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Abstract—This article describes a novel direct modeling ap-
proach for speech recognition. We propose a log-linear modeling
framework based on using numerous features which each mea-
sure some form of consistency between the underlying speech
and an entire sequence of hypothesized words. Since the model
relates the entire audio signal to a complete hypothesis without
necessarily positing any inherent structure, we term this a
Flat Direct Model (FDM). In contrast to a conventional HMM
approach, no Markov assumptions are used, and the model is not
necessarily sequential. We demonstrate the use of featuresbased
on both template-matching distances, and the acoustic detection
of multi-phone units which are selected so as to have maximal
mutual information with respect to word labels. Further, we solve
the key problem of how to define features which can generalize
to unseen word sequences. In the proposed model, template-
based features improve sentence error rate by 3% absolute over
the baseline, while multi-phone based features improve by 2%
absolute.

Index Terms—speech recognition, direct model, maximum
mutual information, log-linear model, features.

I. I NTRODUCTION

GENERATIVE Hidden Markov Models (HMMs) stand
at the heart of all large vocabulary state-of-the-art

speech recognition systems today. With current adaptationand
discriminative training techniques, the approach is efficient,
effective, generalizes well, and is eminently practical [1], [2],
[3]. Nevertheless, several concerns - some new and some long-
standing - indicate that it might be worthwhile to explore
alternative methodologies. The first concern is the use of a
frame-level Markov property. The simplicity afforded by this
property is a key source of computational and mathematical
tractability, but it is mainly an engineering expedient, rather
than being desirable from a scientific viewpoint. Over the
years, articulate criticism has been leveled at this property
from speech science (e.g. [4]), and we have empirical evi-
dence [5], [6] that long-span dependencies may be captured
at the acoustic level and profitably fed back in the feature
vectors.

The second reason for exploring alternative methods is that
the generalization capabilities we see with HMMs come from
the massive use of parameter tying. As more data become
available, it is reasonable to question how far these models
can be extended with a combination of whole-word models,
ever larger decision trees, and Gaussian mixtures. In contrast,
Nearest Neighbor (NN) classifiers, which grow proportionally
with the size of the training data, can significantly outperform
models with fixed and limited number of parameters when
data abound. Thus, as more data have become available in
recent years, there has been a resurgence of Dynamic Time
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Warping (DTW) techniques and coarse-to-fine approaches to
speech recognition [7], [8].

Lastly, we are seeing commercial interest in Voice Search
applications [9], [10], [11], [12], [13]. By voice search, in this
paper, we mean the ability to look up business information
such as phone numbers and addresses by voice. The voice
search applications are distinct in their characteristicsfrom
more traditional large vocabulary continuous speech recogni-
tion (LVCSR) tasks, such as dictation or human to human
phone conversations. In particular, the distribution overoutput
strings is heavily weighted towards the most common requests.
In a dictation setting, for instance, in a typical Wall Street
Journal (WSJ) sentence, there are 17 words drawn from a
quality-filtered 64k vocabulary. Notionally, the output space
would be 6400017 = 2272. In such a setting, considering
each hypothesis individually during search is computationally
prohibitive. In the Voice Search application, however, we
see a different behavior. Figure 1 shows that the empirical
mass captured by events considered, drawing from a trigram
language model,without looking at any audio. Note that we
can capture a large share of the probability mass with just a
few thousands of entries – and improving on those queries
will help disproportionately to their number. Further, there are
only about 30M businesses in the United States, and picking
the correct one is easier than solving the ASR task. Therefore,
in Voice Search, since speech comes in short phrases which
are typically two or three words long, it is natural to question
the judiciousness of treating the problem as a degenerate case
of LVCSR.

In this paper, we defineFlat Direct Models (FDMs) to
address these concerns. These models have two key charac-
teristics. First, they aredirect in the sense defined by [14] in
that they model the posterior distribution of the desired output
(a sequence of words), conditioned on the input audio, rather
than having a generative or joint model generating audio from
a sequence of desired textual representation and flipping it
backwards with Bayes rule during recognition. In other words,
they areconditional models: the probability of an output is
conditioned on given input audio. In practice, our FDMs are
log-linear models of a feature vector defined as a function of
the whole audio sequence and the output hypothesis.

Second, and most importantly, FDMs areflat. That is, the
model is defined at the utterance level, and may or may
not make reference to lower level structure, such as word or
phoneme ordering. In our experiments, we use both structured
and unstructured features. In the Voice Search application, an
index may be associated to each of the 30M businesses in the
United States, and the goal is to guess which is the right index.
In practice, for operational purposes, the real intent of the user
is unobservable, and we approximate it by a text transcription.
Nevertheless, there no presumption of an inherent notion of
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Fig. 1. In-grammar rates on the Voice Search task for different sizes of
hypothesis space. For hypotheses generated by the languagemodel, we drew
the most likely sequences in order. For the query logs, we drew samples in
chronological order.

words, causal order among them, or local contiguous statistical
dependency required in the approach, much less that words
need to be constructed from subword units such as triphones.

Despite this generality, FDMs have the nice property that
by adding HMM-based features such as HMM acoustic and
language model scores, the FDM is always guaranteed to
perform no worse than the HMM system on average - this
is an important feature which is not always shared by novel
non-HMM approaches. In practice, this means that the model
can make use of new embodiments of information without the
need for painstakingly deriving an alternative architecture that
is competitive with HMMs from scratch.

In contrast with HMMs, since the models do not construct
words by concatenating subword units, they are a natural
fit for embedding long-span phenomena. In fact, as outlined
below, the order of words is considered only if convenient,
and to the extent required. We can even consider completely
global features - for instance, arbitrary duration distributions
for specific words.

This paper makes several contributions. First, we define
and describe the notion of Flat Direct Models. The model
quality is determined by the features which are used, and our
second contribution is to propose two main types of features:
template-based, and detector-based. In the template-based
approach, we show that we can successfully add template
features to an HMM baseline. In the detector-based approach,
we solve two key problems: what acoustic detectors to use,
and how to define features that generalize to word sequences
which are unseen in the training data. To solve the acoustic
processing problem, we propose the use of features based
on the detection of discriminatively determined multi-phone
units. These units are determined by computing the mutual
information between phonetic subsequences that occur in the
lexicon, and the word labels. Based on this criterion, detectors
are created for a subset of highly informative units. Then,

to solve the feature generalization problem, we develop the
notion of decomposable features that consist of the conjunction
of a purely acoustic part and a purely linguistic part, and
additionally the use of associative and transductive features.

The remainder of this paper describes the flat direct model-
ing framework in detail. We draw together material presented
in [15], [16], and present new error models for use in the
computation of MMI multi-phone units [16], as well as an
efficient exact method for computing the mutual information
between candidate phoneme sequences and words. The paper
further presents new comparative results with these various
techniques.

The remainder is organized as follows. Section II presents
the functional form of the FDM. Section III describes the
classes of features we use, and in particular how these solve
the generalization problem wherein aflat model can never-
theless be trained with one set of words or listings, and then
successfully used even with unseen words and listings. Section
IV describes a new class of acoustic detectors - MMI Multi-
phones - for use with our models. These units have been
designed to provide a great deal of information about the
words, while simultaneously being robust to expected acoustic
modeling errors. Section V discusses potential limits withthe
approach. In Section VI, we present a suite of experiments
evaluating our model and features, followed in Section VII by
concluding remarks.

II. M ODEL: FUNCTIONAL FORM

The Flat Direct Model is implemented as a log-linear model.
If we receive a sequence of audioX , and denote desired output
(such as a the identity of a business) byh, our model is:

p(h|X) :=
exp

[

λT f(h,X)
]

∑

h′ exp [λT f(h′, X)]
. (1)

The weight vectorλ defines the model parameters, and the
feature vectorf(h,X) is a function of both the audio and
the output. Unlike Maximum-Entropy Markov Models [14] or
Hidden Conditional Random Fields [17], this model isflat and
does not have the notion of the sequence: it is informed by
sequential information only through the feature vector. The
crucial question of what features to define will be explored in
the next section.

In our experiments, the FDM is trained with a corpus
of T labeled utterances{ht, Xt}

T
t=1 with a regularized log-

likelihood J [18]:

J :=
∑

t

log p(ht|Xt)− σ−2||λ||2/2. (2)

The prior weightσ−2 ranged from103 to 107. Its value
was set by optimizing the error rate on a development set,
searching among values which were integral powers of ten.
Model weights were estimated using RProp [19], initialized
with λ = 0, and run for exactly 40 iterations, which was
sufficient to observe convergence inJ and error rate on the
development set.
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III. C LASSES OF FEATURES

As can be seen from Eq (1), it is possible to define arbitrary
feature functionsf(h,X), for instance, the consistency of the
pitch contour with the putative pronunciation of a business
name. In this paper, however, we explore a restricted subsetof
possible features classes of which we now provide a taxonomy.
The features of Sections III-A, III-B, III-C first appeared in
[15], while those of Section III-D first appeared in [16]. Before
proceeding, we note that the featuresf(h,X) may make use of
different representations of the audioX . For example, MFCCs
may be used, or a sequence of detected subword units such as
phones may be substituted for the raw cepstra. In either case,
the representation of the audio is not in itself a feature. As
we shall see, the acoustic information must be related to the
linguistic hypothesish before becoming a featuref(h,X) in
our model.

A. HMM Baseline features

As noted in the introduction, to guarantee baseline perfor-
mance, we can add the acoustic score and language model
score from the HMM system. As noted in [17], the Hidden
Conditional Random Field (HCRF) model takes on the log-
linear form, and in that case our models can coincide. An
HMM decoding can produce then top most likely hypotheses,
called n-best list. This forms an ordered list, in which the
position of a hypothesis is called its rank. By using Bayes
rule, we can also find the posterior probability of each hy-
pothesis, just called posterior, defined as the probabilityof the
hypothesis given the audio, as opposed to the likelihood of
the audio given that the hypothesis was meant, which is the
raw acoustic score from the HMM. In practice, we use the log-
posterior of the HMM instead of the raw scores, or the rank of
the hypothesis in the HMM-generatedn-best list. These have
a smaller dynamic range than acoustic and language model
scores, are more comparable to binary values, and are easier
to regularize.

B. Nearest Neighbor Features with Dynamic Time Warping

Nearest-neighbor features guarantee optimal performancein
the presence of infinite amounts of data. They relate the closest
training exemplar(ht, Xt) to a test utteranceX . For sequence
input, Dynamic Time Warping (DTW) defines the distance
function. DTW-based features tend to be very effective for
the most popular queries (so-called “head” data), as they can
model idiosyncrasies in pronunciation exactly. However, they
do not generalize well.

Dynamic Time Warping is a common technique to calculate
the distance between two real-valued sequences of different
length,Xhyp andXtpl, and the warped distance can be com-
puted efficiently [15], [8]. The complexity of this algorithm is
O(|Xtpl| · |Xhyp|), i.e., it is basically quadratic in the length
of the sequences.

C. Decomposable features

We now turn to features which are able to generalize to un-
seen words and listings. In a practical system, this is critically

Φ(h) Ψ(X) f(h,X) = Φ(h)Ψ(X)
h containsfood food has been spoken word spotter

TABLE I
WORD-SPOTTER AS A DECOMPOSABLE FEATURE.

Attributes (word spotters)
{chinese, food, mexican, restaurant}⊂h

Seen events Unseen eventsh covered by word spotters
mexican restaurant mexican food
chinese food chinese restaurant

TABLE II
ILLUSTRATION OF GENERALIZATION ISSUE USING WORD SPOTTERS.

important. To get this generalization, one of the techniques
we have developed is that of decomposable features. These
features are of the form

f(h,X) := Φ(h)Ψ(X). (3)

TheΨ(X) is called theacousticcomponent, and theΦ(h) is
called thelinguistic component. A canonical example consists
of the product of two binary features: for example, an acoustic
detector assessing the presence of a sibilant at the end of the
utterance forΨ(X), and the presence of the letter ‘s’ at the end
of the business name forΦ(h). Another example is illustrated
in Table I, for a class of features we refer to as word spotters–
features that measure the congruence between a word which
we expect to see based on the hypothesis, and an acoustic
detection of that word. The acoustic detection may be made via
the DTW based approach just described, or with a parametric
model.

The way we achieve generalization is by making either
Ψ(X) or Φ(h) coarse. At the fine-grained extreme, one may
use aΨ(h) which triggers for a single business identity. For
instance, we may decide to activate features only ifWalmart
is considered as a hypothesis. At the other (coarse) extreme,
we may decide to have a feature ifh contains two words or
less - which fires for about half of utterances. Similarly, for
acoustics, a fine-grained featureΨ(X) might be defined to fire
only whenX is deemed similar enough to a given example of
Walmart in the training data, or (coarsely) when the length of
X is below 3 seconds. Table II illustrates the generalization
that is possible,e.g.with word-spotters. Ideally, to classify the
30M businesses in our database, we need 25 features which
have perfect mutual information, each splitting the space in
half and providing one bit of information. Purely linguistic
features,i.e., features for whichΨ(X) is set to a constant,
can also be defined. They are language model features, and
were used successfully in [20].

To conclude this section, we would like to note that de-
composable features are useful not just for their generalization
ability, but also because it allows the feature engineer to think
of acoustic and linguistic features in isolation. This allows
researchers to focus on their expertise, and then to link their
work together in a simple and convenient way.
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D. Extracting features from a graph of multi-phone units

The example of word-spotters from the previous section
utilized word-detectors forΨ(X). Unfortunately, there are a
very large number of words, and it may not be feasible to
train a detector for each. Further, if template-based methods
are used, we are faced with the generalization problem that
test words may be unseen in the training data. Therefore, we
are driven to explore the use of subword units. The ideal units
will carry a large amount of information about the words,
and (necessarily) be reliably detected; Section IV will describe
in detail how we select these units. In the remainder of this
section, we will assume these detector units as input, and
describe the features which are extracted.

As input, we represent the audio with Mel Frequency
Cepstral Coefficients (MFCCs) and then turn it into a graph
of multi-phone units. Examples of these units are /aer ax n/
(as in Aarons) and /thiy/ (as in Abernathy). The multi-phone
units{u} are then associated with words{w}, for example via
a lexicon specifying the linkage, or simply from co-occurrence
statistics. In effect, we break up the statistical dependency from
audio inputX to outputh as the Markov chain:

X → {u} → {w} → h. (4)

In other words, we assume the information provided byX is
entirely contained in{u} for the purpose of finding words,
and in turn they are sufficient to decide{w}, then h. At
this stage, however, we do not imply that large units are a
concatenation of small units or acoustic frames, merely that
larger units depend on smaller units, for example through co-
occurrence This is in contrast with HMMs, which follow a
similar hierarchical construction, in that:

• HMMs typically use triphones as{u}, which have a short
span;

• the pronunciation dictionary performs a near-
deterministic mapping from{u} to {w}; and

• the links in the Markov Chain must be Markovian with
respect to the underlying units, which is the primary
source of computational efficiency.

We distinguish two ways of defining features, both of which
are violated the Markovian property of HMMs. Our features
are based on Eq (4), and make reference to a lattice of decoded
multi-phone unitsu. This lattice is created by decoding an
utterance with multi-phone rather than word-level units. From
this lattice and statistics derived from it, we extract two major
kinds of features: associative, and transductive.

Associative features provide indicators of what words might
be expected on the basis of the units that are present, ir-
respective of ordering constraints. Transductive features then
incorporate ordering information. Both of these features make
use of quantities defined by a simple model for determining
the probability of a hypothesis. The model assumes that units
are conditionally independent givenX , distributed according
to counts observed in the lattice. Further, we assume that
each word is produced independently, given a unit, again
independently of other units in the bag. The model is:

p(h|X) =
∑

u,w

p(u|X)p(w|u)p(h|w), (5)

Name Ψ(X) Φ(h) N

uw γ(u|x)p(w|u) δ(w ∈ h) 106

word
∑

u
γ(u|x)p(w|u) δ(w ∈ h) 30k

hyp f(h,X) = log p(h|X) 1

TABLE III
DEFINITION OF ASSOCIATIVE FEATURES OF EACH TYPE; N IS THE

TYPICAL NUMBER OF FEATURES DEFINED FOR EACH TYPE.
Reference Recognized as

Marriott Courtyard Courtyard Marriott
Harley-Davidson Motorcycles
Borders Borders Books
Gentlemen’s Club Adult Entertainment

TABLE IV
RECOGNITION ERRORS WITH ASSOCIATIVE FEATURES.

with a deterministic mapping ofh to words:

p(h|w) =
p(h)

p(w)
δ(w ∈ h), (6)

andδ(·) is the indicator function. Note thatu andw here are
individual units and words - not sequences, and in contrast
with a standard HMM,p(w|u) is not determined by a pronun-
ciation lexicon: rather, it is a co-occurrence model.p(w|u) is
the ML estimate derived from decoding a held out portion of
the training set, and counting how oftenu and w co-occur
at the utterance level. p(w) andp(h) are similarly computed
from this held out data. We useγ(·|X) to denote a posterior
count. The classes of associative and transductive features are
now defined.

1) Associative features:The definition of associative fea-
tures is presented in Table III. In the third column of that
table, asN , we record a typical number of features in our
task. The vocabulary size of 30k defines how many “word”
features we have. On average, each word is seen in the same
utterance with 33 distinct units, so there are33× 30k = 106

uw features. These features simply associate the presence of
a multi-phone in the decoded unit graph with a given output
or word. The features are “Pavlovian”: given a certain multi-
phone stimulus, a response in the form of a certain output can
be trained. They rely entirely on co-locations of units with
expected output words in the training data. They are similar
in spirit to Episodic Memory models [21], albeit starting
from discrete symbols rather than acoustics. Associative fea-
tures also bear a relationship to Bellegarda’s Latent Semantic
Analysis [22], which is based on co-occurrences of words in
documents. The generative model of Eq (5) is added as a
featuref(h,X) = log p(h|X).

Associative features are global in nature: it is not necessary
that a unit representing a certain sound is contained withinthe
dictionary pronunciation of a word for them to be considered
together. They also do not consider ordering constraints.

In early stages of development, we noticed that this prop-
erty causes some interesting mis-recognitions, as shown in
Table IV. For instance, many of our users in the training set
asked forHarley-Davidson Motorcycles. During test, units rep-
resenting the sound “Harley” (e.g.hh aa r) provided acoustic
evidence for bothHarley-Davidson, andMotorcycles, but since
the Motorcycleslanguage model was stronger, the latter was
chosen.
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n,0.7

a) Pronunciation graph for hypothesis tomato:

ey

sub(oh,ax) match(m) sub(ey,ah) match(t) del(ow)

match(ey)

b) Decoded unit graph from audio:

match(t)

corr(t).3 × corr(m)

d) Features generated from the shortest path:

corr(t) sub(oh)

corr(ey)

del(ow)

t ax m ah t ow

teyoht

c) Alignment, with minimum edit path in bold:

sub(n,m)

m,0.3

Fig. 2. Transductive features. The posterior for unitsm andn are 0.3 and
0.7 respectively. Edit operations along the minimum edit path are recorded as
transductive features.

Name f(h,X) N

ins γ(u|X) · δ(u is an insertion in h) 5k
del δ(u is a deletion from h) 5k
sub γ(u|X) · δ(u is substituted in h) 5k
corr γ(u|X) · δ(u is matched in h) 5k

TABLE V
TRANSDUCTIVE (LEVENSHTEIN) FEATURES ARE EXTRACTED FROM

LEVENSHTEIN ALIGNMENT.N IS THE TYPICAL FEATURE COUNT OF EACH

TYPE.

2) Transductive features:With transductive features, we as-
sume the additional knowledge of a pronunciation dictionary.
Thus, we have a prejudice about which units should appear in
the audio and in which order, to be consistent with an output
hypothesish. The process for computing transductive features
is illustrated in Figure 2. First, we create a pronunciationgraph
by enumerating the possible hypothesis pronunciations in a
lattice structure. We then generate an alignment graph which
is the composition of the pronunciation graph with the decoded
unit graph, with posterior weights removed. Then, we compute
the path with minimum edit distance in this alignment graph.
If multiple paths achieve the same minimum edit distance,
we pick the one associated with units decoded with maxi-
mum posterior. Then, transductive features are extracted by
recording edit events following that path. When encountering
a substitution event, we ignore the identity of the hypothesis
pronunciation unit – in the figure, sub(oh,ax) becomes sub(oh).
The feature value is set to the posterior of the arc in the
decoded input graph.

Transductive features are enumerated in Table V. Each edit
operation (ins, del, sub, corr) is defined once per unit:N ,
the feature count, is equal the number of units. Transductive
features are not decomposable, but they do generalize well
since they are defined at the sub-word unit level.

In Table VI, we provide an example utterance and ex-

Decoded units ax p iy t s ax b ay

Hypothesis Pizza Hut
Associative features (Pizza, p iy t s ax)

(Hut, p iy t s ax)
Transductive features insert(ax)

match(p iy t s ax)
substitute(bay)

Hypothesis Best Buy
Associative features (Best, b ay)

(Buy, b ay)
(Buy, ax)

Transductive features insert(ax)
match(b ay)
substitute(piy t s ax)

TABLE VI
AN EXAMPLE OF ASSOCIATIVE AND TRANSDUCTIVE FEATURES FOR TWO
HYPOTHESES(Pizza HutAND Best Buy). THE DECODED UNIT GRAPH WAS

A SINGLE PATH.

tracted features. The decoded unit graph has three units, “ax
p iy t s ax b ay”. We show two possible hypotheses, Pizza
Hut and Best Buy. The associative features associate units with
words, as seen in the training set. Note that associative features
will only be present for word-unit combinations seen in the
training data. In this example, we assume “pizza” and “bay”
have not been seen together in the training data. Likewise,
because “ay” was often wrongly decoded in as “ax”, we have
an associative feature for (Buy, ax). This mechanism can learn
arbitrary pronunciations, if given enough examples. The trans-
ductive features, informed by the pronunciation dictionary, can
indicate, for instance, that “ax” is an extraneous sound in both
cases.

IV. MMI M ULTI -PHONEDETECTORS

The features which we have just described have been based
on the detection of subword units in the audio. Now, in
this section, we present a method of identifying a set of
highly informative multi-phone units to use as the basis for
those detectors. Our units are similar to syllables [23], but in
contrast to previous work [24], [25], they are identified using
a discriminative rather than Maximum Likelihood criterion.

We begin by noting that the mutual information between
phone sequences and words is a function both of the dictionary
pronunciation of words, and of our ability to detect the
phone sequences. From the dictionary point of view, a phone
sequence occurring in half the words is ideal (providing one
bit of information), while one occurring in every word (or no
word) is uninformative. From the detection point of view, a
sequence which cannot be detected with any reliability is also
uninformative, even if it would be otherwise ideal. Key to
computing mutual information is therefore the way in which
we represent our ability to detect units, and this section is
organized around different methods for doing so. The concept
of MMI multi-phone units was first introduced by us in [16],
and after recapitulating it here, we present new error models in
Sections IV-D and IV-E, along with a new method for exactly
and efficiently computing the mutual information in Section
IV-F. New comparisons of these methods are presented later
in this section and in the experimental results.
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First, we define the mutual information between phone se-
quences and words, and analyze it in the errorless case. Then,
we consider the use of two different detection error models:
one in which the probability of an error is a function of the
length of a unit (longer units being more reliably detected), and
a much more detailed one in which the probability of an error
is empirically derived as a function of the unit identity itself.
Both of these error models permit highly efficient routines for
computing the mutual information between phone sequences
and words. The runtime of the first algorithm is proportional
to the size of the dictionary; the runtime of the second is
proportional to the size of the dictionary plus the size of a set
of phone decodings used to estimate the error model. Both of
these result in a mutual information quantity for each phone
sequence that occurs in the dictionary. Finally, we show how
the mutual information can be computed exactly, using a set of
phone decodings to encapsulate the detection uncertainty.The
runtime of this algorithm is much longer - proportional to the
vocabulary size times the number of distinct phone sequences
that occur in the set of phone decodings. However, we present
an algorithm that achieves this runtime using onlyO(U) RAM,
whereU is the number of extracted units, thus making the
exact computation feasible. Experimental results are presented
for these various cases in Section VI.

A. Definition

Consider a multi-phone unitu. We useU = {0, 1} to denote
the presence or absence of the multi-phone unitu. We define
a second random variable,W , which can take on the identity
of a word. The mutual information between the presence of a
unit u and the words is then given by:

MI(U ;W ) =
∑

a={0,1}

∑

w

P (u = a,w) log
P (u = a,w)

P (u = a)P (w)

=
∑

w

P (w)p(u = 1|w) log
P (u = 1|w)

P (u = 1)

+
∑

w

P (w)P (u = 0|w) log
P (u = 0|w)

P (u = 0)
.

We now consider several procedures for computing the
mutual information between phone sequences and words. As
inputs, we will take a dictionary that indicates the phonetic
spelling for each word, along with the unigram counts for each
word. Two of the methods further require an unconstrained
phonetic decoding of some development data, from which to
extract statistics. We will assume at first that each word has
one pronunciation. The output will be the mutual information
between each phonetic sequence in the lexicon, and the word
labels. The phonetic sequences are arbitrary sub-word units
(e.g.“aa k iy” from Akimoto) that may span anything from a
single phone to an entire word.

B. The Errorless Case
We proceed in the errorless case by breaking the set of

words up into those in whichu is present (W+) and those
in which it is not present (W−). In the remainder, the word
w+ will be always understood to be summed overW+, and
similarly w− will always drawn fromW−. We may take

advantage of the fact thatP (u = 1|w−) = 0, ∀w− ∈ W−

andP (u = 0|w+) = 0, ∀w+ ∈ W+, to simplify:

MI(U ;W )

= −
∑

w+

P (w+) logP (u = 1) −
∑

w−

P (w−) logP (u = 0)

= − logP (u = 1)
∑

w+

P (w
+
) − log P (u = 0)

∑

w−

P (w
−
)

= − log(
∑

w+

P (w+))
∑

w+

P (w+) − log(
∑

w−

P (w−))
∑

w−

P (w−).

In one pass over the data, we can compute
∑

w+ P (w+) and
∑

w− P (w−) = 1 −
∑

w+ P (w+) for any unitu, and in fact
by examining the words one-by-one and updating counts for
all the phoneme sub-sequences present, we can accumulate the
sum foreveryunit u.

C. The Effect of Errors
In reality, our ability to detect unit presence is imperfect.

An otherwise highly informative unit that cannot reliably be
detected is in fact not so useful. Considering errors, four
outcomes are possible when we attempt to detect whether a
unit is present: a correct accept, a false reject, a false accept,
and a correct reject. Taking this into account:

MI(U ;W )

=
∑

w

P (w)P (u = 1|w) log
P (u = 1|w)

P (u = 1)

+
∑

w

P (w)P (u = 0|w) log
P (u = 0|w)

P (u = 0)

=
∑

w+∈W+

P (w+)P (u = 1|w+) log
P (u = 1|w+)

P (u = 1)
correct accept

+
∑

w+∈W+

P (w+)P (u = 0|w+) log
P (u = 0|w+)

P (u = 0)
false reject

+
∑

w−∈W−

P (w
−
)P (u = 1|w

−
) log

P (u = 1|w−)

P (u = 1)
false accept

+
∑

w−∈W−

P (w−)P (u = 0|w−) log
P (u = 0|w−)

P (u = 0)
correct reject

When we have an error modelP (u = {0, 1}|w{+,−}) that
is only a function of the unitu, this simplifies further because
the sum can be factored out:

MI(U ;W )

= (
∑

w+

P (w+))P (u = 1|w+) log
P (u = 1|w+)

P (u = 1)
correct accept

+ (
∑

w+

P (w+))P (u = 0|w+) log
P (u = 0|w+)

P (u = 0)
false reject

+ (
∑

w−

P (w−))P (u = 1|w−) log
P (u = 1|w−)

P (u = 1)
false accept

+ (
∑

w−

P (w−))P (u = 0|w−) log
P (u = 0|w−)

P (u = 0)
correct reject

This can be computed efficiently for each candidate multi-
phone unit in the data in two steps. In the first, a single pass
over the data is made, and we compute the same quantities that
were used in the errorless case. In the second, each candidate
unit u is examined, and the mutual information computed
according to the above formula. The necessary quantities are
readily available:

•

∑
w

+∈W+ P (w+) and
∑

w
−∈W− P (w−) are computed in the

initial pass over the data for eachu as in the errorless case.
• P (u = 1|w−) = f(u), wheref() is a function that estimates the false

positive probability
• P (u = 0|w−) = 1− P (u = 1|w−)
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Unit: Length Model (A) MI(U ;W ) Unit: Length Model (B) MI(U ;W ) Unit: Empirical Model MI(U ;W ) Unit: Exact MI(U ;W )

ax n 0.026 bits ax 0.29 r 0.41 r 0.44
k ae l ax f ao r n y ax 0.023 r 0.29 n 0.32 ax 0.38
ae l ax f ao r n y ax 0.022 n 0.27 ax 0.21 n 0.37
k ae l ax f ao r n y 0.022 s 0.25 l 0.28 l 0.32
l ax f ao r n y ax 0.022 t 0.25 s 0.28 s 0.32

TABLE VII
THE MOST INFORMATIVE MULTI -PHONE UNITS FOR THE DIFFERENT METHODS OF ESTIMATING MUTUAL INFORMATION. AN “ ” IS USED BETWEEN THE

PHONES BELONGING TO A SINGLE UNIT.

• P (u = 0|w+) = g(u), whereg() is a function that estimates the false
negative probability

• P (u = 1|w+) = 1− P (u = 0|w+)
• P (u = 1) = P (u = 1)

∑
w

+ P (w+) + P (u = 1)
∑

w
− P (w−)

• P (u = 0) = P (u = 0)
∑

w
+ P (w+) + P (u = 0)

∑
w

− P (w−)

Note that in the last two bullets we have taken advantage of the
fact thatP (u = k|w{+,−}) = P (u = k), ∀k ∈ {0, 1}, w+ ∈
W+, w− ∈ W− is only a function ofu to move this factor
outside the summations.

The approach outlined above is straightforward to im-
plement with a single pronunciation for each word. When
multiple pronunciations are present, the quantities that must be
computed do not factor neatly. However, by using the mutual
information between words and pronunciation variants, one
obtains a useful surrogate. Alternatively, one may determine
the unit set simply by using the most common pronunciations.
In the experiments below, we used the first approach. With
the exact mutual information computation of Section IV-F, no
approximations are made.

D. Length-Based Error Model

The simplest of our approaches uses a length-based error
model to implementf() and g(). In this model, we capture
the intuition that the likelihood of hallucinating a specific
unit will fall off rapidly as the length of the unit increases.
The number of distinct units with a given length increases
exponentially with the length, and so it is reasonable to assume
that the probability of falsely accepting a specific one will
be exponentially decreasing in the length of the units. The
length-based model further captures the observation that the
probability of falsely rejecting word units is roughly constant,
regardless of length. We thus define:

• f(u) = P (u = 1|w−) = ae−bl wherel is the length of
the unit in phones, and a and b are constants.

• g(u) = P (u = 0|w+) = c, a constant

We have experimented with two methods for setting the
constants. In the first, which we will call method A, we simply
usea = 1,b = 1, and c = 0.5. This overestimates the effect
of errors, as it is unlikely that a single phone unit will be
falsely detected with probabilityexp(−1) ≈ 0.37. The second
method, which we will call method B, follows a more careful
line of reasoning. Let us assume that the majority of errors that
we would see in an edit distance computation are substitutions,
and that each is manifested by a false rejection of the correct
unit, and a false acceptance of the incorrect one. For phone-
based recognition, where the unit length is1, a 30% error
rate is reasonable. At the word level, where the unit length
is about6 on average, we expect a45% error rate. We will

Unit MI(U ;W )

ax n 0.026 bits
k ae l ax f ao r n y ax 0.023
ax r 0.021
s t 0.018
ao r 0.017

TABLE VIII
THE MOST INFORMATIVE MULTI -PHONE UNITS AFTER UNIT SELECTION

USING THE LENGTH(A) BASED ERROR MODEL. FOR OTHER MODELS THE

LISTS ARE UNCHANGED.

further assume that false positives are equally distributed over
the space of possible units -40 units in the case of phones,
and around100, 000 in the case of words. We may then solve
the equations:

a exp(−b) =
0.3

40

a exp(−6b) =
0.45

100, 000

This results ina = 0.03, b = 1.5. Finally, we note that the
false negative rate will just vary between0.3 and 0.45, and
we may use the average as a reasonable value. In subsequent
tables, we will present results for both settings of the model
parameters, and compare with more exact computation of the
mutual information.

E. Empirical Error Model

The simple length-based error model above may miss im-
portant phenomena, such as the fact that detecting a plosive
like /t/ may be more difficult than detecting a vowel like /ah/.
To capture more detailed information like this, we have devel-
oped an empirically derived error model. This model is based
on doing an unconstrained phone decoding, and then using
the time marks from a forced alignment of the transcription
to extract the phones in the unconstrained decoding which are
associated with each word. When the forced alignment is done,
a single lexical variant of each word is selected from among
the pronunciations possible. Thus, we may associate with each
actual phonetic realization of a word from the unconstrained
decoding an expected phonetic realization from the forced
alignment. For any particular multi-phone unit, we can then
determine if it was falsely accepted or falsely rejected. We
then use these empirically determined quantities for thef()
andg() functions:

• f(u) = P (u = 1|w−); ∀w− ∈ W− (false accept)
• g(u) = P (u = 0|w+); ∀w+ ∈ W+ (false reject)

This approach has the benefit of allowing for unit specific
probabilities, with the drawback that we may obtain unreliable
estimates for very infrequent units.
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Word Unit Breakdown: Length (A) Breakdown: Length (B) Breakdown: Empirical Breakdown: Exact

Academia ae k ax d iy m iy ax ae k ax d iy m iy ax ae k ax d iy m iy ax ae k ax d iy m iy ax
Academic ae k ax d eh m ih k ae k ax d eh m ih k ae k ax d eh m ih k ae k ax d eh m ih k
Academics ae k ax d eh m ih k s ae k ax d eh m ih k s ae k ax d eh m ih k s ae k ax d eh m ih k s
Academies ax k ae d ax m iy z ax k ae d ax m iy z ax k ae d ax m iy z ax k ae d ax m iy z
Academy ax k ae d ax m iy ax k ae d ax m iy ax k ae d ax m iy ax k ae d ax m iy

TABLE IX
SEGMENTATION OF SEVERAL WORDS INTO MULTI-PHONE UNITS.

F. Exact Mutual Information Computation
To do the exact mutual information computation, we directly

implement the definition:

MI(U ;W ) =
∑

w

P (w)p(u = 1|w) log
P (u = 1|w)

P (u = 1)

+
∑

w

P (w)P (u = 0|w) log
P (u = 0|w)

P (u = 0)
, (7)

and exhaustively enumerateP (u = {0, 1}|w) for all words
and units.

In common with the previous method, we use a set of uncon-
strained phone decodings to represent our ability to accurately
decode phone sequences. However, the computations must be
carefully organized. If we denote the vocabulary size byV
and the number of units byU , in the exact computation, a
runtime ofO(V U) is inescapable. However, a much smaller
memory requirement ofO(U) is possible (we refer to RAM;
file storage to hold the data is taken as given). In fact, were
this not possible, the computation would be prohibitive dueto
memory use.

First, we examine the set of decodings and collect a set of
candidate multi-phone units, those that are shorter than a given
length (≤ 12 in our experiments), and those which occur at
least a certain number of times (10). The number of times each
unit is seen is stored. We also tabulate the number of times
each word is seen. The mutual information is then computed
as follows:

1) Extract the phonetic realization of every word in the
training data

2) Store this in a file with two columns: the word in one
and the realization in the other. There is a line for each
word occurrence.

3) Sort the file on words.
4) Scan through the file sequentially, and for each word’s

realizations:

a) InitializeP (u = 1|w) = 0 ∀u (Note that since we
examine the words sequentially, we knoww and
need only use a container the size of|U |.)

b) Examine each realization ofw and for each can-
didate sequence present in the realization, update
P (u = 1|w).

c) After all realizations of the current word have been
scanned, for each unit:

• ComputeP (u = 0|w) as1− P (u = 1|w).
• UpdateMI(U ;W ) according to Eq (7).

G. Unit Selection

Table VII shows the five most informative multi-phone
units for our four methods of computing mutual information.

Method Number of Units

Length (A) 4358
Length (B) 4578
Empirical Error Model 4679
Exact MI 4601

TABLE X
NUMBER OF UNITS AFTER UNIT SELECTION.

Note that the mutual information quantities listed depend on
the error model used (an error model specifying completely
random detection would result in0 mutual information), and
therefore the columns are not expected to agree. In length
model A, the coefficientsa = 1, b = 1 have overestimated
the probability of obtaining false-positives with short phone
sequences, with the result that these do not appear amongst the
top-5 most informative units. Instead, much longer units are
present for this length model. As can be seen, many of these
derive from the word “California” (our training data included
city-state-zip requests), and from the point of view of building
detectors, it would be inefficient to use such redundant units.
(The redundancy stems from the fact that while each unit has
a large amount of mutual information with the words, the
conditional mutual information of one unit given another is
low.) While it is not apparent from the list of the top-5 units,
this same issue arises with the other methods of estimating
mutual information as well - the units involved just appear
lower down on the list. Therefore, we are motivated to develop
a procedure for removing redundancy from the list.

To do this, we proceed by defining a set of candidate units -
the topN = 10, 000 most informative - and then partitioning
each dictionary word into the minimum number of candidate
units. Any unit that is selected fewer than 50 times is then
thrown away. The most informative of the selected units are
shown in Table VIII. To get a sense of how the units are
used, Table IX shows the segmentation of several words.
This illustrates how words of modest frequency are typically
decomposed into syllable-like and single-phone units. Table X
shows the number of units present after unit selection for
the different methods. Table XI shows the segmentation of
the most common business requests, and illustrates the fact
that very common words typically result in whole-word units.
For the most common words, all methods produce the same
segmentation, with the exception of an unusual pronunciation
of “McDonald’s;” the variability here is shown in Table XII.To
get a sense of the variability present in the segmentations,we
have tabulated the fraction of identical units for the different
methods. This is illustrated in Table XIII. We see that thereis
a significant amount of similarity between the results.
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Word Unit Breakdown

Pizza p iy t s ax
Wal-Mart w ao l m aa r t
McDonald’s m ih k d aa n ax l d z

m ax k d aa n ax l d z
Best Buy b eh s t b ay
Starbucks s t aa r b ah k s

TABLE XI
SEGMENTATION OF THE MOST COMMON REQUESTS INTO MULTI-PHONE

UNITS WITH THE EXACT MUTUAL INFORMATION COMPUTATION.

Method McDonald’s 1 McDonald’s 2

Length (A) m ih k d aa n ax l d z m ax k d aa n ax l d z
Length (B) m ih k d aa n ax l d z m ax k d aa n ax l d z
Empirical Error m ih k d aa n ax l d z m ax k d aa n ax l d z
Exact MI m ih k d aa n ax l d z m ax k d aa n ax l d z

TABLE XII
SEGMENTATION OF “M CDONALD ’ S” INTO MULTI -PHONE UNITS. ALL

METHODS GIVE THE SAME ANSWER FOR THE COMMON PRONUNCIATION,
THOUGH THERE IS VARIATION IN THE MORE UNUSUAL PRONUNCIATION.

H. Qualitative Analysis of Units

An ideal unit from the mutual information standpoint would
occur in exactly half the words. In fact, no unit occurs nearly
this often, and the units that come closest to this ideal are
single-phone units. In the absence of errors, single-phoneunits
would be best, followed by two-phone units and so forth, in
order of decreasing frequency. However, imperfect detection
counteracts this: single phone units are more likely to incur
false-accepts and therefore they are penalized by the mutual
information criterion. In the final set of units, we see both
some very short units such as “ax n,” which are present due
to their frequency, and also some very long ones such as “k
ae l ax f ao r n y ax,” which are present due to their assumed
detection reliability (and relative frequency). The net result of
this process is a set of multi-scale units with which words can
be represented. The scale varies from single phone units to
syllable-like and whole-word units, and the determinationof
the set of units to work with is made with a sliding scale that
uses mutual information to trade off frequency with detection
reliability.

V. L IMITATIONS

In this section, we contrast differences with the HMM
approach and limitations in the system proposed in this paper.
First, we look at the model itself. Then, we examine potential
limitations with the features we have chosen. Finally, we delve
into more issues which arise in practice.

A. Modeling

FDMs do not impose the frame-level Markov assumption.
Their log-linear form implies that there exists a linear decision
boundary. More complex decision boundaries must be imple-
mented by adding more complex features. In practice, we have
a large number of features, and we do not envision this to be
the main problem. Regularization with a single prior weight
further implies that feature scaling is important.

In effect, the simple log-linear form of FDMs delegate
modeling assumptions to feature design.

Length (A) Length (B) Empirical Exact

Length (A) - 91% 77 68
Length (B) - 78 72
Empirical - 77

TABLE XIII
FRACTION OF DERIVED UNITS IN COMMON BETWEEN METHODS.

B. Features

In practice, the main limitations in HMMs which FDMs can
target are: frame-level Markov decisions, a nearly determinis-
tic pronunciation dictionary, and state-tying. Each feature type
must be examined separately.

1) Dynamic Time Warping:These features learn to map
example sequences of audio to a hypothesis. Like HMMs, they
operate on a frame-by-frame basis and the final score is a
sum/product of frame similarity scores. There is no notion of
state-tying or pronunciation dictionary. The main drawbacks
are that they require large amounts of data to train, and are
computationally expensive.

2) Associative features:While they rely on HMM-
generated input, associative features make the fewest assump-
tions. From Eq (4), it is assumed that a hypothesis is composed
of a bag of words, and that words are constructed from a bag
of units from the entire audio sequence. These features do not
use a pronunciation dictionary. They cannot distinguish word
order or word boundaries between units.

Associative features work globally at the utterance level.
As seen on Table IV, it is possible to suggest words which
have not been realized acoustically. In the case of business
search, it performs the function of correction, for instance,
possibly suggesting “Fred Meyer” in lieu of an incorrect “Fred
Meyers”.

3) Transductive features:Using a pronunciation dictionary,
transductive features exploit word and unit order information
to perform matching. They are the closer to HMMs. They
consider multi-phone errors in isolation. In effect, they allow
training of a context-free multi-phone edit model. In an
isolated word recognition context, a similar effect can be
obtained with HMMs by introducing many pronunciations
variants, each penalized by edit operations which deviate from
the closest canonical pronunciation. Therefore, in an HMM
implementation, they may be thought of as a tied model for
discriminative lexicon training.

The feature set should be considered in its entirety: the role
of each feature is to add complementary information to the
other features. Therefore, a specific limitation of a particular
feature will decrease its own effectiveness, but it could be
captured by another feature. In general, if phenomena may be
quantified independently, FDMs will suffer no loss.

C. Practical considerations

Three fundamental limitations arise from the configuration
in which the FDM was implemented.

1) Task dependence:HMMs are based on a decomposition
of acoustics, language model (the channel model), and lexicon.
Very early on and aggressively, FDMs assume a single task. It



IEEE J-STSP SPECIAL ISSUE ON STATISTICAL LEARNING METHODS FOR SPEECH AND LANGUAGE PROCESSING 10

Length(A) Length(B) Empirical Exact
Data required - Estimates of phone and word Phone decode Phone decode

error rates; Word length
Intermediate model parametricf(), g() parametricf(), g() Edit distance tables -
Runtime O(U + V ) O(U + V ) O(U + V ) O(UV )

TABLE XIV
COMPARISON OF ERROR MODELS IN TERMS OF IMPLEMENTATION.

is not possible to deploy FDMs trained in a given task, with a
given vocabulary, to a new task. In an HMM system, one may
replace the language model and lexicon and keep the acoustic
models.

2) Speaker adaptation and noise robustness:Beyond using
modified input HMM system, it is not immediately clear how
to perform speaker adaptation, or apply signal-level noise
robustness techniques in FDMs. In our work, we assume
features derived from multi-phone units and words. Thus,
speaker adaptation, for instance, would be akin to lexicon and
language model adaptation, not acoustic adaptation.

3) Features are unrelated:HMMs follow a single con-
sistent generative framework. By contrast, our features are
conceptually unrelated to each other, even when they capture
similar phenomena. Therefore, advances in the generation of
one feature may not automatically benefit other features.

VI. EXPERIMENTS

In our experiments, we try to elucidate several questions
regarding the effectiveness of the approach, namely:

Q1. Can we improve on an HMM baseline with nearest-
neighbor units, which only improve a few cases, but
do not generalize?

Q2. Does the FDM, on its own and without the HMM
baseline, decode with acceptable accuracy?

Q3. What is the effect of the multi-phone error model on
recognition results in the FDM?

Q4. Does knowledge from the pronunciation dictionary help
through the use of transductive features?

Q5. In practice, can unit-based features complement an
HMM system and improve accuracy?

First, we describe the general experimental framework. Then,
we proceed to describe Nearest-Neighbor and multi-phone
experiments.

A. Bing Mobile Voice Search Data

For our experiments, we consider the Voice Search task.
We have deployed an application [9] called Bing Mobile,
which allows users to look for local businesses from their
mobile phone. Speech comes in various challenging con-
ditions, including outside noise, music, side-speech, sloppy
pronunciation, and different acquisition channels. Key toour
acquisition of training data, once a query is spoken, a list
of alternatives is presented for user validation. This has
resulted in a training set of approximately 3M utterances.
By comparing user selections with transcriptions for a small
set of transcribed data, we estimate that the user provided
data is 85-90% accurate. Our test data consists solely of the

Nearest Neighbor experiments
Training set 550k utterances
Test set (Table XVII) 21k utterances
HMM baseline (SER) 39.6%
HMM 100-best oracle (SER) 21.6%

Multi-Phone experiments
Training set 3M utterances
Test set (Table XIX) 8777 utterances

HMM baseline (SER) 34.7%
HMM 100-best oracle (SER) 16.8%

Test set (Table XVIII) 3623 utterances (top 1000 only)
HMM baseline (SER) 13.4%
HMM 100-best oracle (SER) 1%

TABLE XV
CONFIGURATIONS USED IN THE EXPERIMENTS.

more accurately transcribed data. Table XV summarizes the
training set and test set configurations used for experiments.
The nearest neighbor experiments were performed early on,
with the training and test data listed. For our later multi-phone
experiments, we used more training data and two test sets. The
first (full test) consists of 8777 business utterances collected
in the week of May 16, 2008. The second is a subset of 3623
of these, which correspond to requests of one of the 1000
most frequently requested businesses. All HMM baselines are
trained using the maximum-likelihood criterion (ML), rather
than discriminatively, like the FDM. We believe that we would
still see improvements over a discriminatively-trained HMM
baseline.

In general, during decoding, FDM runs at a fraction of
HMM decoding. Training is also relatively expedient. For
example, ML training of HMM models on 2000 hours with
1024 CPUs takes about 7 hours, while FDM training always
finishes within 3 hours for the most expensive case, and
otherwise typically within 1 hour. The dominating cost for
FDM is the generation of multi-phone decodings or DTW
matching,i.e. for feature extraction.

B. Nearest-Neighbor Experiments

Our first set of experiments, reported in [15], addresses the
question of whether nearest-neighbor features, which target the
most frequent listings (so-called “head” events), can improve
upon an HMM baseline system (Q1). It is important to
demonstrate that FDM can make use of features or models
that, by design, only target specific phenomena or listings,but
may not generalize. In practice, it allows researchers to find
new alternative models without having to design them to work
on all utterances, and to focus on specific areas of strength.
Here, we examine what gains can be had from using Nearest-
Neighbor features from Section III-B. The HMM system
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Name Ψ(X) Φ(h) N

letter 6-gram 1 δ(6gm ∈ h) 50k
DTW distance to closest example ofc c ∈ h 3-15k
posterior f(h,X) = log p(h|X) 1
rank f(h,X) = n-best rank ofh 1

TABLE XVI
FEATURES USED IN TEMPLATE EXPERIMENTS.N IS THE FEATURE COUNT.

Setup SER [%]
Actual Total

HMM baseline 17.4 39.6
With NN features 13.0 36.3

TABLE XVII
RESULTS IN SENTENCEERRORRATE (SER)WITH NN FEATURES.

operated on MFCC/HLDA 36-dimensional features, had 3,000
tied-state mixtures and 16 Gaussians per mixture and yielded
39.6% sentence error rate (SER). The system generated the
candidate list for the FDM. All features were trained on a
subset of 550k utterances, as described in [15].

The features used in these experiments are summarized in
Table XVI. The number of NN features depends on whether
utterance or word-level spotters are used. The letter 6-gram
is a language model feature. The number of featuresN was
chosen to keep experiments manageable. Table XVII shows
results obtained with the NN approach. The second column,
“Actual”, reports the error rate on the utterances for whichthe
reference transcript was found in then-best list. In the third
column, “Total”, the full test set was considered includingall
utterances. The first line corresponds to the baseline errorrate,
which can be obtained by just incorporating feature in line 4
of Table XVI. To this, we added the NN features and other
features from Table XVI. We observe a reduction of roughly
4% in error rate from the HMM baseline.

C. Multi-phone unit experiments

To explore the use of word and sub-word units, we now
turn to the use of multi-phone units. We would like to know
whether units extracted in Section IV are a good discrete
summarization of the audio for the purpose of recognition
(Q2).

1) Recognition using units:First, we would like to know
whether features based on the hierachical unit-word-hypothesis
decomposition in Eq (4) and Eq (5) is comparable with the
state-of-the-art HMM. If units contain sufficient information
and if our model is reasonable, one would expect results
comparable with HMM.

To determine this, we use a setup similar to [16]. There are
3M utterances of training data, divided into two sets: one for
feature training (hyper-parameters), and one for model training
(lambda parameters). Note that, given Figure 1, we would
need a 100M hypothesis space to achieve an oracle rate of
80%. In our implementation, that exceeded memory capacity.
Instead, we performed a set of experiments with the 1000 most
common businesses only. It would be inappropriate to generate
n-bests from the HMM system, since they introduce a bias.
The search over hypotheses was done by enumerating those
hypotheses with appreciable probability according to Eq (5).

Length (A) Length (B) Exact Empirical
1. Associative features 12.72 12.74 12.32 12.24
2. + Terminal S 11.74 11.80 12.13 12.02
3. + Transductive 9.52 9.86 9.95 9.98

TABLE XVIII
ERROR RATES WITH DIFFERENT UNIT SELECTION TYPES AS FEATURES

CLASSES ARE ADDED TO THE SYSTEM. TOP-1000TEST SET. A
STATE-OF-THE-ART HMM SYSTEM ACHIEVES13.4%.

For comparison, a state-of-the-art HMM system on this task
would yield 13.4% sentence error rate (SER).

Results are shown on Table XVIII. We will detail each line
later, but we can already gather that the FDM, starting from
unit decoding graphs, can produce results that outperform the
HMM baseline.

2) Effect of the error model (Q3):In the same table, the first
line shows results obtained from a system trained on features
described in Table III. We can see that the exact MMI criterion
of Section IV is a good proxy for recognition by association –
the presence of MMI units is a good indicator for the presence
of words. In line 2, we add a special kind of feature: it triggers
when a given unit is seen as the last unit chronologically (for
Ψ(X)), and if hypothesized text ends in an ‘s’ (forΦ(h)). Note
that, after combination with this feature, Length(A) features
now outperform more exact MMI computation features. The
MMI criterion optimizes for associative features only, andis
now sub-optimal for this configuration. There is no obvious
way to characterize why the Length-based multi-phone units
are more suited for this configuration. We defer to future
work the integration of the terminal S feature into the MMI
computation.

3) Adding pronunciation knowledge (Q4):In line 3, we
add the transductive features of Table V. In effect, we are
making use of causal information (in which order units appear
in the audio) and prior lexical knowledge in an explicit way.
Associative features do not have a concept of “missing” or
“extra” units, nor one of sequence. Note that the pronunciation
dictionary was, however, used during the design of the multi-
phone units. Our transductive features provide a very large
improvement, and overall, we achieve an error 28% relative
lower than the HMM system.

4) Improving the state-of-the-art HMM (Q5):The multi-
phone results so far have not used the output of the HMM
baseline system. Now, we test whether multi-phone units
provide extra information which can be used to complement
an HMM system. To that end, we run rescoring experiments in
which N-best lists generated by an HMM for the full test set
are re-ranked according to this model. This setup is analogous
to that used in the testing of template features, though with
an improved baseline. We have added the log-posterior from
the HMM baseline. These results are summarized in Table
XIX. We see over 2% absolute improvement on the full test
set, indicating that our associative and transductive features
convey information not present in the HMM system.

VII. C ONCLUSION

In this paper, we have described Flat Direct Models (FDMs).
These models are inherently discriminative because they are
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Baseline Length (A) Length (B) Exact Empirical
34.73 32.65 32.63 32.80 32.85

TABLE XIX
ERROR RATES FOR RESCORING THE FULL TEST SET. ALL FEATURES FROM

THE PREVIOUS TABLE ARE USED. THE HMM SYSTEM ACHIEVES34.73%.

conditioned on the input. More crucially, the models do away
with the strict requirements of Markovian causality present in
HMMs. They are best suited for speech recognition tasks with
short sentences and a finite, if moderately large, inventory.
In an appropriate embodiment, FDMs are bounded between
HMM accuracy and nearest-neighbor accuracy, and depending
on amount of data available, the system designer may choose
which is the best middle ground.

FDMs are implemented generically as log-linear models,
which allow arbitrary features to be incorporated. A good
choice of features, therefore, is of supreme importance. We
have defined several classes of features. First, the HMM scores
can be inserted so as to guarantee HMM performance. Second,
with nearest-neighbor features based on DTW alignments, we
train optimal non-parametric models on a restricted number
of utterances, while retaining baseline accuracy on other
utterances. Third, features can be defined as a separable com-
bination of purely acoustic features (based on just the audio)
and purely linguistic features (based on just the hypothesized
words), for both ease of development and generalization.
Fourth, features may be associative when they rely on co-
occurrence of acoustics and linguistics, or transductive when
they are imparted by a transduction model from audio to
words. Most of the features used do not have an equivalent
HMM implementation.

An important contribution is the definition of intermedi-
ate symbols for representing the acoustics which are most
indicative of transcribed word sequence. Multi-phone units
are designed to maximize the mutual information between a
decoded unit sequence and a target word. Hence, they rely
on an error model which mimics errors during decoding. We
have experimented with two classes of error models: a length-
based error model, which stipulates that longer units are easier
to recognize accurately, and a more sophisticated model where
errors depend on the unit itself.

In our experiments, we have observed consistent error rate
reductions in the range of 2-4% in absolute terms, for both the
nearest-neighbor and the multi-phone features, on the voice
search for Bing Mobile task.
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