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Abstract

When testing a large number of hypotheses, it can be helpful to estimate or control the false discovery
rate (FDR), the expected proportion of tests called significant that are truly null. The FDR is intricately
linked to probability that a truly null test is significant, and thus a number of methods have been described
that estimate or control the FDR by directly using the p-values of the hypothesis tests. Most of these
methods make the assumption that the p-values are uniformly and continuously distributed under the null
hypothesis, an assumption that often does not hold for finite data. In this paper, we consider the estimation
of FDR for contingency tables. We show how Fisher’s exact test can be extended to efficiently calculate
the exact null distribution over a set of contingency tables. Using this exact null distribution, we explore
the estimation of each of the terms in the FDR estimation, characterize the asymptotic convergence of the
estimator, and show how the conservative bias can be reduced by removing certain tests from consideration.
The resulting estimator has substantially less conservative bias than traditional approaches.

1 Introduction

In modern biomedical applications, researchers often want to test multiple hypotheses at the same time. For
example, in an HIV drug resistance study, a researcher may wish to test which observed HIV mutations are
correlated with drug resistance. The p-value, the probability of getting a result at least as extreme as the
observed test assuming the null hypothesis is correct, can be used to filter out low probability correlations.
Researchers typically consider the subset of tests with p-value below some threshold for a follow-up study.
When performing multiple statistical tests, these p-value thresholds must be carefully chosen so as to avoid
an abundance of false positive results, while at the same time maximizing the number of true positive results.
Traditionally, p-value thresholds are chosen so as to control the probability of at least one false positive result.
More recently, Benjamini & Hochberg (1995) proposed controlling the false discovery rate (FDR), which is
the expected proportion of false positives among tests that are called significant. Storey (2002, 2003) intro-
duced the FDR-analogue of the p-value, called the g-value, which estimates the minimum FDR for any given
p-value threshold. This approach has proven widely applicable in, for example, high throughput biological
screens, as it allows a researcher to balance the number of significant associations with the proportion of
those tests that are expected to be false positives.

When test statistics are continuous and two-sided, the p-values are expected to be uniformly distributed
under the null hypothesis. For these cases, Storey (2002, 2003) provides a simple procedure for estimating the
FDR. For many emerging biological applications, however, the underlying test statistics are not continuous.
For example, tests involving genetic data (such as single nucleotide polymorphisms, or SNPs) often involve a
small number of possible outcomes. As we will later illustrate, in such cases the discreteness in the data will
cause the p-values under the null hypothesis to be heavily skewed toward one, making Storey’s FDR method
overly conservative (Pounds & Cheng, 2006; Gilbert, 2005). Furthermore, it is often the case that each test
will have a different p-value distribution under the null hypothesis, further complicating analysis.



Although the discreteness of the data presents unique challenges, we can also leverage it to our advantage.
For many discrete tests the exact null distribution can be efficiently computed. We can use these exact
computations to provide tighter FDR estimates. In this paper, we consider those cases where the sufficient
statistics for a test are a 2 x 2 contingency table and Fisher’s exact test (FET) is appropriate. In these cases, we
show how FET can be leveraged to efficiently compute an FDR estimator that is asymptotically conservative
and yields more power than estimations that are based on continuous assumptions.

FET uses the hypergeometric distribution to estimate the null distribution of a single test using all the
possible permutations of that test’s data. We extend this null distribution to efficiently compute the exact
Type I error rate over a large number of tests. We demonstrate it’s applicability to discrete data, provide an
efficient implementation for exact permutation testing, and prove the asymptotically conservative result. We
suggest a family of permutation-based estimators for the 7wy parameter, estimating the proportion of all tests
that are truly null. We explore the convergence properties of our estimators and discuss their convergence
properties.

One of the unique advantages of discrete data is the potential to ignore tests than can be proven to be irrel-
evant. We derive a new filtering criterion that is provably conservative and will, under certain circumstances,
provably increase power.

Although this paper focuses on Fisher’s exact test over binary contingency tables, our theoretical results
will generalize to other exact tests, such as McNamara’s test and the exact test for Hardy-Weinberg Equilib-
rium, for which exact distributions can be efficiently calculated.

2 Multiple Hypothesis Examples

To demonstrate the applicability of our methods, we experiment with the following data sets:

HIV resistance. A number of effective antiretroviral (ARV) drugs have been developed for HIV. How-
ever, for each of these drugs there exists a set of HIV mutations that abrogate the drug’s effectiveness. Thus,
an active area of research involves the identification and characterization of drug resistance mutations. Har-
rigan and colleagues (Harrigan et al., 2005) enrolled patients at the start of their ARV therapy and sequenced
the infecting HIV genomes. After several years of therapy on multiple classes of ARVs, the researchers re-
sequenced the infecting HIV genomes to identify mutations that were correlated with specific ARVs. They
tested whether the presence of a mutation at a given position in the HIV genome was correlated with the
patient taking a specific ARV. Three classes of drugs were tested over 1194 variables representing observed
amino acids at positions in the HIV Protease and Reverse Transcriptase proteins, resulting in 3582 total tests,
each with 281 observations. We will refer to this data set as “Resistance”.

Epitope mapping. The cellular arm of the immune response identifies and destroys infected cells. Such
cells can be identified by the unique strings of viral protein fragments, called epitopes, that are displayed
on the surface of infected cells. These epitopes are displayed by human leukocyte antigen (HLA) proteins.
Thousands of HLA variations have been identified in humans. Thus, a critical component of HIV vaccine
design is the identification and characterization of the set of epitopes that each HLA allele can present on the
cell surface.

One high-throughput experimental method for epitope mapping is the use of overlapping peptide (OLP)
scans, in which a sliding window of 10-15 amino acid peptide fragments are created based on the viral
genome of interest. Each OLP is then tested against cells from dozens of patients, each of whom contains six
HLA alleles, with an assay that tests if at least one of the HLA proteins binds the peptide (Addo et al., 2003).
One then attempts to map HLA alleles to positive assay responses. The test can be performed using FET,
comparing the frequency of response to an epitope in patients with or without a given HLA allele. Kiepiela
et al. (2007) recently performed this high throughput assay. Here, we reanalyze their data, comparing com-
paring 219 HLA alleles with 343 OLPs, resulting in 74,774 total tests, with an average of 724 observations
per test. This data set is denoted “Epitope”.

Sieve analysis. In sieve analysis we try to identify positions in the viral genome at which the variability
differs between two different populations (Gilbert, 2005). For example, if the position is more variable in



patients from one region than those from another, it may indicate that different forces are acting on that
region. Following Gilbert, we have created a data set consisting of 567 HIV clade B sequences (Brumme
et al., 2008) and 567 HIV clade C sequences (Kiepiela et al., 2007; Rousseau et al., 2008) and, for 363
positions in the HIV Gag protein, compared the frequency at which sequences match the consensus for their
respective clades. We will call this data set “Sieve”.

Linkage disequilibrium mapping. Linkage disequilibrium (LD) occurs when two sites on a chromo-
some are not statistically independent of each other. This typically occurs when the sites are nearby on the
chromosome, such that inheritance of a given allele at one site is correlated with inheritance of a given allele
at the other site. When performing genome wide association studies (GWAS), it is helpful to identify a set of
variations (SNPs) that are in LD with each other, so that potentially redundant results can be identified. We
have taken the SNP data from a recent GWAS (Chio et al., 2009), binarized the data and tested for indepen-
dence between each of 401,017 pairs of neighboring SNPs. There was an average of 1085 observations per
test. We will call this data set “SNP”.

Synthetic data We also created various types of synthetic data based on the Epitope data set (see Ap-
pendix). Through such synthetic data we can demonstrate each aspect of our proposed approach.

3 Background

3.1 Contingency Tables and Fisher’s Exact Test

Consider an experiment that tests the independence of two random binary variables X and Y. Suppose there
are n observations, (z1,¥1), (2,y2), ..., (Zn,yn). The results can be summarized in a contingency table
t = (a,b,c,d), as defined in Table 1. We denote the marginal counts of ¢ as §* = (0x, 0, 0y, 0y ), which
represent the number of times each variable is observed in each state. These counts capture the maximum
likelihood estimators for the marginal probabilities pr(X = 1) and pr(Y = 1). We will often drop the super-
script ¢ when it is clear from context.

Table 1: 2 x 2 contingency table

Y =1 Y =0 X
X=1 a b Ox =a+b
X=0 d g =c+d
Y Oy =a+c Oy =b+d n

Our goal is to test the null hypothesis H = 0 that X and Y are independent. Let T" be the random variable
representing a table with marginals 6. Fisher (1922) showed that, if X and Y are independent and each is
independent and identically distributed (IID), then the probability pr(¢) of observing T' = ¢ is given by the
hypergeometric distribution:

0% (0%
(5)(5) "

(ot.)

From (1), a two-tailed marginal p-value p(t) can be computed for ¢ using

pr(t) =

p(t) & Y pr() 1{pr(t) < pr(t)}, )

t’€perm(t)

where perm(t) = {t' : " = 0"}, and 1{-} is the indicator function that evaluates to one if the constraints are

satisfied and O otherwise. We call Equation (2) a marginal p-value because it is conditioned on the marginals
6.



Many statistics have a uniform distribution of p-values under the null. That is, if P is a continuous random
variable representing a p-value, pr(P < a | H = 0) = . Itis evident from (1), however, that the distribution
of FET p-values under the null may be strongly skewed toward one and therefore pr(P < oo | H = 0) < o
For example, the minimum achievable p-value for a given n is 1/ (n7/‘2), and that can only be achieved when
the marginals are evenly distributed (i.e., when 0x = 0% = 7). Figure 1 shows the distribution of p-values
from our various data sets.
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Figure 1: The histogram of marginal p-values for the various data sets. p-values are transformed using log, p.

3.2 Positive False Discovery Rates

Suppose that m hypothesis tests over 2 x 2 contingency tables ¢4, ...,%,, are simultaneously tested using
Fisher’s exact test, with corresponding marginal p-values p1, ps, . . ., pm, and we wish to estimate or control
the false positive rate in some way. Given the values of H = 1, Hs, ..., H,,, where H; = 0 if the ith null

hypothesis is true and H; = 1 if the null hypothesis is false, and a rejection region I, the possible results are
summarized in Table 2.

Note that only m, R and W are observed. Here, we will focus on nested rejection regions defined by the
Type I error rate a.. That is, given an « € [0, 1], we will reject all tests with P < «. For convenience, we will



Table 2: Outcomes when testing m hypotheses

Hypothesis Accept  Reject Total
Null true ur)y vI@ me
Alternative true  T(T)  S(T) my
Total w(T) R m

use « to denote this rejection region.

Benjamini & Hochberg (1995) proposed controlling the False Discovery Rate (FDR), which they defined
to be
Vi)

FDR(a) £ E(R(a)> .

When R(«) = 0, this quantity is undefined. In this case, Benjamini and Hochberg defined FDR («) to be 0,
which is equivalent to defining

Via)

FDR(a) £ E( —— | R(a) >0 ) pr(R(e) > 0).

(@2 (7 | A@)>0) () >0

In practice, we are only interested in p-value thresholds that result in the rejection of at least one test in our
data. Thus, Storey (2002) proposed the positive false discovery rate (PFDR), which is conditioned on the
rejection of at least one test:

reDR(a) = £ | Rl > 0)

- 1
~ pr(R(a) > 0)

Following Storey (2002), assume that the random variables H; are IID Bernoulli variables with prior
probability pr(H; = 1) = 1 — 7 and that the p-values are I[ID with

FDR (o).

P, |H;~(1—-H;)Fo+ H;Fy,

for some null distribution F{ and some alternative distribution F}. Under these assumptions, Storey (2002)
showed that

PFDR(a) =pr(H =0| P < «)
_mopr(P<al|H=0)
B pr(P <) ®)
_ B(V(o)
E(R())

For small samples, it may be quite likely that no tests are rejected at threshold .. Therefore, Storey (2002)
proposed the following estimator for PFDR:
o pr(P < a | H=0)

PEDR(@) = 5P < ) pr(R(@) > 0) @

Equation (4) provides estimators for each term of (3), with an added correction term that estimates pr(R(«) > 0).
(Note that for large m, PFDR =~ FDR, because pr(R(«) > 0) ~ 1.)
For p-values that are not biased towards 0 under the null distribution, Storey (2002) showed that

W) a
(1 =XNR(a) (1= (1 -a)")

PFDR (a) 2



for some well-chosen A, 0 < A\ < 1, is conservative both asymptotically and in expectation for finite samples
using the intuition that pr(P < o' | H = 0) < a and m ~ g Storey (2002); Storey & Tibshirani
(2003) and others (e.g., Langaas et al. 2005) have proposed methods for choosing A.

In practice, Storey suggested estimating PFDR («) for each observed p-value p; and proved that, under the
aforementioned independence assumptions, the estimates are simultaneously conservative for all p; Storey
et al. (2004). When the tests are continuous and uniformly distributed, pr(P < p; | H = 0) = p;, making
Storey’s estimator quite tight in practice. When the tests are discrete, however, pr(P < p; | H = 0) can
be significantly less than «. For example, in the case of Fisher’s exact test, each observed p-value p; is a
marginal p-value dependent on the marginals 6;. Although pr(P < p, | H = 0,0;) = p;, for some test j # 1,
pr(P <p;| H=0,6;) < p;. Thus, the overall probability pr(P < P; | H =0) < p;, making Storey’s
estimate overly conservative.

4 Computing PFDR for Fisher’s exact test

Fisher’s exact test provides an efficient means of computing pr(P < « | H = 0,0) exactly. Although the
resulting marginal p-values should not be applied directly to PFDR estimation, the computation can be ef-
ficiently leveraged to provide a tight estimate for each of the terms in (4). In this section, we define each
of these estimates and show that each estimate is unbiased or conservative (in this context, an estimator is
conservative if it is expected to overestimate terms in the numerator of (4) or underestimate terms in the
denominator of (4)). We evaluate the asymptotic convergence properties of (4), showing that it results in a
conservative FDR estimate and characterize conditions under which the estimates will be closer to the true
values. In addition, we discuss ways in which the exact test can be further leveraged to increase power by
filtering irrelevant tests.

Assumption 1. We assume that p-values are IID and the H; are IID Bernoulli random variables. Because we
are using Fisher’s exact test, we also need to consider the marginals 6, which we assume are IID. Although
we we make no assumptions about the specific distribution of 8, we assume that the p-values depend on the
marginals according to the mixture model

P|H,0~ (1 H)Fy(0) + HF(0) 5)

where Fy(6) follows the hypergeometric distribution as defined in (2) and F;(6) is the generating function
of the alternative model. We further assume that 6 is independent of H, though we will later relax this
assumption.

4.1 Estimating pr(P < a | H = 0) from pooled p-values

The typical approach to FDR estimation is to assume for each p; that pr(P < p; | H = 0) = p;, which is
equivalent to assuming pr(P < a | H =0) = pr(P < a | H =0,6;) for j = 1,...,m. It is evident from
equation (2), however, that the p-values are not independent of the marginals. Thus, more accurate estimate
is to sum out the marginals:

pr(Pga\H:()):Zpr(Pga|H:0,6")pr(9’\H:[)) (6a)
0/

=Y pr(P<alH=00)p(0), (6b)
0/

where (6b) follows from the assumption that the marginals are independent and identically distributed. Fur-
thermore, this IID assumption allows us to construct an unbiased estimate using pooled p-valued, calculated



from

pr(P<al|H=0)=> pr(P<al|H=0,0)p(?) (7a)
9/

= Zpr(P <al|H=0,0) <1711 i 1{6; = 9/}> (7b)

9’ =1

:lzzpr(Pgam:o,e') 1{6; = 6"} (7¢)
mi:l 6’
1 m

=—>Y pr(P<a|H=0,0) (7d)
m

i=1

where we estimate pr(6) using the maximum likelihood estimate
5i0) 2 L3100, = 0)
m J '

Because pr(6) is an unbiased estimator for pr(#), it follows that
B (P <a|H=0)=p(P<a|H=0). ®)

Equation (7d) can be written

m

BP<alH=0)= 13 3 prlpelt) | H=0)1{p(t) <o},

i=1 t’€perm(t;)

indicating that the pooled p-value is taken from every possible permutation of the data. Note that the right-
most summation is itself a p-value and the constraint 1{p(7") < a} is such that the summation is the maxi-
mum achievable p-value under 0; that is at most «. Thus,

Epr(P <a|H=0))<a ©)

with equality when all the observed marginals can achieve o exactly. Thus, when not all marginals can
achieve a exactly, power can be gained over the marginal p-values by using the pooled p-values, which yield
a tighter estimate of pr(P < « | H = 0). The specific reduction in bias can be expressed as the ratio

PP <a|H=0)
a

) (10)

which can have quite a large effect in practice, especially for small a.. Figure 2 plots this ratio as a function
of « for each of our data sets.

4.2 Estimating pr(P < «) and pr(R(«) > 0)

Given that R(«) is the number of observed tests with p < «, it follows that

R
B(A) = (< ). an
m
We therefore follow Storey (2002) in defining
5P <a)2 H@)
m
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Figure 2: Ratio of pooled to marginal p-values as a function of «.. Solid dark, Epitope; solid gray, Resistance;
dotted dark, SNPs; dashed gray, Sieve.

Because (4) would be undefined for R = 0, Storey (2002) defines

pr(P < ) L M’
m
where R(«) V 1 = max(R(«), 1), though in practice we are typically only interested in values for « that
were observed in our data set.
To determine PFDR(«x), we also require the estimate pr(R(a) > 0). It follows from our independence
assumptions that

pr(R(a) > 0) =1—(1—pr(P <a))™
<l-(1-pr(P<a|H=0)",
making
pr(R(a)>0)21—-(1—-pr(P<a|H=0))"

a conservative estimate of pr(R(«) > 0). Note that using 1 — (1 — )" will lead to an anti-conservative
(over) estimate of pr(R(«) > 0) due to inequality (9).

4.3 Estimating 7,

The final step in the PFDR computation is to estimate 7y. In this section, we use a general framework for
conservatively estimating my and show how existing methods fit within this framework. Given the mixture
model (5), we can write

pr(P=p)=mopr(P=p|H=0)+mpr(P=p|H=1), (12)

where m; = pr(H =1) = 1 — my (Dalmasso et al., 2005; Genovese & Wasserman, 2004; Langaas et al.,
2005). Thus, it follows that
pr(P=p)>mopr(P=p| H=0)
and
pr(P = p)
T pr(P=p|H=0)

0



Moreover, for any non-negative function p(-),

>, P(P)pr(P = p)

>, p(p)pr(P=p| H=0)’ (13)

Ty <

which leads to the following lemma.

Lemma 1. Suppose we have m tests that follow Assumption 1. Let p(-) be any non-negative function, and

a S p(pi)
DN E(p(pl) | H=0,6;) (14)

o

Then E(’fro) > 0.

Proof. Tt follows analogously to the derivation of (7) that

pr(P=pHZO)Z;E<;pr(P=pIH=0,9i)> (15)
and -
pr(P =p) = ;E@; 1{p; p}>. (16)
Thus, combining with inequality (13), it follows that :
< X,rpr(P=p) > P(p) o B 1{pi = p}) ar)
Y, ppr(P=p|H=0) > pp)m EQZ pr(P=p|H=0,0;))
EQCL p(pi) (17b)

B E(ZL >, p)pr(P=p| H = 0,91')) ‘

Because Zp p(p)pr(P = p) is a linearly increasing function of 3 p(p)pr(P = p | H = 0), it follows from
Jensen’s inequality that

B(CT p(pi)) . E( Si plp) >
E(S S, pw)pr(P =p | H=0,0)) ~ \Xiz X, p@)pr(P =p [ H =0.0)
_ 27;1 p(pi)
it E(p(p) | H=0,6:)
= fo.
Thus, E(79) > mp. O

Furthermore, in the limit, estimate (14) asymptotically converges to

- +7r1E(p(p)l H=1)
’ E(p(p) | H=0)

which implies that the p(-) function minimizing % will yield the least biased estimator.

Lemma 2. Under the assumptions of Lemma 1,

. A a.s.
lim o = To + 71

E(p(p) | H=1)
m—00 E(pp) | H

:0)'



Proof. By the strong law of large numbers, equations (15) and (16) imply thatm ™' E(>"" , pr(P =p | H = 0,6;))
and m~' B(}" | 1{p; = p}) converge almost surely to pr(P = p | H = 0) and pr(P = p), respectively.
Thus, it follows from (17) that

i A >, P()pr(P = p)
m—ca "~ 3 p(p)pr(P=p|H=0)’

Furthermore, it follows from the mixture model (12) that

>, p(p)pr(P = p) >, p)pr(P=p|H=1)

S ppr(P=p [ H=0) S m)pr(P=p | H=0)" (18)
Thus,
lim 7 22 7o+ 7 pr(p)pr(P:p\Hzl)
m—co ' 0SS p(p)pr(P =p | H =0)
e B | H=1)
ST R (o) | H=0)" O

Equation (14) gives us great flexibility in computing 7y estimates. One such estimation method is given
by Storey (2002, 2003)
_ #Hpi > A}

for some tuning parameter 0 < A < 1. For uniformly distributed statistics,

19)

I=AMm=E(#{r>A}| H=0)=mpr(P>X|H=0).

For contingency tables, we can estimate pr(P > A | H = 0) using pr(P < A | H = 0), which results in
an unbiased estimate for E(#{m > A} | H = 0). Therefore, Storey’s estimator (19) is a special case of

estimator (14) in which
0 ifp <A,
p(p) =

1 otherwise

and the P-values are assumed to be continuous and uniformly distributed under the null.

As A — 0, we have increasingly conservative bias, with 79 = 1 when A = 0, whereas the variance of
the m( estimate increases as A\ — 1 due to the decreasing number of observations. Indeed, different heuristic
approaches have been proposed to balance the bias-variance tradeoff inherent in picking A (Storey, 2002;
Storey & Tibshirani, 2003). Equation (14) suggests an orthogonal heuristic that may be useful in estimating
mo: choosing a weighting function p(-) such that more weight is applied to tests with high p-value. A natural
choice for a weighting function is p(p) = pr(P < p | H = 0,6;) = p;, which is equivalent to

PN E(p)

"B H=0) o
Under this weighting function, tests with low p-values will still contribute to the 7y estimate, but not as much
as tests with high p-values. In principle, we could define p(-) such that we are effectively summing p-values
over the range A < p < 1; in practice, however, we have found the 7y estimate to be quite stable over a wide
range of A, and so simply set A = 0.

Pounds & Cheng (2006) suggested the estimator 77, = 2p for discrete statistics, where 7 is the average
observed marginal p-value. Estimator (20) is similar to their estimate, except that for contingency tables we
can compute E(p | H = 0) exactly, rather than assuming E(p | H = 0) = 0.5, which assumes a unform
distribution of p-values.

10



Table 3 compares the true 7 for synthetic data against the 7y estimators of equation (14), of Storey
(2003) (evaluated for A = 0.5') and of Pounds & Cheng (2006) computed using marginal p-values. Equation
(14) provides a tight and conservative estimate, substantially increasing power over methods that assume a
uniform p-value distribution. Similarly, accounting for the exact p-value distribution results in a substantially
lower 7, estimate on each of the real data sets (Table 3).

Table 3: Comparing 7 estimates

Data set % 2p  Storey?
0.001° 0.086  0.12  0.11
0.05 0.13 0.18 0.17
0.1 0.18 0.25 0.24
0.2 0.27 0.38 0.37
0.3 0.36 0.52 0.51
0.4 0.45 0.64 0.63
0.5 0.58 0.69 0.68
0.6 0.66 0.79 0.79
0.7 0.75 0.91 0.90
0.8 0.83 1.01 1
0.9 0.92 1.13 1

1 1.003 1.24 1
Sieve 0.63 0.82 0.69
SNPs 0.34 0.44 0.41
Epitope 0.99 1.84 1

Resistance 0.97 1.38 1

“Evaluated at A = 0.5 using pooled p-values.
bNumeric data sets indicate mo for synthetic
data derived from the Epitope data set.

4.4 Convergence properties

We have presented estimates for each component of PFDR, showing how each is either unbiased or conser-

vative. It follows that PFDR is asymptotically conservative as m — oo. We can, however, be more precise
in estimating the convergence properties of our PFDR estimate.

Theorem 1. Given m tests that follow Assumption 1 and a non-negative function p(-), we have

E(p(p) | H=1)
— as T0+ 71 =
lim PFDR(a) % Bew) | H=0) pEpR(a).
m— o0 o

This convergence theorem shows that, for large samples, our PFDR estimate is conservative and becomes
tightest when 7o is computed using a p(-) function that is expected to be much lower for true alternative
hypotheses than for true null hypotheses.

'We used the available R code from http:/genomics.princeton.edu/storeylab/qvalue/index.html, using pooled p-values as input. Re-
sults are truncated at 1. A = 0.5 was chosen because the spline-fitting method Storey & Tibshirani (2003) always results in estimates of
7o = 1 for these discrete data sets.

11



Proof.

s : 7o pr(P < o | H =0)
1 PFDR =1
i PEDR() =l 5P < o) pr(R(a) > 0)
im0 o limy, oo PH(P < o | H = 0)
im0 PY(P < @) limyy, oo pr(R(c) > 0)°

By the strong law of large numbers, equation (8) implies that pr(P < « | H = 0) converges almost surely
to pr(P < a | H =0), equation (11) implies that pr(P < «) converges almost surely to pr(P < «), and
pr(R(«) > 0) converges almost surely to 1. Thus

a.s. limmﬂoo 7AT() pr(P <« | H = O)

lim lﬁ(a)

m—oo pr(P < a)
_ im0 o PFDR («v)
) '
Finally, it follows from Lemma 2 that
Ep(p) | H=1)
fee— a.s To + HE p(p) | H=0)
lim PFDR () % Bolp) [ H=9) pppR (a). O

m—oo o

4.5 Dependent marginals

Until now, we have assumed that § is independent of H. It is conceivable, however, that true alternative
tests will tend to have more balanced marginals that permit lower p-values. For example, in the Resistance
data, it is possible that positions in which no mutations confer drug resistance may be more conserved due
to purifying selection, an evolutionary process that results in less observed variation. Under these condi-
tions, we might expect the PFDR estimate to become more conservative because a substantial proportion of
the balanced marginals included in our pooled-p-value estimate belong to true alternative tests causing us
to overestimate pr(P < « | H = 0). This conservative bias is analogous to that observed in the microarray
community—a bias that arises from permutation testing over alternative data that has a higher variance than
the null data (Jiao & Zhang, 2008; Xie et al., 2005). In this section, we formalize the problem for discrete
statistics and show that our PFDR estimate becomes asymptotically more conservative as the tendency in-
creases for true alternative tests to have more evenly distributed marginals than null tests. Note that these
results hold only for 7 estimators in which p(-) is non-decreasing, a slightly more restrictive definition than
we used in the previous sections. In principle, the conservative bias could be reduced using heuristic mea-
sures similar to those proposed in the microarray community (Jiao & Zhang, 2008; Xie et al., 2005); however,
these heuristics are not guaranteed to result in a conservative PFDR estimate, so we will not explore them
further here.

Let us consider a special case in which pr(6 | H = 1) # pr(f | H =0). Specifically, we shall con-
sider the case where the marginals of true alternative hypotheses tend to have larger n and/or are more
balanced, meaning that the marginals of the true alternative hypotheses tend to permit smaller p-values than
the marginals of the true null hypotheses. This leads to the following set of assumptions:

Assumption 2. Assume we have m tests, in which the P-values are independent and identically distributed
according to the mixture (5), the H are independent and identically distributed Bernoulli random variables,
and for each test ¢, H; is dependent on 6; such that

dpr(P<alH=00)pr(0|H=0)<> pr(P<a|H=00)pr(0| H=1).
% (2

Under these assumptions, we can derive the following large sample theorem:
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Theorem 2. Given m tests that follow Assumption 2, and a non-negative, non-decreasing function p(-),

E(p(p) | H=1)
— mo + 1 —
lim PFDR () > Bew) | H=0) pEpR(a).
m— o0 o

Proof. The proof follows analogously to that of Theorem 1 by noting that the Assumption 2 leads to

lim pi(P < a) = pr(P < «) (21)

lim (P <a|H=0)% pr(P<a|H=0) 22)
E(p(p) | H=1)

li > + = 23

w0 = T M) [ T =0) =

We shall prove each of these statements in turn.

Equation (21) follows immediately by noting that our estimate pr(P < o) = (R V 1)/m is not affected
by the distribution of . Equation (22) can be seen by noting that we can no longer use equality (6b) and must
instead use equality (6a).

Thus, we have

lim pr(P<a|H=0)
L2 pr(P<a|H=0,0")pr(d)
0/

=> pr(P<a|H=0,0)x{pr(6' | H=0)m+pr(6' | H=1)m}
0/

ZWOZpr(P§a|H:O,9')pr(9'\H:O)—l—ﬂ'lZpr(PSa|H:O,¢9/)pr(9/|H:1)

0/ 9/
ZWOZpr(Pga | H=10,0")pr(0" | HzO)—l—mZpr(Pga | H=10,0")pr(¢' | H=0)
0, 9/

:pI‘(PSOé|H=O),

where the inequality follows from Assumption 2. Finally, inequality (23) follows from the fact that the added
assumptions of Lemma 2 only affect the denominator of our 7y estimate (14). Furthermore, inequality (22)
implies

lim pr(P>a|H=0) < pr(P>a|H=0),

m—00

from which it follows that
Tim Y p(p)pr( P=a|H=0)" Zp p)pr(P =a | H =0)

for any non-decreasing function p(p). Thus, it follows that
o > P(D)PE(P = )
hm o = =
m—o0 >, PP)PE(P = a | H=0)
>, P(p)pr(P > a)
>pP@)pr(P = o H=0)
E(pp) | H=1)
E(p(p) | H=0)

Hence, under Assumption 2, and provided p(p) is non-negative and non-decreasing in p, our PFDR and
FDR estimates will be asymptotically more conservative than the case where the marginals are independent
of H. In practice, it is not known whether H and 6 are independent. Consequently, we recommend using the
more restricted class of p(-) functions allowed by Theorem 2.

o
w

O

=Ty + 71
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Figure 3: The proportional reduction in the PFDR estimate from using 7o («) (filtering) over 7o(1) (not
filtering) on synthetic data derived from: solid dark, Epitope; solid gray, Resistance; dotted dark, SNPs;
dashed gray, Sieve.

4.6 Filtering irrelevant tests

The discreteness of the data provides a unique opportunity to further increase power. For any discrete test,
there exists an « such that pr(P < «) = 0. Including such tests in our PFDR estimate will typically increase
the conservative bias. Thus, power can often be improved by first filtering out all all tests that couldn’t
possibly achieve the significance threshold «. Such filtering will still result in an asymptotically conservative
estimate and, in some cases, will provably increase power.

Because the range of the data is finite, computation of the most significant achievable p-value given

the marginals is possible. We can define the minimum achievable p-value for fixed marginals as p*(f) =

MiNseperm(s) P(t). When computing PFDR («), we can ignore (filter) all tests 7 such that p*(6;) > «. For a
set of contingency tables T, we can now write T = T} U T, for the disjoint sets

Tz = {ti 1t € T/\p*(@i) > Oé}7
T = {ti it € T/\p*(97) < a}.

[e%

Filtering on p*(6) > « can be seen as estimating PFDR over T, . Let PFDR*(«) and PFDR () be the true
and estimated PFDR, respectively, for T . Then the following theorem holds.

Theorem 3. Given m tests that follow Assumptions I or 2, PFDR" () = PFDR ().

Proof. Recall that, under either set of assumptions,
PFDR (&) =
(0) =%

Because E(R(a) | pr(p(T) < a) =0) = 0, it follows that PFDR(«) will be the same for T and T .
Therefore, PEDR*(«r) = PFDR (). O

Therefore, filtering on p*(6;) > «) does not change the true PFDR. Furthermore, under the assumptions
of Lemma 4, we have PFDR*(a) < limy, 00 PFDR (), almost surely. Consequently, we can compute

PFDR (o) instead of m(a). Moreover, in certain cases filtering will provably increase power.

14



p(P<a|H=1) PEDR (o) <

Lemma 3. Under assumptions 1 or 2, if o P<alH=0) is non-increasing in «, then lim,,_,, PFDR (a) <

lim,, o0 Fﬁ(a).
Proof. Recall our large sample estimate

Topr(P <a|H=0)
5P < a)
fom LY pr(P<a|H=0,0)
R(a) V1
foy e, pr(P <a|H=0,0;)
B R(a) V1

PFDR (a)) =

Removing k tests with p*(6) > a will have no effect on (R(a) V 1) or on

Zpr(P§a|H:O,97;).

i=1

We will show, however, that, under the present assumptions, our 7 estimate under filtering will almost surely
be lower than our 7y estimate without filtering. Let p™ denote the event p*(6) > « and p~ denote the event
p*(0) < a. From equation (18)

. as E(p(p) | H=1)
lim 7o = mo+m (24a)
m—se 0~ 0T E(p(p) | H = 0)
=1 + + - —
g m Elo) | H ,p+)pr(p+) +E(p(p) | H=1,p")pr(p”) (24b)
E(p(p) | H=0,p")pr(p™) + E(p(p) | H=0,p~) pr(p~)
- (o) | )
N N Epp) | p~
fo(a) =
o) = o) | H = 0,57
be the estimated 7 over T . We wish to show that
lim #p(a) < lim 7g(1), (25)
which, by (24b) is true if an only if
E(p(p) | H=1,p ) pr(p™) + E(p(p) | H=1,p ) pr(p”) _ E(p(p) | H =1,p")
E(p(p) | H=0,p")pr(p™) + E(p(p) | H=0,p7)pr(p~) — E(p(p) | H=10,p~)
Thus, it follows that (25) is true if and only if
H=17p" H=11p"
E(p(p) | p) > E(p(p) | ,p7) 26)

E(p(p) | H=0,pT)

¢ pP<alH=1)
pi(P<a|H=0)

E(p(p) | H=0,p7)
The assumption tha is non-increasing in « implies that

pr(P>a|H=1p") pr(P>a|H=1p")
pr(P>a|H=0,pt) " pr(P>a|H=0,p")’

from which inequality (26), and hence Lemma 3, follows from the constraint that p(-) is non-decreasing. [
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Thus, under the conditions of Lemma 3 filtering is asymptotically guaranteed to provide a tighter estimate
and therefore increase power. Although this condition is often not met for finite data, it is often approximately

met and provides a good rationale for filtering. In addition, because both ﬁﬁz(a) and ﬁ*(a) are
asymptotically greater than PFDR(«), for large samples we can compute both the filtered and unfiltered
estimates and choose whichever yields the lower value.

The only estimate that filtering changes is 7. Let 7o () denote the estimated 7y over T, («), and 7 (1)
denote the estimated m over T. It may be that 7p(cr) < 7g(1), and 7g(c) is not a conservative estimate of
the true 7 of the original set of tests T. 7g(«) is, however, a conservative estimate of 7y among the filtered
set of tests T, (). That is, 7p(«) is a conservative estimate of the proportion of tests that are truly null
among those tests that could achieve significance level «. In addition to providing increased power, 7o(c)
may provide valuable information in cases were a large proportion of tests could not achieve «. In such cases,
the overall my may be quite high, but the o among tests that could achieve « (those that we are interested in)
may be much lower. Figure 3 plots the reduction in conservative bias afforded by 7o(c) over 7o (1).

5 Efficient computations

Our FDR method iterates over all the permutations of the tables, computing hypergeometric probabilities.
As a straightforward implementation may be prohibitively expensive, in this section we illustrate several
approaches that make this computation extremely efficient. Table 4 shows the execution time on a standard
desktop computer of the complete PFDR method with filtering over the real data sets, given these algorithmic
improvements.

Table 4: PFDR runtime over the real data sets.

Data set m n Runtime (seconds)
Resistance 3582 208 0.46
Epitope 74774 759 6.24

Sieve 363 1134 0.50

SNPs 401017 1085 416.61

5.1 Efficient computation of the hypergeometric probability

A key component of the PFDR computation is the probability of a table, which, for independent variables,
follows the hypergeometric distribution (equation 1). There are two difficulties with this equation. First,
computing factorials for large numbers causes numerical overflow. Second, a direct computation requires 2n
operations. As we compute pr(7 =t | H = 0) many times, reducing computation time is crucial.

We solve the overflow problem by selectively multiplying and dividing terms from the equation. That is,
whenever the partial result grows beyond 1, we divide by a term in the denominator, and wherever the partial
result shrinks below 1, we multiply by a term in the numerator.

To reduce the overall runtime we factorize the factorials. As we have argued above, in many cases the
marginals are not balanced. In that case there is a considerable difference between the minimal and the
maximal marginal. If fy = ¢ + d is the minimal marginal we factorize the computation as follows:

(%) (e AT DT )

(97}1,) C!(H?:a-&-b-&-l i) 7

which requires 3(c + d) operations. In many cases, one of the entries of the table significantly dominates
the rest, making the above computation a dramatic improvement over the straight forward implementation.
Algorithm 1 provides pseudo-code for our approach.
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Algorithm 1 Efficiently computing the hypergeometric probability of a table ¢.

Function HypergeometricProbability
Input: Contingency table t = (a,b,c,d),n=a+b+c+d
Output: pr(7 =t | H = 0,0") — the hypergeometric probability of ¢
Letp=1
Letj=n
fori=a+1toa+ cdo
if p > 1 then
p=p/j
j=i-1
fori =c+1toc+ddo
if p > 1 then
p=p/j
j=i-1
fori=b+1tob+ ddo
p=p-i
if p > 1 then
p=p/j
j=i-1
while j > a+ b+ 1do
p=np/j
J=7—-1
fori =1tocdo
p=p/i
return p

5.2 Computing FET p-values

Computing FET (equation 2) requires an iteration over all tables that are consistent with the marginals and
which are at least as significant as the table that is observed. If we order the permutations by increasing value
of a, we can see that, for two tables ¢, = (a,b,c,d) and t,41 = (a +1,b— 1,¢ — 1,d + 1), we have

pr(ta+1) o be
pr(ts)  (a+1)(d+1) (27)

Therefore, computing the probabilities of all the permutations can be done by computing the probability of
the table with the minimal possible a, and then iteratively computing successor probabilities until reaching
the maximal possible a.

5.3 Computing pooled p-values for PFDR estimation
Expanding Equation 7 we can write:
1 m
pr(P<a|H=0)2— t t)<al.
pr(P < o | ) mz;t/ez(t)pr( ) H{pr(t') < a}
1= perm(t;

We typically want to estimate PFDR for every observed marginal p-value p;. We can, however, iterate only
once over the permutations of each table. Assuming that the tables are sorted such that pr(¢;) > pr(t;—1),
Algorithm 2 computes all the pooled p-values while computing the permutations of each table only once.

17



Algorithm 2 Computing pooled p-values.

Input: Set of contingency table 7
QOutput: Mapping of Fisher scores to FDR
Let M be a dictionary sorted by increasing key value
for eacht € 7 do
Mlpr(t)] =0
for eacht € 7 do
M’ = AllFisherScores(t)
for each &' € M’ do
Let k be the first key in M that is no smaller than &’
Mkl = M[k] + M'[K]
for i =2to |M| do
Mlk;] = M[ki—1] + M|[k;]
Mk;—] = M=l
return M

5.4 Computing p-values for all table permutations in a single pass

Algorithm 2 requires that FET p-values for all permutations of each table will be computed. For a single
table, we can compute p-values for all its permutations in a single pass, with the same time complexity as
computing a single p-value. To achieve that, while executing the incremental hypergeometric computation in
Equation 27, we keep all the probabilities that were computed in a list. After we finish iterating through the
permutations, we need to sort the list of probabilities, and then sum them in increasing order. Thus, we get a
list of the p-values of all the permutations of the table. Detailed pseudo-code for this process can be found in
Algorithm 3.

Algorithm 3 Computing Fisher scores for all permutations of a table.

Function AllFisherScores
Input: Contingency table ¢ = (a, b, ¢, d)
Output: Mapping of Fisher scores to hypergeometric probabilities
Let A = min(a,d)
Letto=(a — A b+ Ajc+ Ajd—A)
Let L be the empty list
Compute pr(T =ty | H =0)
for ¢ = 0 to min(a, d) + min(c + d) do
Addpr(T=t; | H=0)to L
tiv1 = (a,‘ +1,b;, —1,¢; — 1,dl)
pritivy | H=0)=pr(t; | H=0) o3t
Sort L in increasing order
FisherScore =0
for j =0to|L| do
FisherScore = FisherScore + Lli]
M/FisherScore] = Li]
return M
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Figure 4: Estimated PFDR vs. true false discovery proportion for synthetic data generated from the Epitope
data set. Estimates above the dashed line (representing an unbiased estimate) are conservative. Solid lines,
from dark to light, indicate synthetic data with 70, 35 or 10 thousand tables, respectively.

6 Numerical results

To explore the applicability of our proposed PFDR estimator, we created a number of Epitope-derived syn-
thetic data sets with different number of tables that follow the mixture model assumptions above, allowing for
an unequal distribution of marginals (see the Appendix for details). For each of these data sets, we plotted the
estimated PFDR («) against the true proportion of false discoveries using p < « as the threshold (Figure 4).

In practice, it is often the case that PFDR(«) > PFDR(/) for some 3 > «. Therefore, there is no
reason to choose « as the rejection region, because choosing (3 will result in more rejected tests and a lower
proportion of false positives among those rejected tests. For this reason, Storey (2002) proposed the g-value,
defined to be g(a) £ mings, Iﬁ(ﬁ) To demonstrate the power gains of our method in practice, we
conclude by comparing the number of significant results for each of our example data sets as a function of
the g-value threshold (Figure 5). As can be seen, our conservative estimates result in a substantial increase in
the number of tests called significant at a variety of thresholds.

7 Discussion

The false discovery rate has proven to be an extremely useful tool when testing large numbers of tests, as
it allows the researcher to balance the number of significant results with an estimate of the proportion of
those results that are truly null. Storey (2002, 2003) presented novel methods for estimating PFDR and ¢-
values for general test statistics. He factored the PFDR computation into several components and suggested
estimators for each component. Perhaps the most discussed component is the mp—the proportion of tests
that are expected to be null over the entire data set. For example, Dalmasso et al. (2005) derived a class of
o estimators for continuous distributions that take the same form as equation (14) and explored properties
of p(+). They proved that a certain class of convex p(-) functions yielded provably less biased 7y estimators
than p(p) = p. Similarly, Genovese & Wasserman (2004) explore several estimators under a mixture model
framework that assumes a uniform continuous null distribution and provide estimates of confidence intervals,
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Figure 5: Plotting the portion of rejected cases vs. g-values for the real data sets. The solid line is the
proposed method for discrete data and the dotted line is the method of Storey & Tibshirani (2003) using
marginal p-values.

and Langaas et al. (2005) use the mixture model to define 7y estimators that perform particularly well under
certain continuous convexity assumptions.

When the data are finite, however, some of the underlying assumptions used by the above methods, such
as the uniform distribution of p-values under the null and the convexity and monotone distribution of p-values
under the alternative, are violated (Pounds & Cheng, 2006). In such cases, some of the methods developed
for general statistics become overly conservative, and some may provide anti-conservative estimates. For
example, the estimators of Dalmasso et al. (2005) assume that the null distribution is non-increasing in p. As
we have seen, contingency tables provide a common example where these assumptions are grossly violated,
even when the number of observations in each table is quite high. In these cases, the use of marginal p-values
leads to severe conservative bias in the FDR estimation.

Pounds & Cheng (2006) addressed the conservative bias of FDR estimation on finite data by proposing
a new m estimator. This estimator avoids the extreme conservative bias of Storey’s spline-fitting method on
finite data, in which 7 estimates at A = 1 may have more bias rather than less. On our data sets, the method
of Pounds and Chang was comparable to Storey’s estimator at A = 0.5. A key assumption in the method of
Pounds and Cheng is that the expected p-value under the null hypothesis is 0.5, which was grossly violated in
all of our contingency table data sets. Replacing this assumption with the exact null distribution substantially
decreased the bias in all our tests. Our theoretical results indicate that optimal p(-) is that which minimizes
the ratio of the expected p(-) under the alternative hypothesis to the expected p(-) under the null hypothesis.
Other p(+) functions than those described here may thus yield less biased estimates.

Several authors have proposed randomization testing as a means of dealing with non-uniform or unknown
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p-values distributions, with a focus on non-uniform continuous distributions (see Cheng & Pounds 2007 for
review). Focusing on Fisher’s exact test allows us to implement exact permutation tests efficiently even for
very large data sets, resulting in exact estimation of the pooled null distribution, a straightforward analysis of
the convergence properties, and the removal of numerical error from the estimation.

Furthermore, the exact null distribution allows us to identify and remove tests that cannot be called signif-
icant, thereby increasing power. This approach was first proposed by Gilbert (2005), who proposed choosing
a p-value threshold py and removing a priori all tests for which no permutation of the contingency table
results in p < pg. To choose py, Gilbert suggested using a derivative of the Bonferroni adjusted p-value.
Unfortunately, it can be shown that this threshold is too aggressive and will often remove tests that should be
considered significant. In contrast, choosing py = « leaves the true PFDR unchanged while often achieving
an increase in statistical power.

This paper provides estimators for the various components of the PFDR, based on a permutation testing
approach. We combine here several ideas that were previously suggested, adapting them to the important case
of contingency tables. As we have shown above, our methods can rapidly provide tight estimates of PFDR
and g-values for very large data sets. Although we have chosen to focus on Fisher’s exact test, analogous
results can be derived for any discrete test for which all permutations of the data can be efficiently computed.

In addition to describing the theoretical implications of our method, we have derived efficient algo-
rithms for its computation. We have implemented these algorithms as a freely available .NET library and
web service, which are available at http://research.microsoft.com/en-us/um/redmond/
projects/MSCompBio/FalseDiscoveryRate.

Appendix

Creating null and alternative tables from given marginals

To create a null table given a set of marginals § = {0x, 0%, 0y, 0y}, wedraw n tests such thatpr(X =1 | H =0) =
Ox/n and pr(Y = 1| H =0) = 0y /n. To create an alternative tables from 6, we draw n tests such that
pr( X =1|H=0)=60x/nandpr(Y =1|H=1,X =0)=c¢/0%.

Selecting marginals

We have created two different types of data sets, one where all the marginals come from the same distribution,
and one where the marginals distribution depends on whether the table is null or alternative.

In the case of a single distribution of marginals, we create 10 exponential bins [1,1/2],...,(1/512,1/1024]
and place each marginal € into a bin according to min{fx, 0%, 0y, 0y }/max{0x,0%,0y,0y}. We then
choose a bin uniformly, and select a set of marginals uniformly from the bin. We then designate the selected
marginal as null with probability 7y and generate the table accordingly. This approach biases us towards
choosing marginals that permit lower p-values, which enables us to generate interesting alternative tables,
even when we force 7 to be much lower than it is in the real data.

When the distribution of marginals depends on the whether the table is null or alternative, we draw the 6
frombin b € 1,..., 10 with probability 1/2'°~b+1 for a null table and with probability 1/2° for an alternative
table.
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