

Analyzing Persistent State Interactions to Improve State
Management

Chad Verbowski, Emre Kēcēman, Brad Daniels, Shan Lu, Roussi Roussev,
Yi-Min Wang, Juhan Lee

Categories and Subject Descriptors
D.4.7 [Software]: Operating Systems
H.4.m [Information Systems Applications]: Miscellaneous;

General Terms
Experimentation, Management, Measurement

Keywords
System Management, Persistent State, Registry, File, Trace, State
Management

1. Introduction
A primary challenge to building reliable and secure computer
systems is managing the persistent state (PS) of the system: all
the executable files, configuration settings and other data that
govern how a system functions. The difficulty comes from the
sheer volume of this persistent state, the frequency of changes to
it, and the variety of workloads and requirements that require
customization of persistent state. The cost of not managing a
systemôs persistent state effectively is high: configuration errors
are the leading cause of downtime at Internet services,
troubleshooting configuration problems is a leading component of
total cost of ownership in corporate environments, and malwareð
effectively, unwanted persistent stateðis a serious privacy and
security concern on personal computers [1, 6,8,14].

The first step to building better PS management tools is gaining a
better understanding and characterization of how computer
systems interact with their PSðhow and when this state is
created, read, written and deleted by the programs and users of a
computer system. To this end, we collected over 3648 machine
days of these PS interactions over an 8 month period from March
to November, 2005. We monitored the PS interactions of 193
machines operating under real workloads in a variety of
environments, including Internet services, corporate desktops,
experimental lab machines and home machines.

There have been many studies of file system workload traces with
the goal of improving I/O system performance by optimizing disk
layout, replication, etc. [2,3,4,5,7,9,10,11,13]. To our knowledge,
we are the first to study file system accesses and registry accesses
with the goal of characterizing and improving the management of
PS.

2. Trace Collection
In this section, we describe our instrumentation package for
monitoring and collecting PS interactions. We also describe the
machines and environments from which we collected our traces.
We use PS to refer to both the file system and the Windows
Registry. PS entries refer to files and folders as well as their
registry equivalents. A PS interaction is any kind of access, such
as a read or write, to an entry.

To collect our traces of PS interactions, we built a black box
instrumentation tool for the Windows operating system. It
consists of (1) a kernel mode driver that intercepts all PS
interactions with the file system and the Windows Registry, along
with process creation and binary load activity; and (2) a user
mode daemon that manages the trace files and uploads them to a
central server. Neither the kernel mode driver nor the user mode
daemon requires any changes to the core operating system or the
applications running atop it.

Table 1 summarizes the traces we collected from machines across
several environments. Our deployment of the data collector was
gradual, so many machines were not monitored for the full 8
month period. The largest collections of traces come from
research lab machines managed by our labsô own IT staff; and five
different services at MSN. Depending on the individual service,
the Internet service machines were subject to different workloads
and management styles, including one service administered under
a ñfollow the sun model,ò with 3 operations teams around the
world monitoring the system. Our other traces were captured
from corporate desktops and laptops, home machines and, as a
control, idle systems running within virtual machines. Together,
these environments represent a broad sample of current systems
management styles, from the ñintensely managedò Internet
services to unmanaged home machines.

3. Some Survey Highlights
One of the major challenges to effectively managing persistent is
the sheer volume of state and how frequently it changes. Our
experiments agree with previous studies of file system contents
[3,9,12] and the Windows registry [13] which find that modern
computer systems contain on average 70k files and approximately
200k registry settings. In the rest of this short paper, we highlight
our measurements of the volume of persistent state interactions.
Table 2 presents the average volume of daily interactions, divided
by the category of application generating the interaction and type
of activity: (1) an OS-level process, or a surrogate process such as

Table 1 Summary information about our collected traces

Environment
Number of
Machines

Total Observed
Machine-Days

Internet service machines 76 841

Research lab machines 72 1703

Corporate desktops 35 849

Home machines 7 169

Idle machines 3 86

Total 193 3648

 2

cmd.exe which primarily spawns other processes; (2) a state
management tool, such as an installer, configuration panel or
antivirus program; (3) a workload application such as a word
processor on a home machine or a web service on a server. One
surprising result is that existing management applications, such as
hardware configuration tools and antivirus scanners, generate
38%-98% of the interactions across our environments. Overall,
we see that server machines generate considerably more
interactions than desktop, home, and lab machines.
While millions of interactions occur every day on a typical
machine, there are several factors that we can use to easily reduce
the volume of events and state that we care about, while still
improving PS management. First, we see that read activity is
consistently an order of magnitude (or more) greater than write
activity across all environments, consistent with prior findings [2].
While read interactions are important when trying to debug or
explain software behavior, we do not have to worry about these
interactions corrupting PS.
Furthermore, we find that the number of distinct non-temporary
files and registry entries read or written every day is much smaller
than the total number of interactionsðup to 2 orders of
magnitude smaller. However, this is still a large number of
entries: 10-15% of the 70k files and 5-10% of the 200k registry
entries on a system are used on any given day. Although server
machines have more total interactions per day, our traces show
that they use an order of magnitude fewer distinct PS entries
compared to the desktop and home machines.
Finally, we find that while there are tens of millions of daily
accesses to files and registry settings on both server and desktop
systems, these file system accesses show a large degree of
structure and repetition, in the form of activity bursts.
Recognizing this structure enables the volume of events to be
reduced by several orders of magnitude from O(107) daily events
to O(103) distinct daily activity bursts. We believe this reduction

makes the on-line analysis of PS interactions feasible as a
building block to improve systems management practice.
Our full-length survey paper [11] presents our analysis of activity
bursts in more detail, as well as delving into many other issues not
mentioned here, such as analyses of how processes use the state
on a system and the implications for PS management; and how
frequently software is installed and upgraded, and by whom (e.g.,
auto-update software, remote administrators, etc). We also
present case studies of how monitoring PS interactions can help
address current persistent state management problems. One case
study shows how PS interaction monitoring can expose security-
sensitive configuration settings that might allow unwanted
software (malware) to attach themselves as plug-ins to a system.
Not only can PS interaction monitoring discover these critical
configuration settings, but also quantify their importance in terms
of the privileges exposed and the duration of the system exposure.

4. REFERENCES
[1] W. Arbaugh, W. Fithen, and J. McHugh, ñWindows of
Vulnerability: A Case Study Analysis,ò In IEEE Computer,
Vol. 33, No. 12, Dec. 2000.

[2] M. Baker, J. Hartman, M. Kupfer, K. Shirriff, and J.
Ousterhout, ñMeasurements of a Distributed File System,ò In
Proc. Of SOSP (1991).

[3] J. Douceur and B. Bolosky, ñA Large-Scale Study of File-
System Contents,ò in Proc. SIGMETRICS (1999).

[4] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer, ñPassive
NFS Tracing of Email and Research Workloads,ò in Proc. of
FAST (2003).

[5] W.H. Hau and A. J. Smith, ñCharacteristics of I/O Traffic in
personal compute and server workloads,ò in IBM Systems
Journal, Vol. 42, No. 2, pp. 347ï372, 2003.

[6] D. Oppenheimer, A. Ganapathi, and D. Patterson, ñWhy do
Internet services fail, and what can be done about it?ò in
Proc. of USITS (2003).

[7] K. K. Ramakrishnan, P. Biswas and R. Karedla, ñAnalysis of
File I/O Traces in Commercial Computing Environments,ò in
Proc. of SIGMETRICS (1992).

[8] E. Rescorla, ñSecurity Holesé Who Cares?ò in Proc. of the
12th USENIX Security Symp., Aug. 2003.

[9] D. Roselli, J. Lorch, and T. Anderson, ñA Comparison of
File System Workloads,ò in Proc. of USENIX (2000).

[10] C. Ruemmler and J. Wilkes, ñUNIX Disk Access Patterns,ò
in Proc. of USENIX (1993).

[11] C. Verbowski, E. Kēcēman, B. Daniels, S. Lu, R. Roussev,
Y.-M. Wang, ñAnalyzing Persistent State Interactions to
Improve State Management,ò Tech. Rep. MSR-TR-2006-39,
Microsoft Research, Redmond, WA (April 2006).

[12] W. Vogels, ñFile system usage in Windows NT 4.0,ò in
Proc. of SOSP (1999).

[13] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. Wang,
C. Yuan, and Z. Zhang, ñSTRIDER: A Black-box, State-
based Approach to Change and Configuration Management
and Support,ò in Proc. of LISA (2003).

Table 2 Summary of daily PS activity per machine across
environments. All units are in millions.

E
nv

ir
on

m
en

t Category Type

T
ot

al

W
or

kl
oa

d

M
gm

t.

O
S

R
ea

d

W
rit

e

Svc. 1 39.75 26.52 3.59 68.31 1.55 69.86
Svc. 4 19.16 37.10 4.37 57.77 2.86 60.63
Svc. 5 2.29 23.10 3.67 28.31 0.76 29.07
Svc. 2 0.005 21.00 1.45 21.26 1.20 22.46
Svc. 3 1.63 14.93 2.18 16.90 1.83 18.73
Home 4.27 8.89 4.17 16.70 0.62 17.33

Desktop 2.74 5.02 1.62 8.94 0.44 9.38
Lab 2.52 5.99 0.74 8.73 0.51 9.25
Idle 0.005 0.25 0.10 0.34 0.02 0.36

_Ref132094296

