

Wireless Video

Victor Bahl

bahl@acm.org

University of Massachusetts
Amherst, Massachusetts

Presentation Outline

- Problem Identification
- Video Codec
 - Encoding / Decoding
 - Transmission and Reconstruction
- Simulation Methodology and Results
- Software Performance
- Conclusions

Current ISO & ITU Standards do not measure up!

Aren't error robust!

Suffer from spatial and temporal error propagation

Aren't network friendly!

- How much bandwidth to reserve for VBR bitstreams?
- How do you guarantee delay if bandwidth is not reserved?

Aren't application friendly!

- Poor error concealment properties
- Do not allow for graceful degradation. In the absence of bandwidth
 - Loose frames -- Choppy video
 - Loose synchronization

Example -- Transmission Errors (MPEG-1, MPEG-2, H.261, H.263)

Example -- Transmission Errors (H.261, M-JPEG)

Original

Errors in VLC

Frame 266

Frame 267

Frame 268

Summary -- Effect of Transmission Errors

The impact of bit errors on video quality depends on their **spatial** and **temporal** location

A single bit error may destroy a major part of a GOB in spatial domain due to VLC

Picture and GOB headers stop error propagation in spatial domain

Errors propagate among P, PB, and B pictures in the temporal domain

I-Pictures stop error propagation in the temporal domain

Errors in headers or motion vectors could cause major damage

Errors in high frequency DCT coefficients have little impact on the video quality

Presentation Outline

- Problem Identification
- Video Codec
 - Encoding / Decoding
 - Transmission and Reconstruction
- Simulation Methodology and Results
- Software Performance
- Conclusions

Content Sensitive Video Codec

Encoder

Segmentation -- Split and Merge Algorithm

Merge the macro-block *i* with *j* whenever:

$$\left| \log \left(\sigma_i^2 / \sigma_j^2 \right) \right| < T$$

Where T (Threshold) is calculated as:

$$T = \log \left(\sigma_{\text{max}}^2 / \sigma_{\text{min}}^2\right) / N + \eta$$

Example -- Intra-Frame Segmentation

Miss America

Threshold = 0.278

Akiyo

Threshold = 0.278

Example -- Inter-Frame Segmentation

Miss America

Frame Difference between the 9th and 10th Frame

Miss America

Threshold = 20

Subband Decomposition

Example -- Wavelet Decomposition of Primary Region

Two-Tap Haar Filter applied to the Luminance Component

4-Level Decomposition of Miss America

Example -- Effect of Insufficient Bandwidth

Akiyo

Foreman

Mother & Daughter

Original 48 Kbit/sec

Missing one Subband

Missing three Subbands

Presentation Outline

- Problem Identification
- Video Codec
 - Encoding / Decoding
 - Transmission and Reconstruction
- Simulation Methodology and Results
- Software Performance
- Conclusions

Lego Transmission

Transmitter

Bit Stream Syntax

Picture Layer

- Region Layer (RL) (instead of the GOB Layer)
 - Subband Layer (SL)
 - Macroblock Layer (MBL)
 - Block Layer

Bandwidth Reservation

Reserve peak demand of the primary subband or main region

Statistical Multiplexing: Connection Level .vs. System Level

Lego Reconstruction Receiver

Lego Reconstruction (Error Concealment)

Presentation Outline

- Problem Identification
- Video Codec
 - Encoding / Decoding
 - Transmission and Reconstruction
- Simulation Methodology and Results
- Software Performance
- Conclusions

Simulation Methodology

Properties --Robustness Against Noise

Reconstruction with corrupted AC Subbands - 25.34 dB

Reconstruction from Protected Coefficients (ignoring all Corrupted Regions - 35.43 dB

Properties --Restricted Error Propagation

Original (16 Kbit/sec)

Original (16 Kbit/sec)

Without Segmentation

Without Segmentation

With Segmentation

With Segmentation

Results --Improved Temporal Resolution - Changing Error Patterns

Results -- Improved Temporal Resolution - Changing Bandwidth

Results - Improved Bandwidth Utilization

Primary Region Usage

Statistical Multiplexing within a Frame

Bandwidth usage with and without intra-frame statistical multiplexing

Presentation Outline

- Problem Identification
- Video Codec
 - Encoding / Decoding
 - Transmission and Reconstruction
- Simulation Methodology and Results
- Software Performance
- Conclusions

Software Performance

Function Name	Lego Video Codec	ITU's H.263 Codec
Segmentation	11	
DWT / IDWT	1.8	
DCT / IDCT	4.7	5.3
Motion Estimation	55.3	62.8
FindHalfPel	9.9	11.3
Quant / DeQuant	2.4	2.7
Clip	1.5	1.7
Interpolate Image	1.1	1.2
Predict_P	2.2	2.5
MB_Reconstruction	1.1	1.3
Miscellaneous	9	11.2

Encoding Rate Comparison

Presentation Outline

- Problem Identification
- Video Codec
 - Encoding / Decoding
 - Transmission and Reconstruction
- Simulation Methodology and Results
- Software Performance
- Conclusions

Conclusions

Region segmented, content sensitive video codec works better than all current ISO and ITU video coding standards

- Robust against errors
- Bounds both spatial and temporal error propagation
- Improves perceptual temporal resolution
 - when available bandwidth is changing
 - when error characteristics are changing
- Good for QoS
 - Can be used with near optimum reserved bandwidth utilization
- Software performance comparable to H.263