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Speech Recognition with Flat Direct Models

Patrick NguyenMember, IEEE Georg Heigold, and Geoffrey Zwei§enior Member, IEEE

Abstract—This article describes a novel direct modeling ap- Warping (DTW) techniques and coarse-to-fine approaches to
proach for speech recognition. We propose a log-linear modiag  speech recognition [7], [8].
framework based on using numerous features which each mea- Lastly, we are seeing commercial interest in Voice Search

sure some form of consistency between the underlying speech . - .
and an entire sequence of hypothesized words. Since the md)deappl'c""tlons [9], [10], [11], [12], [13]. By voice search this

relates the entire audio signal to a complete hypothesis wiout ~Paper, we mean the ability to look up business information
necessarily positing any inherent structure, we term this a such as phone numbers and addresses by voice. The voice

Flat Direct Model (FDM). In contrast to a conventional HMM  search applications are distinct in their characteristiosn
approach, no Markov assumptions are used, and the model is 00 36 traditional large vocabulary continuous speech neieog

necessarily sequential. We demonstrate the use of featurbased .. ’ .
on both template-matching distances, and the acoustic detgon tion (LVCSR) tasks, such as dictation or human to human

of multi-phone units which are selected so as to have maximal Phone conversations. In particular, the distribution aueput
mutual information with respect to word labels. Further, we solve  strings is heavily weighted towards the most common reguest

the key problem of how to define features which can generalize |n a dictation setting, for instance, in a typical Wall Stree
to unseen word sequences. In the proposed model, template-jo,,ng| (WSJ) sentence, there are 17 words drawn from a
based features improve sentence error rate by 3% absolute ev o .
the baseline, while multi-phone based features improve by % quality-filtered 64k vocabulary. Notionally, _the outpgtasp_i
absolute. would be 64000'” = 227, In such a setting, considering
each hypothesis individually during search is computatilyn
prohibitive. In the \Voice Search application, however, we
see a different behavior. Figure 1 shows that the empirical
mass captured by events considered, drawing from a trigram
. INTRODUCTION language modelwithout looking at any audioNote that we
ENERATIVE Hidden Markov Models (HMMs) stand can capture a large share of the probability mass with just a
at the heart of all large vocabulary state-of-the-aféw thousands of entries — and improving on those queries
speech recognition systems today. With current adaptation will help disproportionately to their number. Further, thare
discriminative training techniques, the approach is e&fiti only about 30M businesses in the United States, and picking
effective, generalizes well, and is eminently practicdl [2], the correct one is easier than solving the ASR task. Theefor
[3]. Nevertheless, several concerns - some new and some loing\Voice Search, since speech comes in short phrases which
standing - indicate that it might be worthwhile to exploreyre typically two or three words long, it is natural to questi
alternative methodologies. The first concern is the use ofti&e judiciousness of treating the problem as a degenerate ca
frame-level Markov property. The simplicity afforded byigh of LVCSR.
property is a key source of computational and mathematicalin this paper, we definé-lat Direct Models (FDMs) to
tractability, but it is mainly an engineering expedienthexr address these concerns. These models have two key charac-
than being desirable from a scientific viewpoint. Over theristics. First, they ardirect in the sense defined by [14] in
years, articulate criticism has been leveled at this ptypethat they model the posterior distribution of the desiretpat
from speech sciencee(@. [4]), and we have empirical evi- (a sequence of words), conditioned on the input audio, rathe
dence [5], [6] that long-span dependencies may be captutadn having a generative or joint model generating audimfro
at the acoustic level and profitably fed back in the featueg sequence of desired textual representation and flipping it
vectors. backwards with Bayes rule during recognition. In other veprd
The second reason for exploring alternative methods is thaey areconditional models: the probability of an output is
the generalization capabilities we see with HMMs come frogbnditioned on given input audio. In practice, our FDMs are
the massive use of parameter tying. As more data becofpg-linear models of a feature vector defined as a function of
available, it is reasonable to question how far these modeig whole audio sequence and the output hypothesis.
can be extended with a combination of whole-word models, Second, and most importantly, FDMs dtat. That is, the
ever larger decision trees, and Gaussian mixtures. In @smtrmodel is defined at the utterance level, and may or may
Nearest Neighbor (NN) classifiers, which grow proportibnal not make reference to lower level structure, such as word or
with the size of the training data, can significantly outperf phoneme ordering. In our experiments, we use both strutture
models with fixed and limited number of parameters whesnd unstructured features. In the Voice Search applicagion
data abound. Thus, as more data have become availabléntfex may be associated to each of the 30M businesses in the
recent years, there has been a resurgence of Dynamic Tigiited States, and the goal is to guess which is the righinde
_ _ _ In practice, for operational purposes, the real intent efuker
P. Nguyen and G. Zweig are with Microsoft Research . . .
{panguyen,gzwelg@microsoft.com is unobservable, and we approximate it by a text transonpti
G. Heigold is with RWTH Aachen University Nevertheless, there no presumption of an inherent notion of

Index Terms—speech recognition, direct model, maximum
mutual information, log-linear model, features.
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to solve the feature generalization problem, we develop the
notion of decomposable features that consist of the cotipmc

of a purely acoustic part and a purely linguistic part, and
additionally the use of associative and transductive featu

The remainder of this paper describes the flat direct model-
ing framework in detail. We draw together material presénte
in [15], [16], and present new error models for use in the
computation of MMI multi-phone units [16], as well as an
efficient exact method for computing the mutual information
between candidate phoneme sequences and words. The paper
further presents new comparative results with these variou
techniques.

The remainder is organized as follows. Section Il presents
the functional form of the FDM. Section Ill describes the
classes of features we use, and in particular how these solve
the generalization problem whereinflat model can never-
Fig. 1. In-grammar rates on the Voice Search task for diffegzes of theless be trained with Ohe set of words or IIStI_ngS’ a_nd then
hypothesis space. For hypotheses generated by the lanquzd, we drew Successfully used even with unseen words and listingsidgect
the most likely sequences in order. For the query logs, we diemples in |V describes a new class of acoustic detectors - MMI Multi-
chronological order. phones - for use with our models. These units have been
designed to provide a great deal of information about the
words, while simultaneously being robust to expected datous

words, causal order among them, or local contiguous statist modeling errors. Section V discusses potential limits wiith

dependency required in the approach, much less that Woﬂpsproach. In Section VI, we present a suite of experiments

need to be constructed from subword units such as triphon%\@luat'ng our model and features, followed in Section Wl b

Despite this generality, FDMs have the nice property thg?ncludlng remarks.

by adding HMM-based features such as HMM acoustic and
language model scores, the FDM is always guaranteed to II. MODEL: EUNCTIONAL FORM
perform no worse than the HMM system on average - this
is an important feature which is not always shared by novel The Flat Direct Model is implemented as a log-linear model.
non-HMM approaches. In practice, this means that the modglve receive a sequence of audig and denote desired output
can make use of new embodiments of information without ti{euch as a the identity of a business) lpyour model is:
need for painstakingly deriving an alternative architeetinat ’
is competitive with HMMs from scratch. p(AX) = =P N X)] (1)

In contrast with HMMs, since the models do not construct >onexp [N f (R, X))
words by concatenating subword units, they are a natu
fit for embedding long-span phenomena. In fact, as outlin
below, the order of words is considered only if convenien
and to the extent required. We can even consider complet

lobal features - for instance, arbitrary duration disttibns : o
g y does not have the notion of the sequence: it is informed by

for specific words. o .
P sequential information only through the feature vectore Th

This paper makes _several contr_|but|ons. First, we defng cial question of what features to define will be explomed i
and describe the notion of Flat Direct Models. The mod e next section

quality is determined by the features which are used, and our . our experiments, the FDM is trained with a corpus

second contribution is to propose two main types of feature T . . i
template-based, and detector-based. In the templatdbq(%ejl;hfgjlid[llg]t_erancesht’Xt}t—l with a regularized log
S :

approach, we show that we can successfully add templa
features to an HMM baseline. In the detector-based approach J o= Zlogp(htht) — o2 /2. )
t
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ﬁ%e weight vector\ defines the model parameters, and the

eature vectorf(h, X) is a function of both the audio and
e output. Unlike Maximum-Entropy Markov Models [14] or
fdden Conditional Random Fields [17], this modefleg and

we solve two key problems: what acoustic detectors to use,

and how to define features that generalize to word sequences

which are unseen in the training data. To solve the acousiibe prior weighto—2 ranged from103 to 107. Its value
processing problem, we propose the use of features basexs set by optimizing the error rate on a development set,
on the detection of discriminatively determined multi-peo searching among values which were integral powers of ten.
units. These units are determined by computing the mutibdel weights were estimated using RProp [19], initialized
information between phonetic subsequences that occurein thith A\ = 0, and run for exactly 40 iterations, which was
lexicon, and the word labels. Based on this criterion, detec sufficient to observe convergence jnand error rate on the
are created for a subset of highly informative units. Thedgvelopment set.
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IIl. CLASSES OF FEATURES S(cftlj)ntainsfood f\f)((ij(%as been spoke \{vg)}ﬁa);))ott;(h)ql()()
As can be seen from Eq (1), it is possible to define arbitrary TABLE |
feature functiongf(h, X), for instance, the consistency of the WORD-SPOTTER AS A DECOMPOSABLE FEATURE
pitch contour with the putative pronunciation of a business
name. In this paper, however, we explore a restricted subset
possible features classes of which we now provide a taxonomy Attributes (word spotiers)
The features of Sections IlI-A, 11I-B, 1I-C first appeared i {chinese, food, mexican, restaurhath
[15], while those of Section IlI-D first appeared in [16]. Bed Seen events | Unseen event covered by word spotters
proceeding, we note that the featuyés, X ) may make use of Wil f:)%sdta”ram‘ Wil r?;guram

different representations of the audia For example, MFCCs
may be used, or a sequence of detected subword units SUCh 88 ;s rraTioN OF GENERAL
phones may be substituted for the raw cepstra. In either, case

the representation of the audio is not in itself a feature. As

we shall see, the acoustic information must be related to the

linguistic hypothesisi before becoming a featur&h, X) in
our model.

TABLE Il
IZATION ISSUE USING WORD SPOTTERS

important. To get this generalization, one of the techrsque
we have developed is that of decomposable features. These
features are of the form
A. HMM Baseline features

As noted in the introduction, tp guarantee baseline perfor- F(h, X) = ®(h)W(X). 3)
mance, we can add the acoustic score and language model
score from the HMM system. As noted in [17], the Hidden
Conditional Random Field (HCRF) model takes on the logthe ¥(X) is called theacousticcomponent, and thé(h) is
linear form, and in that case our models can coincide. A@lled thelinguistic component. A canonical example consists
HMM decoding can produce thetop most likely hypotheses, of the product of two binary features: for example, an adoust
called n-best list. This forms an ordered list, in which theletector assessing the presence of a sibilant at the ene of th
position of a hypothesis is called its rank. By using Baye#terance for?(X), and the presence of the letter 's’ at the end
rule, we can also find the posterior probability of each hyf the business name fdr(h). Another example is illustrated
pothesis, just called posterior, defined as the probalmifitie in Table I, for a class of features we refer to as word spotters
hypothesis given the audio, as opposed to the likelihood fsatures that measure the congruence between a word which
the audio given that the hypothesis was meant, which is tH€ expect to see based on the hypothesis, and an acoustic
raw acoustic score from the HMM. In practice’ we use the |o€.etection of that word. The acoustic detection may be maale vi
posterior of the HMM instead of the raw scores, or the rank §f¢ DTW based approach just described, or with a parametric
the hypothesis in the HMM-generatedbest list. These have Model.
a smaller dynamic range than acoustic and language modeThe way we achieve generalization is by making either
scores, are more comparable to binary values, and are ea$ieK) or ®(h) coarse. At the fine-grained extreme, one may
to regularize. use aV¥(h) which triggers for a single business identity. For
instance, we may decide to activate features onlWalmart
is considered as a hypothesis. At the other (coarse) extreme

. ) .__we may decide to have a featurehifcontains two words or
Nearest-neighbor features guarantee optimal performancgyqq _ \hich fires for about half of utterances. Similarly; fo

thg presence of infinite amounts of data. They relate th@smsacoustics, a fine-grained featubé X ) might be defined to fire
training exemplafh,, X;) to a test utteranc&’. For sequence

only whenX is deemed similar enough to a given example of

icnput_, Dyrlga}rn\}\i/chimg ¥Varping (DLW) dbefines th?_r disftanggvalmartin the training data, or (coarsely) when the length of
Enctlon. I ased features tﬁnd tr:) 3” \(/jery € ectrl:/e % is below 3 seconds. Table Il illustrates the generalization
the mo_st_ popular queries (SO'Ca_e_ ead” data), as thay %Rat is possibleg.g.with word-spotters. Ideally, to classify the
model idiosyncrasies in pronunciation exactly. Howeveeyt g\ 1 sinesses in our database, we need 25 features which

do not gelner_allze weII.. ) hni leul have perfect mutual information, each splitting the space i
Dynamic Time Warping is a common technique to calculajg i 5 providing one bit of information. Purely linguisti

the distance between two real-valued sequences of diﬁer?éhtures i.e., features for which¥(X) is set to a constant

length, X, and Xy, and the warped distance can be comsy, 5156 pe defined. They are language model features, and
puted efficiently [15], [8]. The complexity of this algorithis were used successfully in [20]

O X - 1X , i.e,, it is basically quadratic in the length ] ) .
([Xept] - [ Xnyp) ya g To conclude this section, we would like to note that de-

of the sequences. composable features are useful not just for their geneatidia
ability, but also because it allows the feature engineehitakt
C. Decomposable features of acoustic and linguistic features in isolation. This ako
We now turn to features which are able to generalize to uresearchers to focus on their expertise, and then to link the
seen words and listings. In a practical system, this iscadiff work together in a simple and convenient way.

B. Nearest Neighbor Features with Dynamic Time Warping
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D. Extracting features from a graph of multi-phone units [ Name | 9(X) [ o) [N
) ) uw ~(ulz)p(w|u) 5(weh) [ 10°
The example of word-spotters from the previous section word | > ~(ulz)p(wlu) | 6(w € ) | 30k
utilized word-detectors fof(X). Unfortunately, there are a hyp f(h, X) = log p(h]X) 1
very large number of words, and it may not be feasible to TABLE Il

train a detector for each. Further, if template-based nuktho  DEFINITION OF ASSOCIATIVE FEATURES OF EACH TYPEN IS THE
. . . TYPICAL NUMBER OF FEATURES DEFINED FOR EACH TYPE

are used, we are faced with the generalization problem that Reference [ Recognized &5 |

test words may be unseen in the training data. Therefore, we

. . . . Marriott Courtyard | Courtyard Marriott
are driven to explore the use of subword units. The ideabunit Harley-Davidson | Motorcycles
will carry a large amount of information about the words, CB;OfdtffS < Club ng?tefES tB?tOKS t
and (necessarily) be reliably detected; Section IV willafig entemens tu U =nterfainmen

in detail how we select these units. In the remainder of this TABLE IV

. . . . RECOGNITION ERRORS WITH ASSOCIATIVE FEATURES
section, we will assume these detector units as input, and
describe the features which are extracted.

As input, we represent the audio with Mel Frequenoyith a deterministic mapping of to words:

Cepstral Coefficients (MFCCs) and then turn it into a graph
of multi-phone units. Examples of these units are faax_n/ h _ p(h) 5 h 6

. : : : p(hlw) = (w € h), (6)
(as in Aarons) and /thy/ (as in Abernshy). The multi-phone p(w)
units{u} are then associated with wordle }, for example via
a lexicon specifying the linkage, or simply from co-occuce
statistics. In effect, we break up the statistical depengé&om
audio inputX to outputh as the Markov chain:

andd(-) is the indicator function. Note that andw here are
individual units and words - not sequences, and in contrast
with a standard HMMp(w|u) is not determined by a pronun-
ciation lexicon: rather, it is a co-occurrence mod€ho|u) is

X = {u} = {w} — h. (4) the ML estimate derived from decoding a held out portion of
the training set, and counting how oftenand w co-occur

at the utterance levep(w) andp(h) are similarly computed

' from this held out data. We usg(-| X)) to denote a posterior

ar_ld in turn they are sufficient to decidav}, then hf Al count. The classes of associative and transductive featuee
this stage, however, we do not imply that large units are d . Jofined

concatenation of small units or acoustic frames, merely tha L N .
y 1) Associative featuresThe definition of associative fea-

larger units depend on smaller units, for example through cto . ted in Table 1. In the third col ¢ that
occurrence This is in contrast with HMMs, which follow atulrjelS IS ?\Fesen € md a te . .I n E |rf fcotumn of tha
similar hierarchical construction, in that: able, asiy, we record a typical number of teatures in our

. _ _ task. The vocabulary size of 30k defines how many “word”
* HMM_S typically use triphones afu}, which have a short features we have. O)rlw average, each word is seen ir¥the same
span, . - utterance with 33 distinct units, so there 8&x 30k = 10°
» the p_rqngnmatlon_ dictionary - performs  a N€AM\ features. These features simply associate the presénce o
dete_rmlm_stlc mapping fronv{u-} to {w}; and . .. a multi-phone in the decoded unit graph with a given output
» the links in the Markov_Chaln_must t_)e l\/_larkowan_wnhor word. The features are “Pavlovian”: given a certain raulti
respect o the und_erlymg _ur_uts, which is the prlmar}Shone stimulus, a response in the form of a certain output can
sogrc_e Of_ computational effu_:@ncy. ~ be trained. They rely entirely on co-locations of units with
We distinguish two ways of defining features, both of whicRypected output words in the training data. They are similar
are violated the Markovian property of HMMs. Our featureg, spirit to Episodic Memory models [21], albeit starting
are based on Eq (4), and make reference to a lattice of decofiggh giscrete symbols rather than acoustics. Associatee f
multi-phone unitsu. This lattice is created by decoding anres also bear a relationship to Bellegarda’s Latent S&man
utterance with multi-phone rather than word-level unitorf Analysis [22], which is based on co-occurrences of words in
this lattice and statistics derived from it, we extract twajon  §ocuments. The generative model of Eq (5) is added as a
kinds of features: associative, and transductive. feature f(h, X) = log p(h|X).
Associative features provide indicators of what words migh_ Associative features are global in nature: it is not neggssa

be expected on the basis of the units that are present, iz 5 ynit representing a certain sound is contained witrén

respective of ordering constraints. Transductive featthen  iciionary pronunciation of a word for them to be considered
incorporate ordering information. Both of these featuresken together. They also do not consider ordering constraints.

use of quap_tities defined by.a simple model for determinin.g In early stages of development, we noticed that this prop-

the probe_lt_nllty of_a hypothesis. The que_l assumes tha_sunétrty causes some interesting mis-recognitions, as shown in

are conditionally mde_pendent g_lve)&i, distributed according Table IV. For instance, many of our users in the training set

o Cr? unts dopservec;j In dth_e dlatt|ced. FL:rthe_r, We assume ﬂ%@ked forHarley-Davidson Motorcycle®uring test, units rep-

ga(tjc W?jr 'IS pfro #Ce n .eper? inty,Tgt;:ven ‘3 llm't agal"@'senting the sound “Harley®(g.hh_aa.r) provided acoustic

Independently of other units in the bag. The model Is: evidence for botttHarley-DavidsopandMotorcycles but since
p(h|X) = Zp(uIX)p(wlu)p(h|w)7 (5) thhe Motorcycleslanguage model was stronger, the latter was

u,w chosen.

In other words, we assume the information providedXbys
entirely contained in{u} for the purpose of finding words



IEEE J-STSP SPECIAL ISSUE ON STATISTICAL LEARNING METHODSOR SPEECH AND LANGUAGE PROCESSING 5

a) Pronunciation graph for hypothesis tomato: [ Decoded units [ axpliy_tsaxbay |
t ax m ah t ow Hypothesis Pizza Hut
[ ] o o o o Associative features| (Pizza, piy_t_s ax)
(Hut, p_iy_t_s ax)
ey Transductive featureg insert(ax)
match(piy_t_s ax)
b) Decoded unit graph from audio: _ substitute(bay)
Hypothesis Best Buy
t oh m,0.3 ey t Associative features | (Best, b ay)
@ o @ o (Buy, b_ay)
(Buy, ax)
n0.7 Transductive featureg insert(ax)
. . . . . match(b a
¢) Alignment, with minimum edit path in bold: substit(ute(yéiy_t_s_ax)
match(t) sub(oh,ax) match(m) sub(ey,ah) match(t) del(ow) TABLE VI
Y WY YWY WY S o AN EXAMPLE OF ASSOCIATIVE AND TRANSDUCTIVE FEATURES FOR TWO

HYPOTHESES(Pizza HUtaND Best Buy. THE DECODED UNIT GRAPH WAS
A SINGLE PATH.

~ -

sIJB(n,m)match(ey)

d) Features generated from the shortest path:
corr(t)  sub(oh) .3 x corr(m) corr(t) del(ow) ) )
corr(ey) tracted features. The decoded unit graph has three unks, “a
p_iy_t_s ax b ay”. We show two possible hypotheses, Pizza
Hut and Best Buy. The associative features associate uitits w

Fig. 2. Transductive features. The posterior for umitsandn are 0.3 and words, as seen in the training set. Note that associativertss

0.7 respectively. Edit operations along the minimum edih zae recorded as

transductive features. will only be present for word-unit combinations seen in the
training data. In this example, we assume “pizza” anda{ly
[Name] f(h, X) [N ] have not been seen together in the training data. Likewise,
ins ~(w]X) - 5(u is an insertion in hy| 5K because “ay” was often wrongly decoded in as “ax”, we have
del | d(u is a deletion from h) Sk an associative feature for (Buy, ax). This mechanism camlea
sub ~v(u|X) - §(u is substituted in h) | 5k bit iati if qi h | Thes
cor T (u[X) - 3(u Is matched i h) o arbitrary pronunciations, if given enough examples. Thagr

TABLE v ductive features, informed by the pronunciation dictignaan
TRANSDUCTIVE(LEVENSHTEIN) FEATURES ARE EXTRACTED FROM Indlcate’ for InStance' that “ax” is an extraneous souncbitn b

LEVENSHTEIN ALIGNMENT. N IS THE TYPICAL FEATURE COUNT OF EACH CasSes.
TYPE.

IV. MMI M ULTI-PHONEDETECTORS

2) Transductive featuresiVith transductive features, we as- The features which we have just described have been based
sume the additional knowledge of a pronunciation dictignargn the detection of subword units in the audio. Now, in
Thus, we have a prejudice about which units should appeariifis section, we present a method of identifying a set of
the audio and in which order, to be consistent with an outplfghly informative multi-phone units to use as the basis for
hypothesish. The process for computing transductive featurgfiose detectors. Our units are similar to syllables [23},ibu
is illustrated in Figure 2. First, we create a pronunciageaph contrast to previous work [24], [25], they are identifiedngsi
by enumerating the possible hypothesis pronunciations inyajiscriminative rather than Maximum Likelihood criterion
lattice structure. We then generate an alignment graphiwhic \ye begin by noting that the mutual information between
is the composition of the pronunciation graph with the detbd phone sequences and words is a function both of the dictionar
unit graph, with posterior weights removed. Then, we compUronunciation of words, and of our ability to detect the
the path with minimum edit distance in this alignment grapiyhone sequences. From the dictionary point of view, a phone
If multiple paths achieve the same minimum edit distancgequence occurring in half the words is ideal (providing one
we pick the one associated with units decoded with maxj; of information), while one occurring in every word (or no
mum posterior. Then, transductive features are extracfed RQord) is uninformative. From the detection point of view, a
recording edit events following that path. When encounteri sequence which cannot be detected with any reliabilityss al
a substitution event, we ignore the identity of the hypathes pinformative, even if it would be otherwise ideal. Key to
pronunciation unit —in the figure, sub(oh,ax) becomes dub(0computing mutual information is therefore the way in which
The feature value is set to the posterior of the arc in thge represent our ability to detect units, and this section is
decoded input graph. organized around different methods for doing so. The cancep

Transductive features are enumerated in Table V. Each esfitMMI multi-phone units was first introduced by us in [16],
operation (ins, del, sub, corr) is defined once per uhif: and after recapitulating it here, we present new error nidel
the feature count, is equal the number of units. Transdeicti8ections IV-D and IV-E, along with a new method for exactly
features are not decomposable, but they do generalize weld efficiently computing the mutual information in Section
since they are defined at the sub-word unit level. IV-F. New comparisons of these methods are presented later

In Table VI, we provide an example utterance and exa this section and in the experimental results.
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First, we define the mutual information between phone saevantage of the fact that(u = 1jw™) = 0,YVw™ € W~
quences and words, and analyze it in the errorless case, TH##l P(u = 0lw™) = 0, Vw* € W, to simplify:
we consider the use of two different detection error models: 5, w)

one in which the probability of an error is a function of the =~ S P(w)log P(u=1) — 3" P(w™) log P(u = 0)
length of a unit (longer units being more reliably detectedg wt wm

a much more detailed one in which the probability of an error =—logPlu=1)> Pw") —log P(u=0)>_ P(w")

is empirically derived as a function of the unit identityells wt w™

Both of these error models permit highly efficient routines f = —IOg(; P(w™)) ;P(“ﬁ) —log(}_ P(w )} P(w).

computing the mutual information between phone sequences
and words. The runtime of the first algorithm is proportionaln one pass over the data, we can compule, P(w™) and
to the size of the dictionary; the runtime of the second i§,- P(w™)=1-3_ . P(w") for any unitu, and in fact
proportional to the size of the dictionary plus the size ot sby examining the words one-by-one and updating counts for
of phone decodings used to estimate the error model. Bothadifthe phoneme sub-sequences present, we can accumeate th
these result in a mutual information quantity for each phorseim foreveryunit .
sequence that occurs in the dictionary. Finally, we show how
the mutual mf_ormatlon can be computed exgctly, using afseté)_ The Effect of Errors
phone decodings to encapsulate the detection uncert@imy. . . . .

ti f this algorithm is much longer - provortional t@th In reality, our ability to detect unit Eresence is imperfect
runtime o 9 geér - prop An otherwise highly informative unit that cannot reliablg b

vocabulary size times the number of distinct phone sequencietected is in fact not so useful. Considering errors, four
that occur in the set of phone decodings. However, we pres€gtcomes are possible when we attempt to detect whether a

) . . . . unit is present: a correct accept, a false reject, a falsepacc
an algorithm that achieves this runtime using olf/) RAM, a4 a gorrect reject. Taking th[|)s into accoant: e

where U is the number of extracted units, thus making the
exact computation feasible. Experimental results areeptesl /(U3 W)

for these various cases in Section VI. = P(w)P(u = 1|w)log 713;::1';;)
+ Z P(w)P(u = 0Jw) log %
A. Definition v
i - ] = > Ph)Pu=1w)l Plu=1w?) 1‘wﬂcorrect accept
Consider a multi-phone unit. We usel = {0, 1} to denote = W= Al T =) P
the presence or absence of the multi-phone unitve define whewt
a second random variabl8/, which can take on the identity S PP = 0w log Plu=0fw?) reject
of a word. The mutual information between the presence of a il £ Pu=0)
unit « and the words is then given by: wrew -
Plu = a,w) + > P(w )P(u=1lw)log %false accept
MI(U,W) = P(u = a,w)log ——————"— wTEWT
( ) a:%;l} zw: ( o P(u=a)P(w) - P(u=0|w™)
Plu = 1]w) + > P(w )P(u=0lw)log Wcorrect reject
= Z P(w)p(u = 1|w) log m wTEWT -
WPl = 0l T £ = 0lw) When we have an error modél(u = {0, 1}|Jw{™~}) that
* ;P( VP =Olw)log P(u=0) ' is only a function of the unit, this simplifies further because

the sum can be factored out:

We now consider several procedures for computing the MI(U:W)
mutual information between phone sequences and words. As = (3. P(wh))Plu=1]w")log P(P“;i“’ﬁ)
inputs, we will take a dictionary that indicates the phomneti wt (=
spelling for each word, along with the unigram counts forreac

correct accept

P(u = 0|w™)

+ - P(wh)P(u=0lw")log — false reject
word. Two of the methods further require an unconstrained wt P(u=0)
phonetic de_cc_>d|ng of some developmgnt data, from which to (3 P ) P(u= 1w ) log Plu=1lw?) o accept
extract statistics. We will assume at first that each word has oz Plu=1)
one pronunciation. The output will be the mutual informatio _ _ P(u=0lw") .
. . . + P P(u=0 log ——8M = t t
between each phonetic sequence in the lexicon, and the word (wz, (w9 Plu = Do) log Plu=0) e

labels. The phonetic sequences are arbitrary sub-word unit

(e.g.“aa k iy” from Akimoto) that may span anything from a_ This can be computed efficiently for each candidate multi-
sinale bhone to an entire word phone unit in the data in two steps. In the first, a single pass
ingle p Ire word. over the data is made, and we compute the same quantities that
were used in the errorless case. In the second, each candidat
unit v is examined, and the mutual information computed
B. The Errorless Case according to the above formula. The necessary quantites ar

We proceed in the errorless case by breaking the set rg?dily available:
f . . . i o Y tews Pwt) and 37, .y, P(w™) are computed in the
Words. up, ”?to those in Whl(ih‘ Is present W ) and those initial %ass over the data for egahas in the errorless case.
in which it is not presenti ). In the remainder, the word | p(y, = 1jw~) = f(u), wheref() is a function that estimates the false
w* will be always understood to be summed owert, and positive probability
similarly w~ will always drawn fromW~—. We may take o Pu=0w")=1-P(u=1jw")
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[ Unit: Length Model (A) | MI(U;W) ]| Unit: Length Model (B) | MI(U; W) ]| Unit: Empirical Model | MI(U; W) ]| Unit: Exact | MI(U; W) |

ax_n 0.026 bits ax 0.29 r 0.41 r 0.44
k_ael_ax f_aor_ny ax [ 0.023 r 0.29 n 0.32 ax 0.38
ael_ax f_aor_ny_ax 0.022 n 0.27 ax 0.21 n 0.37
k_ael_axf aor ny 0.022 S 0.25 I 0.28 I 0.32
I_ax f_ao r_n_y_ax 0.022 t 0.25 S 0.28 s 0.32
TABLE VI
THE MOST INFORMATIVE MULTI-PHONE UNITS FOR THE DIFFERENT METHODS OF ESTIMATING MUTUALNFORMATION. AN “_" IS USED BETWEEN THE
PHONES BELONGING TO A SINGLE UNIT
o P(u=0lwt) = g(u), whereg() is a function that estimates the false [ Unit | MIU; W_) |
negative probability ax.n 0.026 bits
o Plu=1lwt)=1- P(u=0wt) k_ael_ax f_ao r_n_y_ax 0.023
o Plu=1)=Plu=1)Y+ Pw™) +Pu=1)3,- Pw") ax.r 0.021
e Plu=0)=Pu=0)> 4+ Plwh)+Plu=0)3,- Plw") st 0.018
ao r 0.017

Note that in the last two bullets we have taken advantageeof th
fact thatp(u = ]?|w{+77}) = P(u = k)’Vk € {O’ 1}_’w+ € THE MOST INFORMATIVE MULTI-PHONE UNITS AFTER UNIT SELECTION
WT,w™ € W is only a function ofu to move this factor usinG THE LENGTH(A) BASED ERROR MODEL FOR OTHER MODELS THE
outside the summations. LISTS ARE UNCHANGED.

The approach outlined above is straightforward to im-
plement with a single pronunciation for each word. When . o
multiple pronunciations are present, the quantities thattrhe Urther assume that false positives are equally distriboier
computed do not factor neatly. However, by using the mutuie SPace of possible units40 units in the case of phones,

information between words and pronunciation variants, of@d around.00,000 in the case of words. We may then solve

obtains a useful surrogate. Alternatively, one may deteemithe eguations: 0.3

TABLE VI

the unit set simply by using the most common pronunciations. aexp(—b) = —
X : . 40
In the experiments below, we used the first approach. With
. . . . 0.45
the exact mutual information computation of Section I1V-B, n aexp(—6b) = 100000

approximations are made.
This results ina = 0.03,b = 1.5. Finally, we note that the

false negative rate will just vary betwe®s and 0.45, and
D. Length-Based Error Model we may use the average as a reasonable value. In subsequent
The simplest of our approaches uses a length-based etediles, we will present results for both settings of the nhode
model to implementf() and g(). In this model, we capture parameters, and compare with more exact computation of the
the intuition that the likelihood of hallucinating a specifi mutual information.
unit will fall off rapidly as the length of the unit increases
The number of distinct units with a given length increasds. Empirical Error Model

exponentially with the length, and so it is reasonable tomss  The simple length-based error model above may miss im-
that the probability of falsely accepting a specific one wilhortant phenomena, such as the fact that detecting a plosive
be exponentially decreasing in the length of the units. ThiRe /t/ may be more difficult than detecting a vowel like /ah/
length-based model further captures the observation teat tro capture more detailed information like this, we have teve
probability of falsely rejecting word units is roughly cdast, oped an empirically derived error model. This model is based
regardless of length. We thus define: on doing an unconstrained phone decoding, and then using
e f(u) = P(u=1jw™) = ae~® wherel is the length of the time marks from a forced alignment of the transcription
the unit in phones, and a and b are constants. to extract the phones in the unconstrained decoding whieh ar
e g(u) = P(u=0lw") = ¢, a constant associated with each word. When the forced alignment is,done

We have experimented with two methods for setting th@ single lexical variant of each word is selected from among
constants. In the first, which we will call method A, we simplyhe pronunciations possible. Thus, we may associate with ea
usea = 1,b = 1, andc = 0.5. This overestimates the effectactual phonetic realization of a word from the unconstrdine
of errors, as it is unlikely that a single phone unit will bélecoding an expected phonetic realization from the forced
falsely detected with probabilityxp(—1) ~ 0.37. The second alignment. For any particular multi-phone unit, we can then
method, which we will call method B, follows a more carefufietermine if it was falsely accepted or falsely rejected. We
line of reasoning. Let us assume that the majority of ertuas t then use these empirically determined quantities for fhe

we would see in an edit distance computation are substitsitioand g() functions:

and that each is manifested by a false rejection of the correce f(u) = P(u = 1jw™);Yw~ € W~ (false accept)

unit, and a false acceptance of the incorrect one. For phonee g(u) = P(u = 0jw™);Vw™ € WT (false reject)

based recognition, where the unit lengthlisa 30% error This approach has the benefit of allowing for unit specific
rate is reasonable. At the word level, where the unit lenggrobabilities, with the drawback that we may obtain unigdéa

is about6 on average, we expect4% error rate. We will estimates for very infrequent units.
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[ Word | Unit Breakdown: Length (A)] Breakdown: Length (B) | Breakdown: Empirical | Breakdown: Exact |

Academia | aek_ax dliy m_y ax aek_ax diy m_y ax aek_ax diy m_iy ax aek_ax diy m_y ax

Academic | aek_ax deh mih_k aek ax deh mih_k aek ax deh mih_k aek ax deh mih_k

Academics| aek_ax deh mih k s | aek ax deh mih k s | aek ax deh mih ks | aek ax deh mih_k_s

Academies| ax k_ ae d_ax m_iy z ax k_ ae d_ax m_y z ax k_ae d_ax m_y z ax k aed_axm iy_z

Academy | ax k_ae d_ax m_iy ax_k_ae d_ax m_iy ax_k_ae d_ax_m_iy ax k_ae d_axm iy
TABLE IX

SEGMENTATION OF SEVERAL WORDS INTO MULTFPHONE UNITS.

F. Exact Mutual Information Computation [ Method [ Number of Units |
. . . . Length (A) 4358
_ To do the exact mutual information computation, we directly Cength (B) 7578
implement the definition: Empirical Error Model 4679
= Exact Ml 4601
MI(U; W) =3 P(w)p(u = 1|w)log Plu=1jw)
- P(u=1) TABLE X
P(u = 0|w) NUMBER OF UNITS AFTER UNIT SELECTION

+ Z P(w)P(u = 0|w) log

w

Pz
and exhaustively enumerafe(u = {0,1}|w) for all words

and units.
In common with the previous method, we use a set of uncoOte that the mutual information quantities listed depend o

strained phone decodings to represent our ability to ateiyra the error model used (an error model specifying completely
decode phone sequences. However, the computations mustasglom detection would result i mutual information), and
carefully organized. If we denote the vocabulary sizetby therefore the colun_ms are not expected to agree. In length
and the number of units by, in the exact computation, aModel A, the coefficients = 1,b = 1 have overestimated
runtime of O(VU) is inescapable. However, a much smalldihe probab|llty of obtaining false-positives with shortqpie
memory requirement of)(U7) is possible (we refer to RAM; Séquences, Wlth the_result_that these do not appear amt_mgstt
file storage to hold the data is taken as given). In fact, wel@P-> most informative units. Instead, much longer units ar
this not possible, the computation would be prohibitive thie Present for this length model. As can be seen, many of these
memory use. derive from the word “California” (our training data incled
First, we examine the set of decodings and collect a set @fy-state-zip requests), and from the point of view of ding
candidate multi-phone units, those that are shorter thavea g detectors, it would be inefficient to use such redundantsunit
length € 12 in our experiments), and those which occur 4iThe redundancy stems from the fact that while each unit has
least a certain number of times (10). The number of times eg@Harge amount of mutual information with the words, the
unit is seen is stored. We also tabulate the number of timg&nditional mutual information of one unit given another is

each word is seen. The mutual information is then computy¥-) While it is not apparent from the list of the top-5 units
as follows: this same issue arises with the other methods of estimating

. - . mutual information as well - the units involved just appear
1) Extract the phonetic realization of every word in th? . .
training data ower down on the list. Therefore, we are motivated to dgvelo

2) Store this in a file with two columns: the word in oné® procedure for removing redundancy from the list.
and the realization in the other. There is a line for each To do this, we proceed by defining a set of candidate units -

word occurrence. the top N = 10,000 most informative - and then partitioning
3) Sort the file on words. each dictionary word into the minimum number of candidate
4) Scan through the file sequentially, and for each wordimits. Any unit that is selected fewer than 50 times is then

realizations: thrown away. The most informative of the selected units are

a) Initialize P(u = 1|w) = 0 Vu (Note that since we Shown in Table VIIl. To get a sense of how the units are
examine the words sequentially, we knawand used, Table IX shows the segmentation of several words.
need only use a container the size|&.) This illustrates how words of modest frequency are typjcall

b) Examine each realization af and for each can- decomposed into syllable-like and single-phone unitslerab
didate sequence present in the realization, upd&¥@ows the number of units present after unit selection for

P(u = 1|w). the different methods. Table XI shows the segmentation of
c) After all realizations of the current word have beethe most common business requests, and illustrates the fact
scanned, for each unit; that very common words typically result in whole-word units

For the most common words, all methods produce the same

segmentation, with the exception of an unusual pronumciati

of “McDonald’s;” the variability here is shown in Table XITo

_ ) get a sense of the variability present in the segmentatioas,

G. Unit Selection have tabulated the fraction of identical units for the difet
Table VII shows the five most informative multi-phonemethods. This is illustrated in Table XlII. We see that thisre

units for our four methods of computing mutual informationa significant amount of similarity between the results.

o ComputeP(u = 0jw) as1 — P(u = 1|w).
« UpdateM1(U; W) according to Eq (7).
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[ Word | Unit Breakdown | | | Length (A) | Length (B) | Empirical | Exact |
Pizza p_iy_t s ax Length (A) | - 91% 77 68
Wal-Mart w_ao|l_m_ aar_t Length (B) - 78 72
McDonald’s | m_ih_k_d aan_ax | _d_z Empirical - 77

m_ax k d_aanax|l_dz
Best Buy behst b_ay
Starbucks staar b_ahks

TABLE XI
SEGMENTATION OF THE MOST COMMON REQUESTS INTO MULHPHONE
UNITS WITH THE EXACT MUTUAL INFORMATION COMPUTATION.

TABLE XIlI
FRACTION OF DERIVED UNITS IN COMMON BETWEEN METHODS

[ Method [ McDonalds 1 [ McDonald's 2 |B- Features
Length (A) mih kdaanaxldz | maxkdaanaxl dz In practice, the main limitations in HMMs which FDMs can
Length (B) mihkdaanax|dz | maxkdaanaxl dz |gargetare: frame-level Markov decisions, a nearly deteisni
Empirical Error | m_ih_k_d aan_ax| dz | maxk daanax| d_z fi iati dicti d state-tvi Each f
Exact M mih Kk daanaxl dz | maxk daanaxidz |tC Pronunciation dictionary, and state-tying. Each featiype

must be examined separately.
TABLE XIl . . ina‘Th f |
SEGMENTATION OF “M CDONALD’ S” INTO MULTI -PHONE UNITS ALL 1) Dynamic Time Warping.These features learn to map
METHODS GIVE THE SAME ANSWER FOR THE COMMON PRONUNCIATION —eXxample sequences of audio to a hypothesis. Like HMMs, they
THOUGH THERE IS VARIATION IN THE MORE UNUSUAL PRONUNCIATION  gnerate on a frame-by-frame basis and the final score is a
sum/product of frame similarity scores. There is no notibn o
H. Qualitative Analysis of Units state-tying or pronunciation dictionary. The main dravwksac

An ideal unit f h linf . dboi | re that they require large amounts of data to train, and are
n ideal unit from the mutual information standpoint wou omputationally expensive.

occur in exactly half the words. In fact, no unit occurs ngarl 2) Associative features:While they rely on HMM-

th's often, and Fhe units that come closest ?0 this |d¢al agﬁ‘énerated input, associative features make the feweshassu

single-phone units. In the absence of errors, single-phaite tions. From Eq (4), it is assumed that a hypothesis is contpose
would be best, fqllowed by two-phone units and so forth, 'Bf a bag of words, and that words are constructed from a bag
order of decreasing frequency. However, imperfect dEﬁE'Ct'of units from the entire audio sequence. These features tlo no

counteracts this: single phone units are more likely to MNCHse a pronunciation dictionary. They cannot distinguistdwvo
false-accepts and therefore they are penalized by the muwﬁjer or word boundaries between units
information criterion. In the final set of units, we see both Associative features work globally at the utterance level.

son;]e _vefry short umtsdsulch as ‘axn, WIh'Ch are presehnt dkﬁ seen on Table IV, it is possible to suggest words which
to their frequency, and also some very long ones such aspke not peen realized acoustically. In the case of business

ae laxfaornyax’ which are present due to their asSUMElarch, it performs the function of correction, for ins&nc

detection reliability (and relative frequency). The netuié of ossibly suggesting “Fred Meyer” in lieu of an incorrect&gr

this process is a set of multi-scale units with which words ¢ eyers’

bellri?relgkenteda Trrl]elscaledvarlgs frorg shlng(;e pho_ne ;];uts t%) Transductive featuredJsing a pronunciation dictionary,
syllable-like and whole-word units, and the determinatin ,cqctive features exploit word and unit order infoliorat

the set of units to work with is made with a sliding scale thgj, perform matching. They are the closer to HMMs. They
uses mutual information to trade off frequency with detetti . <iqer multi-phone errors in isolation. In effect, thdipa

reliability. training of a context-free multi-phone edit model. In an
isolated word recognition context, a similar effect can be
V. LIMITATIONS obtained with HMMs by introducing many pronunciations

ariants, each penalized by edit operations which deviata f

In this section, we contrast differences with the HM . S .
o . L he closest canonical pronunciation. Therefore, in an HMM
approach and limitations in the system proposed in this pape

First, we look at the model itself. Then, we examine poténti|mplementat|on, they may be thought of as a tied model for

o X . Biscriminative lexicon training.
!'m'tat'onS.W'th the fgature_s we have ghosen. Finally, wivele The feature set should be considered in its entirety: the rol
into more issues which arise in practice.

of each feature is to add complementary information to the
other features. Therefore, a specific limitation of a patéc
A. Modeling feature will decrease its own effectiveness, but it could be

FDMs do not impose the frame-level Markov assumptionc.apturecj by another feature. In general, if phenomena may be

Their log-linear form implies that there exists a linearidem quantified independently, FDMs will suffer no loss.

boundary. More complex decision boundaries must be imple-

mented by adding more complex features. In practice, we hdve Practical considerations

a large number of features, and we do not envision this to beThree fundamental limitations arise from the configuration

the main problem. Regularization with a single prior weighih which the FDM was implemented.

further implies that feature scaling is important. 1) Task dependencdiMMs are based on a decomposition
In effect, the simple log-linear form of FDMs delegatef acoustics, language model (the channel model), anddexic

modeling assumptions to feature design. Very early on and aggressively, FDMs assume a single task. It
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Length(A) Length(B) Empirical Exact
- Estimates of phone and word  Phone decode Phone decode
error rates; Word length

Data required

Intermediate model| parametricf (), g() parametricf (), g() Edit distance tables -
Runtime ou+V) ou+V) ou+V) ouV)
TABLE XIV

COMPARISON OF ERROR MODELS IN TERMS OF IMPLEMENTATION

. . . . . . Nearest Neighbor experiments
is not possible to deploy FDMs trained in a given task, with Training set 550K UTierances
given vocabulary, to a new task. In an HMM system, one may Test set (Table XVII) 21k utterances
replace the language model and lexicon and keep the acoustit!MM baseline (SER) 39.6%
HMM 100-best oracle (SER) 21.6%
models. YT =
. . . ulti-Fnone experiments
2) Speaker adaptation and noise robustneBsyond using g ser IV Utterances
modified input HMM system, it is not immediately clear how | Test set (Table XIX) 8777 utterances
to perform speaker adaptation, or apply signal-level noise :mm Eggetl)inet (SEFT) - ig-g;ﬂa
. . -pest oracle .07
robustness techniques in FDMs. In our work, we asSUME roqi set (Taple xVill) 3623 utterances (top 1000 only)
features derived from multi-phone units and words. Thus, HMM baseline (SER) 13.4%
speaker adaptation, for instance, would be akin to lexicwh a HMM 100-best oracle (SER} 1%
language model adaptation, not acoustic adaptation. TABLE XV
3) Features are unrelatedHMMs follow a single con- CONFIGURATIONS USED IN THE EXPERIMENTS

sistent generative framework. By contrast, our features ar
conceptually unrelated to each other, even when they aaptur

similar phenomena. Therefore, advances in the generafion o . .
. . more accurately transcribed data. Table XV summarizes the
one feature may not automatically benefit other features.

training set and test set configurations used for experisnent
The nearest neighbor experiments were performed early on,
with the training and test data listed. For our later multepe
In our experiments, we try to elucidate several questiogxperiments, we used more training data and two test se¢s. Th
regarding the effectiveness of the approach, namely: first (full test) consists of 8777 business utterances ctaté
Q1. Can we improve on an HMM baseline with nearesin the week of May 16, 2008. The second is a subset of 3623
neighbor units, which only improve a few cases, buif these, which correspond to requests of one of the 1000

VI. EXPERIMENTS

do not generalize? most frequently requested businesses. All HMM baselines ar
Q2. Does the FDM, on its own and without the HMMtrained using the maximum-likelihood criterion (ML), rath
baseline, decode with acceptable accuracy? than discriminatively, like the FDM. We believe that we wdul
Q3. What is the effect of the multi-phone error model osgtill see improvements over a discriminatively-trained MM
recognition results in the FDM? baseline.
Q4. Does knowledge from the pronunciation dictionary help In general, during decoding, FDM runs at a fraction of
through the use of transductive features? HMM decoding. Training is also relatively expedient. For
Q5. In practice, can unit-based features complement eaxample, ML training of HMM models on 2000 hours with
HMM system and improve accuracy? 1024 CPUs takes about 7 hours, while FDM training always

First, we describe the general experimental frameworknThdinishes within 3 hours for the most expensive case, and

we proceed to describe Nearest-Neighbor and multi-phoferwise typically within 1 hour. The dominating cost for

experiments. FDM is the generation of multi-phone decodings or DTW
matching,i.e. for feature extraction.

A. Bing Mobile Voice Search Data

For our experiments, we consider the Voice Search tadk. Nearest-Neighbor Experiments

We have deployed an application [9] called Bing Mobile, Our first set of experiments, reported in [15], addresses the
which allows users to look for local businesses from thefuestion of whether nearest-neighbor features, whicletaing
mobile phone. Speech comes in various challenging camost frequent listings (so-called “head” events), can oupr
ditions, including outside noise, music, side-speechpsto upon an HMM baseline system (Q1). It is important to
pronunciation, and different acquisition channels. Keyotw demonstrate that FDM can make use of features or models
acquisition of training data, once a query is spoken, a listat, by design, only target specific phenomena or listibgs,

of alternatives is presented for user validation. This hasay not generalize. In practice, it allows researchers t fin
resulted in a training set of approximately 3M utterancesew alternative models without having to design them to work
By comparing user selections with transcriptions for a $main all utterances, and to focus on specific areas of strength.
set of transcribed data, we estimate that the user providddre, we examine what gains can be had from using Nearest-
data is 85-90% accurate. Our test data consists solely of theighbor features from Section IlI-B. The HMM system
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[ Name [ ¥(X) [ ®(h) [ N | Length (A) [ Length (B) | Exact | Empirical
letter 6-gram| 1 5(6gm € h) | 50K 1. Associative features 12.72 12.74 12.32 12.24
DTW distance to closest example of| ¢ € h 3-15k 2.+ Terminal S 11.74 11.80 12.13 12.02
posterior 7R, X) = log p(A]X) T 3. + Transductive 9.52 9.86 9.95 9.98
rank f(h, X) = n-best rank ofh 1 TABLE XVIII

TABLE XVI ERROR RATES WITH DIFFERENT UNIT SELECTION TYPES AS FEATURES

CLASSES ARE ADDED TO THE SYSTEMTOP-1000TEST SET A
STATE-OF-THE-ART HMM SYSTEM ACHIEVES13.4%.

FEATURES USED IN TEMPLATE EXPERIMENTSN IS THE FEATURE COUNT

Setup SER [%]
Actual | Total
HMM baseline 17.4 1 39.6
With NN features 13.0 | 36.3
TABLE XVII For comparison, a state-of-the-art HMM system on this task

RESULTS IN SENTENCEERRORRATE (SER)WITH NN FEATURES would yield 13.4% sentence error rate (SER). _
Results are shown on Table XVIII. We will detail each line

later, but we can already gather that the FDM, starting from

(?jgii; decoding graphs, can produce results that outperfbem t

operated on MFCC/HLDA 36-dimensional features, had 3,0 M baseline
tied-state mixtures and 16 Gaussians per mixture and ylelde 2) Effect of the error model (Q3)n the same table, the first

39'60./0 sentence error rate (SER). The system ge_znerated I1RE shows results obtained from a system trained on fesiture
candidate list for the FDM. Al feat_ures were trained on escribed in Table Il We can see that the exact MMI criterio
subset of 550k utterances, as descr!bed in [15]. . of Section IV is a good proxy for recognition by association —
The features used in these experiments are summarizegy nresence of MMI units is a good indicator for the presence
Table XVI. The number of NN features depends on whethgg orqs in line 2, we add a special kind of feature: it trigge
utterance or word-level spotters are used. The letter Bigrgynap, 5 given unit is seen as the last unit chronologically (fo
is a language model fgature. The number of featuwewas ¥(X)), and if hypothesized text ends in an ‘s’ (fot)). Note
chosen to keep experiments manageable. Table XVII shom t, after combination with this feature, Length(A) feati

results obtained with the NN approach. The second columyy,, oytperform more exact MMI computation features. The
Actual’, reports the error rate on the utterances for Wittt 1 criterion optimizes for associative features only, asd

reference transcript was found in thebest list. In the third . sub-optimal for this configuration. There is no obvious

column, “Total’, the full test set was considered includaiy way to characterize why the Length-based multi-phone units

utterances. The first line corresponds to the baseline B&t@r o more suited for this configuration. We defer to future
which can be obtained by just incorporating feature in line 4

, work the integration of the terminal S feature into the MMI
of Table XVI. To this, we added the NN features and Othecromputation.

features from Table XVI. We observe a reduction of roughly 3) Adding pronunciation knowledge (Q4)n line 3, we
4% in error rate from the HMM baseline. add the transductive features of Table V. In effect, we are
making use of causal information (in which order units appea
in the audio) and prior lexical knowledge in an explicit way.
Associative features do not have a concept of “missing” or

To explore the use of word and sub-word units, we novxtra” units, nor one of sequence. Note that the pronuitciat
turn to the use of multi-phone units. We would like to knovgictionary was, however, used during the design of the multi
whether units extracted in Section IV are a good discreffhone units. Our transductive features provide a very large
summarization of the audio for the purpose of recognitiofprovement, and overall, we achieve an error 28% relative
(Q2). lower than the HMM system.

1) Recognition using unitsFirst, we would like to know  4) Improving the state-of-the-art HMM (Q5)The multi-
whether features based on the hierachical unit-word-Ihgsi¢ phone results so far have not used the output of the HMM
decomposition in Eq (4) and Eq (5) is comparable with thgaseline system. Now, we test whether multi-phone units
state-of-the-art HMM. If units contain sufficient inforn@t  provide extra information which can be used to complement
and if our model is reasonable, one would expect resulid# HMM system. To that end, we run rescoring experiments in
comparable with HMM. which N-best lists generated by an HMM for the full test set

To determine this, we use a setup similar to [16]. There aaee re-ranked according to this model. This setup is anal®go
3M utterances of training data, divided into two sets: ore feo that used in the testing of template features, though with
feature training (hyper-parameters), and one for modelitra an improved baseline. We have added the log-posterior from
(lambda parameters). Note that, given Figure 1, we woulde HMM baseline. These results are summarized in Table
need a 100M hypothesis space to achieve an oracle ratexoX. We see over 2% absolute improvement on the full test
80%. In our implementation, that exceeded memory capaciget, indicating that our associative and transductiveufeat
Instead, we performed a set of experiments with the 1000 mashvey information not present in the HMM system.
common businesses only. It would be inappropriate to gémera
n-bests from the HMM system, since they introduce a bias. VII. CONCLUSION
The search over hypotheses was done by enumerating thoda this paper, we have described Flat Direct Models (FDMs).
hypotheses with appreciable probability according to Eq (5These models are inherently discriminative because they ar

C. Multi-phone unit experiments



IEEE J-STSP SPECIAL ISSUE ON STATISTICAL LEARNING METHODSOR SPEECH AND LANGUAGE PROCESSING 12

Baseline | Length (A) | Length (B) | Exact | Empirical

Combined EARS BBN/LIMSI System,JEEE Transactions on Audio,

34.73 32.65 32.63 32.80 32.85 Speech, and Language Processingl. 14, no. 5, 2006.
TABLE XIX [4] M. Ostendorf, “Moving Beyond the ‘Beads-On-A-String’ ddel of
ERROR RATES FOR RESCORING THE FULL TEST SEALL FEATURES FROM Speech,” inProc. IEEE ASRU Workshpi999, pp. 79-84.
THE PREVIOUS TABLE ARE USED THE HMM SYSTEM ACHIEVES34.73%. [5] B. Y. Chen, Q. Zhu, and N. Morgan, “Learning Long-Term Teoral

Features in LVCSR Using Neural Networks,” Rroc. ICSLR 2004.
[6] H. Hermansky and S. Sharma, “Temporal Patterns (TRARSSR of
Noisy Speech,” inProc. ICASSP1999.
[7] W. D. Wachter, K. Demuynck, D. V. Compernolle, and P. Watdp,
. . . “Data Driven Example Based Continuous Speech Recogriition,
conditioned on the input. More crucially, the models do away Eurospeech2003, pp. 1133-1136.
with the strict requirements of Markovian causality présan [8] M. De Wachter, M. Matton, K. Demuynck, P. Wambacg, R. Gool

HMMs. They are best suited for speech recognition tasks with and D. Van Compernolle, “Template-Based Continuous Sp&ettog-
hort t d finite. if d telv | . t nition,” IEEE Transactions on Audio, Speech, and Language Proagssin
Short sentences and a T1inite, IT moaerately large, inventory ) 15, no. 4, pp. 1377-1390, May 2007.

In an appropriate embodiment, FDMs are bounded betweg®] A. Acero, N. Bernstein, R. Chambers, Y. Ju, X. Li, J. Odéll Nguyen,

HMM accuracy and nearest-neighbor accuracy, and depending ©: Scholz, and G. Zweig, “Live Search for Mobile: Web Sersidgy
. . \Voice on the Cellphone,” ifProc. ICASSP2007.
on amount of data available, the system designer may chog$g “nitp:/www.telime.com/you.”

which is the best middle ground. [11] “nttp:/ivlingo.com.” _
FDMs are implemented generically as log-linear modelézl “http://www.google.com/mobile/apple/app.html.”

. . . 3] “http://mobile.yahoo.com/onesearch.”
which allow arbitrary features to be incorporated. A goOf4] H.-k. J. Kuo and Y. Gao, “Maximum Entropy Direct ModelsrfSpeech

choice of features, therefore, is of supreme importance. We Recognition,” inProc. ASRY 2003.

have defined several classes of features. First, the HMMescolt®l G Heigold, G. Zweig, X. Li, and P. Nguyen, “A Flat Direbodel for
Speech Recognition,” ifProc. ICASSP2009.

C?'n be msertedlso as to guarantee HMM performgnce. 560({%1, G. Zweig and P. Nguyen, “Maximum Mutual Information Miphone
with nearest-neighbor features based on DTW alignments, we Units in Direct Modeling,” inProc. Interspeech2009.

train optimal non-parametric models on a restricted numb@f] A. Gunawardana, M. Mahajan, A. Acero, and J. C. Plattjddén
. . . Conditional Random Fields for Phone Classification,” limerspeech
of utterances, while retaining baseline accuracy on other ,qp5

utterances. Third, features can be defined as a separable dag) S. Chen and R. Rosenfeld, “A Survey of Smoothing Techeigfor ME

bination of purely acoustic features (based on just thecjudi ~ Models,” IEEE Transactions on Speech and Audio Processig 8,
P y ( . 03 no. 1, pp. 37-50, Jan 2000.

and purely linguistic features (based on just the hypoﬂ_aaeiS{ [19] M. Reidmiller, “Rprop - Description and ImplementatioDetails,”

words), for both ease of development and generalization. University of Karlsruhe, Tech. Rep., January 1994. o

Fourth, features may be associative when they rely on dgd B:- Roark, M. Saraclar, M. Collins, and M. Johnson, “Distnative
. . .. . Language Modeling with Conditional Random Fields and theéjgron

occurrence of acoustics and linguistics, or transductiberw Algorithm.” in Proc. ACL, 2004.

they are imparted by a transduction model from audio {e1] V. Maier and R. Moore, “An Investigation into a Simulati of Episodic

words. Most of the features used do not have an equivalent Memory for Automatic Speech Recognition,” #roc. InterspeechSep.

. | . 2005.
HMM !mp ementatlon.. ) ) o ) _[22] J. R. Bellegarda, “A Multispan Language Modeling Fravoek for
An important contribution is the definition of intermedi- Large Vocabulary Speech Recognitioh2EE Transactions on Speech

ate symbols for representing the acoustics which are m 3 anegﬂgfaﬁﬁfgﬁssﬁngﬂm %kg‘r)- ? é?éﬁe M. Ordowskil 8. Dod-

indicatiV_e of transcribe(_j word sequence. MUIt_i'phone SINIC " gington, “Syllable-Based Large Vocabulary Continuous é3heRecog-
are designed to maximize the mutual information between a nition,” IEEE Transactions on Speech and Audio Processim. 9,
decoded unit sequence and a target word. Hence, theyv\rﬁ% no. 4, pp. 358-366, May 2001.

e

. . . . M. Bacchiani, M. Ostendorf, Y. Sagisaka, and K. Paliw&lesign of a
on an error model which mimics errors during decoding. Speech Recognition System Based on Acoustically Derivagn®atal

have experimented with two classes of error models: a length  Units,” in ICASSP 1996. ' _
based error model, which stipulates that longer units asieea 25 R. Singh, B. Raj, and R. Stern, “Automatic Generation Safbword

. . Units for Speech Recognition System#ZEE Transactions on Speech
to recognize accurately, and a more sophisticated modelevhe  _nq audio ‘F’,mcessmgﬂi 10, no?lz, 2(%2_ P

errors depend on the unit itself.

In our experiments, we have observed consistent error rate
reductions in the range of 2-4% in absolute terms, for both th
nearest-neighbor and the multi-phone features, on theevoic
search for Bing Mobile task.
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