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ABSTRACT kinds of features; however, this has not been fully exptbite

This paper summarizes recent work at Microsoft on the develR€cause past work has retained the frame level Markov prop-
opment of novel direct models. The key characteristic of ouf'ty. and used frame-level features and conventional gbnte
approaches is the use of long-span segment level featates tlependent phonetic states. Recently, we have begun té attac
relate acoustic properties directly to words. In this apphy the frame-level Markov assumption as well, first with Flat Di
the frame-level Markov assumption is replaced by the seg-€ct Models (FDMs) [6, 7] and more recently with Segmental
ment level Markov property, allowing us to extract long+spa CRFs [11]. We apply these models to the Bing Mobile Voice
features. A key issue we address is the definition of geneS€arch task [12] in which users of a multimodal cellphone ap-
alizable features which allow us to model unseen words. welication can speak business names, and receive informatio
review two recently developed models that have this prgpert such as phone numbers and directions. These utterances are
Flat Direct Models (FDMs), and Segmental CRFs (SCRFs)typically just a few words long, making it feasible to anayz
The first operates in a log-linear framework, and uses uttethem either at the utterance level, or at a finer-grained word
ance level features. The second is also a log-linear model, blevel.
defines features at the word-segment level. We present new With FDMs, we take the first approach - the state in this
experimental results comparing the two approaches. We findgiodel corresponds to business identity, and the featuees ar
that both show consistent improvements over a baseline sygxtracted from the entire sequence of audio frames. Eaeh fea
tem, and that the extra context available to the FDM enable!re is of the formw;(z, h) wherex is the audio/ is a hy-
slightly better performance in a rescoring context. Thimga Pothesized business name, and the feature index. Since
comes at the expense of applicability to first pass decodingve do not in general see all business names in the training
for which the SCRF is better suited. data, the set of features must be carefully designed so that
model parameters can be learned with one collection of-train
ing data, and then generalize to unseen test data; thidys ful
discussed in Section 4. While careful feature definition can
solve the problem of generalization in FDMs, there is a re-
1. INTRODUCTION maining problem of searching over the space of possible hy-
In recent years, direct modeling techniques have enjoyed irPotheses. For the most frequent business listings, an enume
creasing popularity in both natural language processing][1 ative approach can be taken; however, for the tail, and for
and speech recognition [3, 4, 5, 6, 7]. These models haveontinuous speech recognition in general, it remains to de-
the property that the probability of a state or state sequencd/elop an appropriate search strategy.
s given some observationsis modeled directly as(s|o) In the segmental CRF approach, we address the issue of
rather than through the application of Bayes rule and specgontinuous speech recognition with a sequential appraach i
ification of a generative moddP(o|s). At their simplest, which dynamic programming can be used in the search over
they are classification models such as maximum entropy modhe hypothesis space. Here, the segmental features of the
els that specify a distribution over class labels given #we f FDM are retained, but applied at tierd rather tharutter-
tures. When applied to sequence modeling, more sophistince level. As we illustrate in Section 3, the resulting model
cated methods are necessary, due to the potentially uatimit is @ CRF in which each state variable is related to a block of
number of sequences that can be output. To handle this, methbbservations rather than a single frame.
ods such as Maximum Entropy Markov Models (MEMMs)  The remainder of this paper is organized as follows. First,
[1, 8] and Conditional Random Fields (CRFs) [9] have beerwe fully specify the model structures: for FDMs in Section 2,
developed in the NLP area, and applied to speech recogniticand for SCRFs in Section 3. Both these models use newly de-
[3, 4, 5]. veloped classes of generalizable features, which areiledcr
This previous work has advanced the field beyond genin Section 4. Section 5 presents new comparative experimen-
erative HMM modeling [10] by allowing potentially richer tal results, and Section 6 provides concluding remarks.

Index Terms— Flat Direct Model, Segmental CRF, Voice
Search, Speech Recognition



2. FLAT DIRECT MODEL 51 s, 5

With Flat Direct Models [6], a set of “consistency features” o
is defined between a linguistic hypothesis and the undeylyin 2. < e o & ® - o
acoustics. In contrast to sequential approaches, theisitigu
hypothesis is not required to have any explicit structurg.(e
to be a sequence of words). The posterior probability of the
linguistic hypothesis is given by a maximum entropy model
on the features. More precisely, if there is a set of linguis-
tic hypothesesV for an utterance with acoustias then the

probability of a specific hypothesisc N is given by Fig. 1. A Segmental CRF and two different segmentations.
exp(2; Aiki(x, h))
Pa(h|X) = g . 1
R SNy SRV ) M v .
As will be seen in Section 4, we may have millions of | I
features with widely varying numbers of examples of each. (R} O X @ lellllle
Therefore the objective function is regularized with L1 and ofe)=os*

L2-norm regularization. Denoting the labels of the tragnin ~ Fig. 2. Incorporating last-state information in a SCRF.
data byw,, and corresponding observation sequences,hy

3.1. Model Definition

A= argmax {Zlog Pa(wnlzn) = VZ A - TZ |’\i|} * In the semi-CRF work of [13], the segmentation of the train-
" ' ' ing data is known. However, in speech recognition appli-
3. SEGMENTAL CRF cations, this is not the case. Therefore, in computing se-
guence likelihood, we must consider all segmentations con-
The motivation behind Segmental CRFs is to retain the segsistent with the state (word) sequergd.e. for which the
ment level features which are used with Flat Direct Modelshumber of segments equals the length of the state sequence.
along with the log-linear form of the model, and then to ex- ~ Denote byy a segmentation of the observation sequences,
tend the formalism to handle continuous speech recognitiof®" €xample that of Fig. 2 whergy| = 3. The segmenta-
One natural way of doing this is to view the segment-levef'on induces a set of (horizontal) edges between the. states,
features as the observation feature functions used in a C ferred to below as ¢ q. One such edge is labeledin

. : ig. 2 and connects the state to its laft, to the state on its
[9]. To do this, we apply the Markov assumption at the Seg'right, s¢. Further, for any given edge let o(¢) be the seg-

ment rather than frame level and sum over all possible segnent associated with the right-hand stageas illustrated in
mentations of the observation stream which are consistetig. 2. The segmenti(e) will span a block of observations
with a word hypothesis. This means that the original “matrix from some start time to some endtimg:; in Fig, 2,0(e) is
multiply” inference method of [9] cannot be used. This prob-the blockoj. With this notation, we represent all functions
lem has been addressed for text processing in the work of [18Is fx (s7, s¢, o(e)) whereo(e) are the observations associated
which uses the term “Semi-CRF” to refer to the fact that thewith the segment of the right-hand state of the edge. (The
Markov property is applied now at the segment rather thafirst block of observations is treated with an extra notional
individual observation level. Whereas [13] views this as a2d9€ |eading into the leftmost state.) The conditional grob

aFmty of a state sequencegiven an observation sequence
or a SCREF is then given by

_ 2ast jal=ls| ¥PQXceqr Mrfr(si, 57, 0(e)))
Zs’ Zq s.t. |q|=|s’| exp(Zeeq,k Akfk (826’ S’IFE? 0(6))) .

problem of determining a constrained labeling of a standar
CREF structure, we prefer to view it as one of determining the
CREF structure itself. This is illustrated in Figure 1. Theto P(slo)
part of this figure shows seven observations broken intethre
segments, while the bottom part shows the same observations

partitioned into two segments. For a given segmentati@a, fe  Training is done by gradient descent using Rprop [15]

ture functions are defined as with standard CRFs. and regularization as with FDMs. Taking the derivative of

As noticed in [14], it is possible to represent a CRF usingL — log P(s|o) with respect ta\, we obtain the necessary

just one type of feature function that involves two adjacent

states, and the observations. In the context of a SCRF, a pig_radlent:

torial representation of this is illustrated in Figure 2.iSh 9L Sa st fal=|s] Tr(@) exp(Xocq i M fi(s5,58,0(€)))
is the form we adopt. We note that while in principle with a 5y — >a st. al=ls| ®P(ceqk M fx (58,58,0(€)))
conditional model such as a CRF one may use all the observa- k , ' e e
tions at any time, in practice we are only interested in fiesstu _ 2 2ast ezl TH(O O ceq p Ak (57577 0(0)))

. . . . . .. A e ole )
involving a finite and specific span of observations, and it is 2o 2oq sit. Jal=|s'| P ceq,k M Sr(5]%:51%50(€)))

this specificity which the diagrams are intended to repriesen



with

“ ” S=7 S=1 S=6
“ ” > dog barked
the dog ) __—~@® ‘"dogbarke the dog nipped
’<:’:

Ti(q) =Y fr(si,s%,0(e))

eca 31 @ “dog wagged”
Tlé (q) = Z Tr (Sge’ SITE’ O(e))' “dog” : "nipped"”>. “dog nipped”
eeq 2 6
This derivative can be computed efficiently with dynami T 5@ ‘“hazy”
programming, using the recursions described in [11]. 2~
e e
3.2. Continuous Speech Recognition Fig. 3. Correspondence between language model state and

SCREF state. The dotted lines indicate the path taken in hy-
pothesizing “nipped” after "the dog.” A line from state 7 to
state 1 has been omitted for clarity.

In order to model continuous speech, the model structure
Figure 2 is given a specific meaning. While the features v
use relate a word to an observation span, the state does _
directly encode a word identity. Instead, the values of tt 4.1. Expectation Features
state variable in this model correspond to states in a f'n". Xpectation features are defined with reference to a diation

state reprgsentatlon ofa n-gram language mode. Th'§ 'S that specifies the spelling of each word in terms of the units.
lustrated in Figure 3. In this figure, a fragment of a finite

. The expectation features are:
state language model representation is shown on the ledt. Th o correct-accept of unia: u is expected on the basis of

e i e o 0 e st 5P e itonary.and it it in e spar
inguist : '9 IS Tigure | 9 o false-reject ofu: u is expected but not observed

a CRF illustrating the word sequence “the dog nipped.” The i o o
states are labeled with the index of the underlying language » false-acceptofi: u is not expected and itis observed

model state. In our search strategy [11], we extend existing.2. Levenshtein Features
hypotheses with specific words, so the word identity is abvay . Lo
Levenshtein features are computed by aligning the observed

available for feature computation. . A . :
We use the language model in two ways. First convenunitsequenceina hypothesized span with that expected base

tional smoothed ngram probabilities can be returned as tra)" the d|cF|onary entry for the word. Based on this alignment
sition features. A singla is trained to weight these features, the following features_ are ext_ra_cted:

resulting in a single discriminatively trained languagedesio o the number of “T“es “'_"“ is correctly ma_tchgd .
weight. Secondly, indicator features can be introduced, on  *® the number of times in the pronunciation is substi-
for each arc in the language model, which indicate when an tted i i .
arc is traversed in the transition from one state to another. ~ ® the number oftimes is deleted from the pronunciation
state transition in the CRF then results in a non-zero featur e the number of times is inserted

value (i.e. 1) for each arc traversed in the underlying laggu
model structure. For example, in Figure 3, the dic®) and
(2,6) are traversed in moving from stateto state6. Each  \hereas Expectation and Levenshtein features require a dic
of these arcs has its own binary feature. Learning the weightjonary, Existence features indicate the simple assacidte-

on these results in a discriminatively trained languageehod tween a unit in a detection stream, and a hypothesized word.

4.3. Existence Features

trained jointly with the acoustic model. An existence feature is present for each unit/word combina-
tion seen in the training data, and indicates whether the uni
4. FEATURES is seen within the hypothesized word’s span. Unlike Expecta

As mentioned in Section 1, we use features that can be traind@n and Levenshtein features, Existence features do mot ge
with one set of words, and then used in cases where other, uftalize to new words.

seen, words may be present. Our features are based on the

detection of phone and multi-phone units [7]. For a giverd.4. Baseline and Language Model Features

utterance, we form two separate detection streams: one co:llh | del feat d ibed in Section 3.2
sisting of phones and their detection times, and the other co € language model features were described in Section ..

sisting of multiphone units and their detection times. A de_In addition to these, we have developed baseline featuags th

tection time is a single time associated with a unit, e.g. it$an be used in association with an existing HMM system. For

midpoint. From each detection stream, several features mé )€ FDhM’ Wti use thFe Ianguggé%?:nd a(t:oustlc mk? del Zcorels ij
be extracted, and these are now discussed in turn. Each is ven Nypothesis. For our system, we have develope

fined with respect to a temporgian of detection events and an even simpler feature that requires only the baseline one-
a specific word hypothesis for that span best sequence, which is treated as a detector sequence.



FDM | SCRF Baseline| FDM | SCRF
Baseline 37.1%| 37.1 Top-1000| 15.8% | 13.6 | 13.9
Existence | 36.5 | 36.7 Full Test | 37.1 353 | 35.7
Expectation| - 36.4
Levenshteinl 36.1 | 36.4 Table 2. Sentence error rates using both phone and multi-

phone stream and all features.

Table 1. Effect of features individually, using multiphone .
. f word level features of the SCRF. In terms of runtime, both the
units only. Sentence error rate on complete test set. EapectSCRF and FDM rescorings - exclusive of the time taken to

tion features were notimplemented in the FDM. generate inputs - are much faster than a standard HMM de-

The baseline SCRF feature for a segment is always eith&°ding. The bulk of the time is spent generating the phone
+1or —1. Itis +1 when a hypothesized segment spans ex@nd multi-phone detections and baseline HMM decoding.

actly one baseline word, and the label of the segment matches 6. CONCLUSION

the baseline word. Otherwise it is1. The contribution i ) )
of the baseline feature to a hypothesis score will be maxil NiS Paper compares two recently developed direct modeling

mized when the hypothesis has the same number of words &8Proaches. Both allow for the use of long-span segmental
the baseline decoding, and the identities of the words matcffatures. The flat direct model operates at the utteraneg lev
Thus, by assigning a high enough weight to the baseline fe@nd is especially suited to evaluating a small set of canelsda
ture, the best scoring hypothesis can be guaranteed to be thB€ Seégmental CRF model operates at the word level and gen-
baseline and thus match its performance. In practice, thg'aliZes to continuous speech recognition. Both appreache
baseline weighting is learned and its value will depend en thProvide consistent Voice Search improvements.
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