
variable names and expressions, RASE uses an add parameter
(pg. 275 in [7]) refactoring. We use data dependence analysis
to identify variables which have local uses but no local defi-
nitions in the extracted code. We consider variable wildcards
(v$) as candidates for input arguments of the extracted method.
For each variable wildcard, we check whether it is purely local
to the extracted code, meaning that it is declared, defined,
and used only in the extracted code. If so, RASE assigns it a
concrete identifier and does not include the variable as an input
parameter, since it is invisible to caller methods. For example,
RASE declares the variable v$1 in Figure 3 as a parameter but
does not include v$0 because it is purely local.

We consider expression wildcards (u$) as candidates for
input arguments of the extracted method. Since the wild-
cards map to different AST node type expressions in
different methods, each caller can pass appropriate ex-
pressions as arguments. For instance, if u$ is mapped
to getConfiguration() in one method, but is mapped
to fCompareEditorInput.getConfiguration() in another
method, RASE compares the types of both expressions. If the
types are the same, it declares an input parameter with the
common type. If the types are different, RASE records the type
mapping and later applies parameterize type refactoring to
accommodate the variation. Compared with prior work [3, 14],
which solves expression variations by declaring new methods,
our approach creates cleaner code by avoiding extra method
declarations and invocations.

Return Value: RASE uses data dependence analysis to
determine the variables that have local definitions and external
uses. It converts these variables to output variables of the
extracted method. When there is more than one such variable,
RASE applies introduce return object refactoring. As shown

in Figure 7, RASE encapsulates all return values into one
object and inserts code at each call site to read appropriate
fields of the returned object. Fowler’s catalog does not include
this refactoring and current refactoring engines do not support
it.

Control Flow: RASE uses control flow analysis to deter-
mine the statements that exit the code in addition to the fall-
through exit in the extracted code, such as a return, break, or
continue. These non-local jump nodes either terminate execu-
tion or jump execution from one location to another. Naively
putting them in the extracted method may cause compiler
errors or incorrect control flow. RASE applies introduce exit
label refactoring to correctly implement non-local jumps. It
replaces non-local jumps with exit label return statements and
modifies each original location to interpret the return labels.
Fowler’s catalog does not include this refactoring, nor is it
implemented in current refactoring engines, such as Eclipse.
We borrow the approach from Komondoor and Horwitz’s
prior work on automated procedure extraction [19]. Figure 8
shows an example with multiple exits. RASE replaces a non-
local jump statement with a return statement to terminate
the execution of the current method and adds a return label
indicating the exit type. RASE inserts code at each call site to
handle non-local jumps correctly.

Placing Extracted Code: RASE uses class hierarchy
analysis to discover the relationship between classes declaring
the originally edited methods. The relationships help RASE
decide where to put the extracted method, and which input
parameters or output variables to add. For instance, if the
systematically changed methods are in the same class and
there are no method or type wildcards in the abstract template,
RASE places the extracted method in the same class. If the
methods are in sibling classes extending the same super class,
RASE puts the extracted method into their common super
class. If the methods are in classes which do not have any type
hierarchy relation, RASE must put the extracted method into a
newly declared class. All fields that the extracted code reads
from or writes to should be passed as input parameters and
output variables separately, since they may not be accessible
to the extracted method defined by the newly defined class.
For correctness, RASE checks that (1) all methods invoked by
the extracted method are declared as public, and (2) none of
the method calls are unmovable, such as super().

IV. EVALUATION

This section evaluates RASE with systematic editing tasks.
It explores if automated refactoring eliminates the need for
systematic editing and if systematic editing guides the scope
of refactoring better or worse than method clones. It also takes
a first look at whether automated refactoring is desirable when
it is feasible.

Our data set consists of 56 similarly changed method pairs
and 30 similarly changed method groups. These real-world
systematic editing tasks are drawn from version histories
of JEdit, Eclipse compare, jdt.core, core.runtime, debug,
JFreeChart and elasticsearch. The method pairs are drawn

from prior evaluation of systematic editing [23, 24]. Each pair
of methods have at least 40% syntactic similarity and share
at least one common AST edit operation. Most are multi-line
edits and require identifier abstraction. Each method group
contains at least three similarly changed methods.

We use four variants of refactoring for our evaluation. The
default RASE refactors as much code as possible given a
systematic edit. RASEmin chooses the smallest amount of code
that includes the systematic edit. RASEMA refactors the entire
method after the edit and RASEMB refactors the entire method
before the edit. We apply RASE and its variants to the test
suites. Table I and Table II present the results.

In the tables, each task has a unique identifier ID. If a task is
automatically refactored, we characterize the refactoring with
edit operations (edits), refactoring types, and resulting code
size change (∆code). RASE applies the following six refac-
toring types: E: extract method, R: introduce return object, L:
introduce exit label, T: parameterize type, F: form template
method, and A: add parameter. N/A means refactoring is
not automated. We omit pairs with no refactoring in any
configuration. In ∆ code size column, a positive number
means that refactoring increases the code size and a negative
number means that code size decreases.

A. Method Pairs

Default RASE (columns 2-4) automatically refactors 30 out of
56 cases. RASEMA (columns 5-7 in the middle) is restricted
to the method scope after edits and automates refactoring for
nineteen cases, a strict subset of those refactored by RASE.
RASEMB (columns 8-10 on the right) automates refactoring
of methods before editing for eighteen cases, all of which are
refactored by both RASE and RASEMA. These 18 method pairs
are clones, which experience similar changes and produce
clones. Case 2 is not handled by RASEMB , because the origi-
nal version has no statements in the method and thus no clones
can be extracted. This comparison shows that systematic edits
better scope refactoring and increase refactoring opportunities
compared to applying clone removal to the entire methods
either before or after edits.

RASEmin extracts the minimum common code enclosing
systematic edits, as opposed to the maximum common code
in default RASE. If we mark the minimum common code for
extraction, we may have fewer variations between counter-
parts, which may cause less extra code added as necessary for
specialization. On the other hand, we may extract less code
than the actual commonality shared between changed methods,
leaving redundant code after refactoring. The comparison
between RASEmin and RASE shows that RASEmin performs
differently from RASE in eight cases. In seven of the eight
cases, RASEmin is less effective at reducing code size because
less common code is extracted. However in case 9, RASEmin

reduces code size more, because the extracted method does
not include control flow jumps, which eliminates the need for
code to interpret various flow jumps.

In 6 out of the 30 cases, RASE only uses the extract method
to perform its refactoring tasks. All the other cases need a

TABLE III
REASONS RASE DOES NOT REFACTOR 26 CASES: METHOD PAIRS

Reason number of cases

Limited language support for generic types 7
Unmovable methods 5

No edited statement found 8
No common code extracted 6

TABLE IV
REASONS RASE DOES NOT REFACTOR 10 CASES: METHOD GROUPS

Reason number of cases

Limited language support for generic types 2
Unmovable methods 0

No edited statement found 2
No common code extracted 6

combination of different types of refactoring. The code size
change varies between an increase of 11 lines and a decrease
of 47 lines. RASE’s automated refactoring reduces the code
size in eight cases (27%) for the method pairs.

B. Method Groups

To explore whether our conclusions based on method pairs
generalize to multiple similarly changed methods, we apply
RASE to 30 systematically edited method groups. Each group
contains at least three methods and at most nine methods.
We apply RASEMA, RASEMB , and RASEmin to the same
data set and compare refactoring capabilities. The results are
mostly similar comparing Table I and Table II. The column
labeled # in Table II shows the number of changed methods
in each group. RASE refactors 20 out of 30 cases. Similar
to Table I, we observe that RASE automates refactoring more
than RASEMA and RASEMB . RASE produces more concise
code than RASEmin in 6 out of 30 cases. One difference from
the method pair results is that RASE decreases code size more
consistently and frequently, reducing code size in 14 of the
20 refactored cases (70%) and on average reducing code by
eight lines. This result is expected because the refactored code
appears in just two methods with method pairs, whereas for
method groups, the refactored code originally appears in three
or more methods.

C. Reasons for Not Refactoring

We examined by hand the 26 method pairs that RASE did not
refactor and found four reasons, which Table III summarizes.
For seven cases, RASE failed to refactor due to Java’s limited
support for generic types. It is very difficult to convert some
generalized statements like v instanceof T$, T$.m$(), and v

= new T$(), into code that compiles.
For five cases, RASE did not refactor because some state-

ments cannot be moved correctly into an extracted method.
For instance, the super constructor super(...) is only valid
in constructors and cannot be moved to any other method.
Another example is, when attempting to put an extracted
method into a newly declared class, calls to private methods

TABLE I
METHOD PAIRS: CLONE REMOVAL REFACTORINGS

RASE RASE min RASE MA RASE MB

ID edits types ∆code edits types ∆code edits types ∆code edits types ∆code

2 15 E, A -1 15 E, A -1 15 E, A -1 N/A
4 6 E, A 2 6 E, A 2 6 E, A 2 6 E 2
6 14 E, F 10 14 E, F 10 14 E, F 10 31 E, F 11
9 77 E, R -7 61 E -15 N/A N/A
10 24 E -4 20 E, L 8 24 E -4 15 E -1
11 20 E, F 8 20 E, F 8 20 E, F 8 14 E, F 10
12 31 E, F 11 31 E, F 11 31 E, F 11 14 E, F 10
13 38 E, F 2 32 E, F 4 38 E, F 2 29 E, F 5
18 42 E -10 7 E 3 N/A N/A
19 61 E -15 21 E, R 13 61 E -15 61 E -15
22 285 E, F -47 285 E, F -47 285 E, F -47 288 E, F -48
29 56 E, L, R 4 45 E, L, R 9 N/A N/A
32 9 E, A 1 6 E 2 N/A N/A
34 24 E, A -4 24 E, A -4 N/A N/A
35 9 E 1 9 E 1 N/A N/A
36 36 E, A -8 36 E, A -8 N/A N/A
38 16 E 0 12 E 0 N/A N/A
40 20 E, L 8 20 E, L 8 N/A N/A
45 6 E 2 6 E 2 N/A N/A
46 6 E, A 2 6 E, A 2 6 E, A 2 6 E 2
47 20 E, L, R 8 20 E, L, R 8 N/A N/A
48 25 E, F, T 13 25 E, F, T 13 25 E, F, T 13 25 E, F, T 13
49 25 E, F, T 13 25 E, F, T 13 25 E, F, T 13 25 E, F, T 13
50 25 E, F, T 13 25 E, F, T 13 25 E, F, T 13 25 E, F, T 13
51 25 E, F, T 13 25 E, F, T 13 25 E, F, T 13 25 E, F, T 13
52 25 E, F, T 13 25 E, F, T 13 25 E, F, T 13 25 E, F, T 13
53 31 E, F 11 31 E, F 11 31 E, F 11 28 E, F 12
54 31 E, F 11 31 E, F 11 31 E, F 11 28 E, F 12
55 31 E, F 11 31 E, F 11 31 E, F 11 28 E, F 12
56 31 E, F 11 31 E, F 11 31 E, F 11 28 E, F 12

Average 35.5 2.4 31.5 4.1 39.4 4.0 38.9 4.9

Total automated 30 30 19 18

TABLE II
METHOD GROUPS: CLONE REMOVAL REFACTORINGS

RASE RASE min RASE MA RASE MB

ID # edits types ∆code edits types ∆code edits types ∆code edits types ∆code

1 6 137 E, A, F, T -7 137 E, A, F, T -7 137 E, A, F, T -7 137 E, A, F, T -7
2 4 30 E -10 30 E -10 30 E -10 10 E 2
4 3 17 E -1 10 E, A 4 N/A N/A
5 7 36 E, T -6 16 E 2 N/A N/A
6 8 42 E, T -6 42 E, T -6 N/A N/A
8 3 44 E, A, F -4 44 E, A, F -4 44 E, A, F -4 32 E, A, F 2
9 5 58 E, L, R 18 58 E, L, R 18 N/A N/A

10 3 38 E, F 14 38 E, F 14 38 E, F 14 19 E, A, F 13
11 4 20 E -4 10 E 2 N/A N/A
13 3 9 E 3 9 E 3 N/A N/A
15 3 32 E, A -10 28 E -8 N/A N/A
17 3 21 E -3 9 E 3 N/A N/A
18 3 37 E -11 37 E -11 37 E -11 25 E -5
19 3 96 E, F 6 48 E, F, R 24 96 E, F 6 29 E, A, F, T 13
24 3 59 E, R -1 59 E, R -1 59 E, R -1 8 E 2
25 3 26 E, R 14 26 E, R 14 N/A N/A
27 4 20 E, A -4 20 E, A -4 N/A N/A
28 3 24 E, T 0 24 E, T 0 24 E, T 0 12 E, A, T 0
29 9 211 E -149 211 E -149 N/A N/A
30 4 26 E, A -6 26 E, A -6 26 E, A -6 15 E, A, T 7

Average 49.2 -8.4 44.1 -6.1 54.5 -2.1 31.9 3.0

Total automated 20 20 9 9

Cases IDs from Meng et al. RASE by default includes as much code as possible. RASE min chooses the smallest scope that includes the systematic edit.
RASE MA refactors the entire method after the edit and RASE MB refactors the entire method before the edit. The edits column is AST statement edit
operations for refactoring. Refactoring types are: E: extract method, R: introduce return object, L: introduce exit label, T: parameterize type, F: form
template method, and A: add parameter. RASE uses all the refactoring types in many combinations. Both tables show RASE automates refactoring in many
cases: 30 out of 56 pairs, and 20 out of 30 method groups, but not all. Systematic edits scope clone removal opportunities better (RASE and RASE min)
than methods (RASE MA and RASE MB).

by the extracted method are not semantically valid because
private methods are only accessible for methods defined in
the same class.

For eight cases, no edited statement is identified in the new
version of each changed method. RASE depends on LASE to
create an abstract edit script representing the input systematic
changes. If LASE fails to create such an edit script or the edit
script only deletes statements from old versions, RASE cannot
locate code to extract, nor can it automate refactorings.

In six cases, the marked code snippets in different
methods are not generalizable to create an abstract
template. Four possible reasons explain this result. First,
the code snippets contain different numbers of statements.
Although some existing clone removal refactoring techniques
leverage program dependence analysis and heuristics to
shift irrelevant variant code and put together extractable
code, these techniques cannot handle all the cases in
this category either, indicating the difficulty of fully
automated refactoring [12, 21]. Second, the AST node
types of some extracted statements do not match, such
as ExpressionStatement vs. ReturnStatement. Third, the
number of parameters in method calls do not match, such as
foo(v) vs. bar(a, b, c). Although we may create a single
method by merging input signatures of different methods, the
resulting code may have poor readability. Fourth, there is at
least one identifier mapping conflict. For instance, identifier
v is mapped to an identifier a in one statement, but mapped
to another identifier x in another statement. Ignoring these
conflicts to apply refactoring would incorrectly modify the
program semantics. Similar to Table III, Table IV shows
that limited language support for generic types, no edited
statement, and no common code extracted are the three main
reasons.
In summary,
• Clone removal refactoring does not eliminate the need for

systematic editing.
• Scoping refactoring based on systematic edits improves

refactoring applicability over refactoring the entire meth-
ods, either before or after the edits.

• Extracting the maximum common code, instead of the
minimum common code, usually creates a refactored
version with a smaller code size.

D. Software evolution after systematic edits

To understand how RASE’s refactoring recommendations cor-
relate with developer refactorings, we manually examine how
developers evolved methods after these systematic edits by
going through the version histories. For our test suite, the
average time interval in the version history, starting at the
systematic editing version and ending at the latest version, is
1.3 years. Table V shows the results for method pairs and Ta-
ble VI for method groups. The Feasible column corresponds
to cases when RASE can automate clone removal refactoring
and Infeasible corresponds to the rest. The Refactored row
shows cases when developers either by hand or with the help of
some other tool refactored code later in the version history. The

TABLE V
MANUAL EVALUATION OF VERSION HISTORY AFTER SYSTEMATIC EDITS:

METHOD PAIRS

Feasible Infeasible

Refactored 4 0

Unrefactored
Co-evolved 2 6

Divergent 3 10
Unchanged 21 10

TABLE VI
MANUAL EVALUATION OF VERSION HISTORY AFTER SYSTEMATIC EDITS:

METHOD GROUPS

Feasible Infeasible

Refactored 1 0

Unrefactored
Co-evolved 2 1

Divergent 4 0
Unchanged 13 9

other rows break down cases without developer refactoring.
Co-evolved means the methods are systematically edited
at least one more time in later versions and may indicate
that refactoring is desirable. Divergent means the methods
evolved in divergent ways and may indicate that refactoring is
undesirable. For example, one method was deleted or only one
method changed. Refactoring Unchanged methods may not
be worthwhile because they are quite stable or it is premature
to judge desirability due to lack of information.

Table V shows that developers only refactored 4 out of
56 cases. RASE automates refactoring for the same 4 cases.
Additionally, RASE refactors 26 cases which were not refac-
tored by developers. In this test suite, 47 cases have version
histories and 9 do not because they were specially crafted
to test systematic editing [24]. Among these 26 cases not
refactored by developers, 21 had no code changes, including
the 9 without version histories. When code does not need to
change to fix bugs or add features, developers are unlikely
to aggressively remove clones. In 3 of 26 cases, developers
evolved code differently by either changing both methods
differently or deleting only one of the two methods. In 2 of 26
cases, developers did not refactor code for some reason, but
similarly changed code once again. Such repetitive systematic
edits on method pairs may indicate refactoring is desirable.

There are six cases in which methods were co-evolved by
developers but are not automatically refactored by RASE. The
major reason is the code invokes certain methods which are
not accessible by an extracted method, contain non-contiguous
cloned code, or have conflicting identifier mappings. It is not
easy to automatically refactor these cases. If developers want
to refactor them, they need to first apply some tricks to make
the common code extractable.

Table VI summarizes the version history for systematically
edited method groups and shows similar results to the method
pairs in Table V. Developers refactored one case, which RASE
also handles. Methods co-evolved in two cases and diverged
in four cases, all of which RASE can refactor. There is one
case where methods were co-evolved by only deleting code,
but RASE does not refactor in this case.

Manually observing the version history reveals that there is
no obvious correlation between the feasibility of RASE enabled
refactoring and manual refactorings performed by developers
on systematically edited code, although there are cases when
automatic and manual refactoring overlaps. Whether develop-
ers refactor or not, they do not base their decision solely on
code similarity and similar edits. They consider other factors,
such as readability, code size, future plans for features, and bug
fixes. Although RASE cannot decide for developers whether
to refactor or not, by creating an executable refactoring plan,
when developers decide to refactor, it helps reduce developer
burden when applying code transformations.

To explore the reasons developers do not refactor while per-
forming systematic edits, we randomly pick several examples
and ask project owners for their expert opinion.

One developer is conservative about aggressive refactoring
and merging commonality between methods: “(I will not
refactor because) this pair of methods is not a pain point
during maintenance/evolution of JDT. That particular class
is very stable, and the readability of the code as it is now
outweighs potential benefits of refactoring. We have other
duplications, that are more likely to cause pain, e.g., by being
forgotten during maintenance. . . . In these classes, potential
gain might be greater, but then a refactoring to avoid re-
dundancy would certainly introduce a significant amount of
additional complexity. We don’t typically refactor unless we
have to change the code for some bug fix or new feature.”

Another developer refactors more proactively to reduce
cloned code, but prefers reducing four duplicated methods
to two, instead of the single method that RASE suggests to
simplify the class hierarchy.

The feedback from developers illustrates that the decision
to remove clones depends on many criteria including code
similarity, co-evolution events, the effectiveness of cloned code
in bug fixing and feature additions, the software architecture,
readability, and maintainability of the resulting refactored
code.

Based on our experience with software version history
and communication with developers, we envision RASE as
a refactoring recommendation tool when developers think
about refactoring duplicated code. RASE will help further
research on recommendations and cost/benefit analysis of
clone removal. RASE should also serve to complement existing
systematic editing tools because developers do not always ag-
gressively reduce duplicated code but often maintain redundant
code for various reasons.

V. THREATS TO VALIDITY

Our results are based on 86 systematic editing examples.
Further evaluation with more subject systems, longer version
histories, and larger scope of systematic edits beyond the
method level remains as future work.

The refactoring capability of RASE is affected by the sys-
tematic editing tool—LASE—it uses. Given multiple similarly
changed methods, if LASE fails to generalize an abstract
edit script for them, RASE cannot provide any refactoring

suggestion. The six types of refactorings implemented in RASE
do not cover all possible code transformations applicable to
clone removal. However, it is the state-of-the-art in terms of
the number of clone removal refactorings it automates.

When handling variations in expressions, we promote ex-
pressions as input parameters of an extracted method. If the
promoted expressions cause side effect, such as i++, we may
alter semantics in some cases, although the alteration is not
observed in our test suites.

RASE determines concrete refactoring transformations
based on an abstract template without considering the global
context such as the extent of code duplication across the entire
codebase or the class relationship among methods. There-
fore, RASE may not suggest the best possible transformation.
However, RASE is the first automated tool that mechanically
examines if systematic edits in multiple locations indicate
refactoring opportunities.

Our results focus on automated refactoring feasibility in-
stead of desirability. We leave developers to decide whether
to refactor or not. We believe that it is difficult to choose
between systematically editing methods and reducing clones
to edit a single copy. To assess refactoring desirability, the
refactoring cost/benefit analysis should account for factors
such as how frequently future systematic edits may occur to fix
bugs and add features, whether complexity increases, whether
it is worthwhile to reduce future edits, and whether the related
methods are likely to change and/or diverge in the future.

VI. RELATED WORK

Systematic Editing. Systematic editing tools automatically
apply similar changes to multiple locations. Simultaneous text
editing tools replicate the exact same users actions in one code
region to other user-selected code regions [25, 30]. Clone-
Tracker takes the output of a clone detector as input, maps
corresponding lines in the clones, and then echoes edits in one
clone to another upon a user’s request [6]. The Clever version
control system monitors code clones, detects changes to them,
and then recommends edit propagation among clones [27].
SYDIT infers an abstract AST edit script from an exemplar
changed method and applies it to user-selected methods [24].
LASE generalizes a partially abstract, context-aware edit script
from multiple examples, uses the edit script to find additional
edit locations, customizes the edit script to each new location,
and then applies the result [23]. All these systematic editing
tools automate repetitive changes to multiple locations, which
may encourage the bad practice of creating and maintaining
code duplications.
Clone Removal Refactoring. Based on code clones detected
by various techniques [13, 15, 20], many tools identify or
rank refactoring opportunities [2, 9]–[11, 32]. For instance,
Balazinska et al. [2] define a clone classification scheme based
on various types of differences between clones and automate
the classification to help developers assess refactoring oppor-
tunities for each clone group. Higo et al. and Goto et al. rank
clones as refactoring candidates based on coupling or cohesion
metrics [9, 11]. Others integrate evolution information in

software history to rank clones that have been repetitively
or simultaneously changed in the past [10, 32]. While these
tools detect refactoring opportunities for clones, they do not
automatically refactor code.

A number of techniques automate clone removal refactor-
ings by factorizing the common parts and by parameterizing
their differences using a strategy design pattern or a form tem-
plate method refactoring [3, 12, 14, 21, 29]. Similar to RASE,
these tools insert customized calls in each original location to
use newly created methods. Juillerat et al. automate introduce
exit label and introduce return object refactorings supported by
RASE [14]. However, for variable and expression variations,
Juillerat et al.’s approach and CloRT [3] define extra methods
to mask the differences, while RASE passes these variations
as arguments of the extracted method. CloRT was applied to
JDK 1.5 to automatically reengineer class level clones. Similar
to our results, they find this reengineering effort led to an
increase in the total size of code because it created numerous
simple methods. Hotta et al. use program dependence analysis
to handle gapped clones—trivial differences inside code clones
that are safe to factor out and such that they can apply the
form template method refactoring to the code [12]. Krishnan et
al. use PDGs of two programs to identify a maximum common
subgraph so that the differences between the two programs
are minimized and fewer parameters are introduced [21] .
Unlike RASE, none of these tools handle type variations when
extracting common code.
Automatic Procedure Extraction. Komondoor et al. extract
methods based on the user-selected or tool-selected statements
in one method [18, 19]. The extract method refactoring in
the Eclipse IDE requires contiguous statements, whereas these
tools handle non-contiguous statements. Program dependence
analysis identifies the relation between selected and unselected
statements and determines whether the non-contiguous code
can be moved together to form extractable contiguous code.
Similar to RASE, Komondoor et al. apply introduce exit label
refactoring to handle exiting jumps in selected statements [19].
Tsantalis et al. extend the techniques by requiring developers
to specify a variable of interest at a specific point only [31].
They use a block-based slicing technique to suggest a program
slice to isolate the computation of the given variable. These
approaches are only focused on extracting code from a single
method. Therefore, they do not handle extracting common
code from multiple methods and resolving the differences
between them as RASE does.
Empirical Studies of Code Clones. Many empirical studies
on code clones find that removing clones is not necessary
nor beneficial [1, 5, 8, 16, 17]. Bettenburg et al. report that
only 1% to 3% of inconsistent changes to clones introduce
software errors, indicating that developers are currently able to
effectively manage and control clone evolution [5]. Kim et al.
observe that many long-lived, consistently changed clones are
not easy to refactor without modifying public interfaces [17].
These empirical studies show that removing code clones is
not always necessary nor beneficial. While these studies use
longer version histories or larger programs than our evaluation,

none of these studies, automatically refactor code to remove
clones, as we do in this paper. Our work thus improves
over their methodology by eliminating human judgment when
determining the feasibility of edits.

VII. CONCLUSIONS

Similar edits in similar code may indicate an opportunity to
remove redundancy. To investigate this question, we design
and implement RASE, an automated refactoring tool that
consists of six clone removal refactoring techniques: extract
method, parameterize type, form template method, and add
parameter to tackle variations in types, methods, variables,
and expressions respectively; and introduce exit label and
introduce return object to handle non-local jumps and multiple
output variables.

By applying RASE to real-world systematic editing tasks,
we observe that RASE improves refactoring feasibility by
refactoring the region surrounding systematic edits as opposed
to refactoring the entire method. This finding corroborates
the community’s understanding that the evolutionary charac-
teristics of clones may be a better indicator for refactoring
needs than the clones themselves. Despite this improvement,
automated refactoring is feasible only in 58% of the cases in
our test suite. We show it is very difficult to automate clone
removal for the remaining 42%. Hand examination indicates
that language, semantics, and lack of common code are main
reasons when refactoring is infeasible, while refactoring is not
always applied by developers even if refactoring is feasible.
We conclude that developers need tool support for both
systematic editing and automated refactoring.

While RASE automates clone removal based on systematic
edits, the decision of whether to refactor or not depends on
multiple complex factors such as readability, maintainability,
and types of anticipated changes. Systematic edits serve only
as one factor. Therefore, they are not sufficient to indicate
clone removal is desirable. However, we believe that RASE’s
automated refactoring capability will support further research
on refactoring cost/benefit analysis and recommendations.

VIII. ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation under grants CCF-1149391, CCF-1117902, SHF-
0910818, CCF-1018271, CCF-0811524, CNS-1239498, and a
Google Faculty Award.

REFERENCES

[1] L. Aversano, L. Cerulo, and M. D. Penta. How clones are maintained:
An empirical study. In CSMR ’07, pages 81–90, 2007.

[2] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis.
Measuring clone based reengineering opportunities. In METRICS, page
292, 1999.

[3] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis.
Partial redesign of java software systems based on clone analysis. In
WCRE, page 326, 1999.

[4] G. Bavota, A. De Lucia, A. Marcus, R. Oliveto, and F. Palomba.
Supporting extract class refactoring in eclipse: The aries project. In Pro-
ceedings of the 34th International Conference on Software Engineering,
2012.

[5] N. Bettenburg, W. Shang, W. Ibrahim, B. Adams, Y. Zou, and A. E.
Hassan. An empirical study on inconsistent changes to code clones at
release level. In WCRE, pages 85–94, 2009.

[6] E. Duala-Ekoko and M. P. Robillard. Tracking code clones in evolving
software. In ICSE, pages 158–167, 2007.

[7] M. Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 2000.

[8] N. Göde. Clone removal: Fact or fiction? In IWSC, pages 33–40, 2010.
[9] A. Goto, N. Yoshida, M. Ioka, E. Choi, and K. Inoue. How to extract

differences from similar programs? a cohesion metric approach. In
IWSC, pages 23–29. IEEE, 2013.

[10] Y. Higo and S. Kusumoto. Identifying clone removal opportunities based
on co-evolution analysis. In IWPSE, pages 63–67, 2013.

[11] Y. Higo, S. Kusumoto, and K. Inoue. A metric-based approach to
identifying refactoring opportunities for merging code clones in a java
software system. J. Softw. Maint. Evol., 20(6):435–461, 2008.

[12] K. Hotta, Y. Higo, and S. Kusumoto. Identifying, tailoring, and
suggesting form template method refactoring opportunities with program
dependence graph. 2011 15th European Conference on Software
Maintenance and Reengineering, 0:53–62, 2012.

[13] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and
accurate tree-based detection of code clones. In ICSE, pages 96–105,
2007.

[14] N. Juillerat and B. Hirsbrunner. Toward an implementation of the ”form
template method” refactoring. SCAM, 0:81–90, 2007.

[15] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multilinguistic
token-based code clone detection system for large scale source code.
TSE, pages 654–670, 2002.

[16] C. Kapser and M. W. Godfrey. ”cloning considered harmful” considered
harmful. In WCRE ’06: Proceedings of the 13th Working Conference on
Reverse Engineering, pages 19–28, Washington, DC, USA, 2006. IEEE
Computer Society.

[17] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical study of
code clone genealogies. In ESEC/FSE, pages 187–196, 2005.

[18] R. Komondoor and S. Horwitz. Semantics-preserving procedure extrac-
tion. In POPL, pages 155–169, 2000.

[19] R. Komondoor and S. Horwitz. Effective, automatic procedure extrac-
tion. In IWPC, pages 33–, 2003.

[20] J. Krinke. Identifying similar code with program dependence graphs. In
WCRE, page 301, 2001.

[21] G. P. Krishnan and N. Tsantalis. Refactoring clones: An optimization
problem. ICSM, 0:360–363, 2013.

[22] E. Mealy, D. Carrington, P. Strooper, and P. Wyeth. Improving usability
of software refactoring tools. In Proceedings of the 2007 Australian
Software Engineering Conference, 2007.

[23] N. Meng, M. Kim, and K. McKinley. Lase: Locating and applying
systematic edits. In ICSE, page 10, 2013.

[24] N. Meng, M. Kim, and K. S. McKinley. Systematic editing: Generating
program transformations from an example. In PLDI, pages 329–342,
2011.

[25] R. C. Miller and B. A. Myers. Interactive simultaneous editing of
multiple text regions. In 2002 USENIX Annual Technical Conference,
pages 161–174, 2001.

[26] M. Mortensen, S. Ghosh, and J. Bieman. Aspect-oriented refactoring of
legacy applications: An evaluation. IEEE Trans. Softw. Eng., 2012.

[27] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen. Clone-aware configuration management. In ASE, pages 123–
134, 2009.

[28] D. Silva, R. Terra, and M. T. Valente. Recommending automated
extract method refactorings. In Proceedings of the 22Nd International
Conference on Program Comprehension, 2014.

[29] R. Tairas and J. Gray. Increasing clone maintenance support by
unifying clone detection and refactoring activities. Inf. Softw. Technol.,
54(12):1297–1307, 2012.

[30] M. Toomim, A. Begel, and S. L. Graham. Managing duplicated code
with linked editing. In VLHCC, pages 173–180, 2004.

[31] N. Tsantalis. Identification of extract method refactoring opportunities
for the decomposition of methods. J. Syst. Softw., 84(10):1757–1782,
2011.

[32] N. Tsantalis and A. Chatzigeorgiou. Ranking refactoring suggestions
based on historical volatility. In Proceedings of the 2011 15th European
Conference on Software Maintenance and Reengineering, pages 25–34,
Washington, DC, USA, 2011. IEEE Computer Society.

[33] S. A. Vidal and C. A. Marcos. Toward automated refactoring of
crosscutting concerns into aspects. J. Syst. Softw., 2013.

[34] N. Zazworka, C. Seaman, and F. Shull. Prioritizing design debt
investment opportunities. In Proceedings of the 2Nd Workshop on
Managing Technical Debt, 2011.

	Introduction
	Motivating Example
	Opportunistic Refactoring
	Phase I: Abstract Template Creation
	Merge
	Abstract
	Expand

	Phase II: Clone Removal Refactoring

	Evaluation
	Method Pairs
	Method Groups
	Reasons for Not Refactoring
	Software evolution after systematic edits

	Threats to Validity
	Related Work
	Conclusions
	Acknowledgments
	References

