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ABSTRACT

This paper summarizes recent work at Microsoft on the devel-
opment of novel direct models. The key characteristic of our
approaches is the use of long-span segment level features that
relate acoustic properties directly to words. In this approach,
the frame-level Markov assumption is replaced by the seg-
ment level Markov property, allowing us to extract long-span
features. A key issue we address is the definition of gener-
alizable features which allow us to model unseen words. We
review two recently developed models that have this property:
Flat Direct Models (FDMs), and Segmental CRFs (SCRFs).
The first operates in a log-linear framework, and uses utter-
ance level features. The second is also a log-linear model, but
defines features at the word-segment level. We present new
experimental results comparing the two approaches. We find
that both show consistent improvements over a baseline sys-
tem, and that the extra context available to the FDM enables
slightly better performance in a rescoring context. This gain
comes at the expense of applicability to first pass decoding,
for which the SCRF is better suited.

Index Terms— Flat Direct Model, Segmental CRF, Voice
Search, Speech Recognition

1. INTRODUCTION

In recent years, direct modeling techniques have enjoyed in-
creasing popularity in both natural language processing [1, 2]
and speech recognition [3, 4, 5, 6, 7]. These models have
the property that the probability of a state or state sequence
s given some observationso is modeled directly asP (s|o)
rather than through the application of Bayes rule and spec-
ification of a generative modelP (o|s). At their simplest,
they are classification models such as maximum entropy mod-
els that specify a distribution over class labels given the fea-
tures. When applied to sequence modeling, more sophisti-
cated methods are necessary, due to the potentially unlimited
number of sequences that can be output. To handle this, meth-
ods such as Maximum Entropy Markov Models (MEMMs)
[1, 8] and Conditional Random Fields (CRFs) [9] have been
developed in the NLP area, and applied to speech recognition
[3, 4, 5].

This previous work has advanced the field beyond gen-
erative HMM modeling [10] by allowing potentially richer

kinds of features; however, this has not been fully exploited
because past work has retained the frame level Markov prop-
erty, and used frame-level features and conventional context
dependent phonetic states. Recently, we have begun to attack
the frame-level Markov assumption as well, first with Flat Di-
rect Models (FDMs) [6, 7] and more recently with Segmental
CRFs [11]. We apply these models to the Bing Mobile Voice
Search task [12] in which users of a multimodal cellphone ap-
plication can speak business names, and receive information
such as phone numbers and directions. These utterances are
typically just a few words long, making it feasible to analyze
them either at the utterance level, or at a finer-grained word
level.

With FDMs, we take the first approach - the state in this
model corresponds to business identity, and the features are
extracted from the entire sequence of audio frames. Each fea-
ture is of the formκi(x, h) wherex is the audio,h is a hy-
pothesized business name, andi is the feature index. Since
we do not in general see all business names in the training
data, the set of features must be carefully designed so that
model parameters can be learned with one collection of train-
ing data, and then generalize to unseen test data; this is fully
discussed in Section 4. While careful feature definition can
solve the problem of generalization in FDMs, there is a re-
maining problem of searching over the space of possible hy-
potheses. For the most frequent business listings, an enumer-
ative approach can be taken; however, for the tail, and for
continuous speech recognition in general, it remains to de-
velop an appropriate search strategy.

In the segmental CRF approach, we address the issue of
continuous speech recognition with a sequential approach in
which dynamic programming can be used in the search over
the hypothesis space. Here, the segmental features of the
FDM are retained, but applied at theword rather thanutter-
ance level. As we illustrate in Section 3, the resulting model
is a CRF in which each state variable is related to a block of
observations rather than a single frame.

The remainder of this paper is organized as follows. First,
we fully specify the model structures: for FDMs in Section 2,
and for SCRFs in Section 3. Both these models use newly de-
veloped classes of generalizable features, which are described
in Section 4. Section 5 presents new comparative experimen-
tal results, and Section 6 provides concluding remarks.



2. FLAT DIRECT MODEL

With Flat Direct Models [6], a set of “consistency features”
is defined between a linguistic hypothesis and the underlying
acoustics. In contrast to sequential approaches, the linguistic
hypothesis is not required to have any explicit structure (e.g.
to be a sequence of words). The posterior probability of the
linguistic hypothesis is given by a maximum entropy model
on the features. More precisely, if there is a set of linguis-
tic hypothesesN for an utterance with acousticsx, then the
probability of a specific hypothesish ∈ N is given by

PΛ(h|X) =
exp(
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As will be seen in Section 4, we may have millions of
features with widely varying numbers of examples of each.
Therefore the objective function is regularized with L1 and
L2-norm regularization. Denoting the labels of the training
data bywn and corresponding observation sequences byxn,
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3. SEGMENTAL CRF

The motivation behind Segmental CRFs is to retain the seg-
ment level features which are used with Flat Direct Models,
along with the log-linear form of the model, and then to ex-
tend the formalism to handle continuous speech recognition.
One natural way of doing this is to view the segment-level
features as the observation feature functions used in a CRF
[9]. To do this, we apply the Markov assumption at the seg-
ment rather than frame level and sum over all possible seg-
mentations of the observation stream which are consistent
with a word hypothesis. This means that the original “matrix-
multiply” inference method of [9] cannot be used. This prob-
lem has been addressed for text processing in the work of [13]
which uses the term “Semi-CRF” to refer to the fact that the
Markov property is applied now at the segment rather than
individual observation level. Whereas [13] views this as a
problem of determining a constrained labeling of a standard
CRF structure, we prefer to view it as one of determining the
CRF structure itself. This is illustrated in Figure 1. The top
part of this figure shows seven observations broken into three
segments, while the bottom part shows the same observations
partitioned into two segments. For a given segmentation, fea-
ture functions are defined as with standard CRFs.

As noticed in [14], it is possible to represent a CRF using
just one type of feature function that involves two adjacent
states, and the observations. In the context of a SCRF, a pic-
torial representation of this is illustrated in Figure 2. This
is the form we adopt. We note that while in principle with a
conditional model such as a CRF one may use all the observa-
tions at any time, in practice we are only interested in features
involving a finite and specific span of observations, and it is
this specificity which the diagrams are intended to represent.

Fig. 1. A Segmental CRF and two different segmentations.

Fig. 2. Incorporating last-state information in a SCRF.

3.1. Model Definition

In the semi-CRF work of [13], the segmentation of the train-
ing data is known. However, in speech recognition appli-
cations, this is not the case. Therefore, in computing se-
quence likelihood, we must consider all segmentations con-
sistent with the state (word) sequences, i.e. for which the
number of segments equals the length of the state sequence.

Denote byq a segmentation of the observation sequences,
for example that of Fig. 2 where|q| = 3. The segmenta-
tion induces a set of (horizontal) edges between the states,
referred to below ase ∈ q. One such edge is labelede in
Fig. 2 and connects the state to its left,se

l
, to the state on its

right, se
r. Further, for any given edgee, let o(e) be the seg-

ment associated with the right-hand statese
r
, as illustrated in

Fig. 2. The segmento(e) will span a block of observations
from some start time to some endtime,oet

st; in Fig, 2,o(e) is
the blocko4
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. With this notation, we represent all functions

asfk(se

l
, se

r
, o(e)) whereo(e) are the observations associated

with the segment of the right-hand state of the edge. (The
first block of observations is treated with an extra notional
edge leading into the leftmost state.) The conditional proba-
bility of a state sequences given an observation sequenceo

for a SCRF is then given by
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Training is done by gradient descent using Rprop [15]

and regularization as with FDMs. Taking the derivative of

L = log P (s|o) with respect toλk we obtain the necessary

gradient:
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with
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This derivative can be computed efficiently with dynamic
programming, using the recursions described in [11].

3.2. Continuous Speech Recognition

In order to model continuous speech, the model structure of
Figure 2 is given a specific meaning. While the features we
use relate a word to an observation span, the state does not
directly encode a word identity. Instead, the values of the
state variable in this model correspond to states in a finite
state representation of a n-gram language model. This is il-
lustrated in Figure 3. In this figure, a fragment of a finite
state language model representation is shown on the left. The
states are numbered, and the words next to the states specify
the linguistic state. At the right of this figure is a fragmentof
a CRF illustrating the word sequence “the dog nipped.” The
states are labeled with the index of the underlying language
model state. In our search strategy [11], we extend existing
hypotheses with specific words, so the word identity is always
available for feature computation.

We use the language model in two ways. First, conven-
tional smoothed ngram probabilities can be returned as tran-
sition features. A singleλ is trained to weight these features,
resulting in a single discriminatively trained language model
weight. Secondly, indicator features can be introduced, one
for each arc in the language model, which indicate when an
arc is traversed in the transition from one state to another.A
state transition in the CRF then results in a non-zero feature
value (i.e. 1) for each arc traversed in the underlying language
model structure. For example, in Figure 3, the arcs(1, 2) and
(2, 6) are traversed in moving from state1 to state6. Each
of these arcs has its own binary feature. Learning the weights
on these results in a discriminatively trained language model,
trained jointly with the acoustic model.

4. FEATURES

As mentioned in Section 1, we use features that can be trained
with one set of words, and then used in cases where other, un-
seen, words may be present. Our features are based on the
detection of phone and multi-phone units [7]. For a given
utterance, we form two separate detection streams: one con-
sisting of phones and their detection times, and the other con-
sisting of multiphone units and their detection times. A de-
tection time is a single time associated with a unit, e.g. its
midpoint. From each detection stream, several features may
be extracted, and these are now discussed in turn. Each is de-
fined with respect to a temporalspan of detection events and
a specific word hypothesis for that span.

Fig. 3. Correspondence between language model state and
SCRF state. The dotted lines indicate the path taken in hy-
pothesizing “nipped” after ”the dog.” A line from state 7 to
state 1 has been omitted for clarity.

4.1. Expectation Features

Expectation features are defined with reference to a dictionary
that specifies the spelling of each word in terms of the units.
The expectation features are:

• correct-accept of unitu: u is expected on the basis of
the dictionary, and it exists in the span

• false-reject ofu: u is expected but not observed
• false-accept ofu: u is not expected and it is observed

4.2. Levenshtein Features

Levenshtein features are computed by aligning the observed
unit sequence in a hypothesized span with that expected based
on the dictionary entry for the word. Based on this alignment,
the following features are extracted:

• the number of times unitu is correctly matched
• the number of timesu in the pronunciation is substi-

tuted
• the number of timesu is deleted from the pronunciation

• the number of timesu is inserted

4.3. Existence Features

Whereas Expectation and Levenshtein features require a dic-
tionary, Existence features indicate the simple association be-
tween a unit in a detection stream, and a hypothesized word.
An existence feature is present for each unit/word combina-
tion seen in the training data, and indicates whether the unit
is seen within the hypothesized word’s span. Unlike Expecta-
tion and Levenshtein features, Existence features do not gen-
eralize to new words.

4.4. Baseline and Language Model Features

The language model features were described in Section 3.2.
In addition to these, we have developed baseline features that
can be used in association with an existing HMM system. For
the FDM, we use the language and acoustic model scores of a
given hypothesis. For our SCRF system, we have developed
an even simpler feature that requires only the baseline one-
best sequence, which is treated as a detector sequence.



FDM SCRF
Baseline 37.1% 37.1
Existence 36.5 36.7
Expectation - 36.4
Levenshtein 36.1 36.4

Table 1. Effect of features individually, using multiphone
units only. Sentence error rate on complete test set. Expecta-
tion features were not implemented in the FDM.

The baseline SCRF feature for a segment is always either
+1 or −1. It is +1 when a hypothesized segment spans ex-
actly one baseline word, and the label of the segment matches
the baseline word. Otherwise it is−1. The contribution
of the baseline feature to a hypothesis score will be maxi-
mized when the hypothesis has the same number of words as
the baseline decoding, and the identities of the words match.
Thus, by assigning a high enough weight to the baseline fea-
ture, the best scoring hypothesis can be guaranteed to be the
baseline and thus match its performance. In practice, the
baseline weighting is learned and its value will depend on the
relative power of the additional features.

5. EXPERIMENTAL RESULTS

While the FDM and SCRF approaches have appeared in the
literature before, they have not previously been empirically
compared. To do this comparison, we have conducted a se-
ries of experiments with data from the Bing Mobile voice-
search application [12], which allows users to request local
businesses by voice, from their mobile phones. For the pur-
pose of this paper, we set aside 12,758 human-transcribed
interactions for evaluation. We further report results on the
subset of this test set containing only instances of the 1000
most frequent requests. For parameter tuning, we used a de-
velopment set of 8,777 utterances. When the full test-set was
used, we rescored HMM N-best lists from the baseline sys-
tem. For training, we used roughly 1.5M spoken queries –
1200 hours of speech – to build an HMM acoustic model
which served as our baseline and was also used for generating
detector streams. An equal amount of data was used to learn
the direct model parameters. Our baseline acoustic model isa
conventional ML trained HMM system, using utterance-level
mean normalized MFCCs and clustered cross-word triphones.
It has 11k context dependent states, and 260k Gaussians. The
baseline produces an error rate of 37.1%.

Table 1 compares the FDM and SCRF as multiphone fea-
tures are added individually to the baseline features. We see
that the FDM produces slightly better results, consistent with
its ability to create full utterance-level features. Each feature
in isolation produces up to 1% gain. Table 2 shows the re-
sults when all features are used in both models. We see that
there is complementary information resulting in a gain of 1.4-
1.8% overall. On the top-1000 business requests, a larger gain
of about 2% absolute is observed. Again, the utterance level
features of the FDM appear somewhat more effective than the

Baseline FDM SCRF
Top-1000 15.8% 13.6 13.9
Full Test 37.1 35.3 35.7

Table 2. Sentence error rates using both phone and multi-
phone stream and all features.

word level features of the SCRF. In terms of runtime, both the
SCRF and FDM rescorings - exclusive of the time taken to
generate inputs - are much faster than a standard HMM de-
coding. The bulk of the time is spent generating the phone
and multi-phone detections and baseline HMM decoding.

6. CONCLUSION

This paper compares two recently developed direct modeling
approaches. Both allow for the use of long-span segmental
features. The flat direct model operates at the utterance level,
and is especially suited to evaluating a small set of candidates.
The segmental CRF model operates at the word level and gen-
eralizes to continuous speech recognition. Both approaches
provide consistent Voice Search improvements.
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