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Abstract 

Farsite is a secure, scalable file system that logically functions as a centralized file server but is physically 
distributed among a set of untrusted computers.  Farsite provides file availability and reliability through randomized 
replicated storage; it ensures the secrecy of file contents with cryptographic techniques; it maintains the integrity of 
file and directory data with a Byzantine-fault-tolerant protocol; it is designed to be scalable by using a distributed 
hint mechanism and delegation certificates for pathname translations; and it achieves good performance by locally 
caching file data, lazily propagating file updates, and varying the duration and granularity of content leases.  We 
report on the design of Farsite and the lessons we have learned by implementing much of that design. 

1. Introduction 

This paper describes Farsite, a serverless distributed file 
system that logically functions as a centralized file 
server but whose physical realization is dispersed 
among a network of untrusted desktop workstations.  
Farsite is intended to provide both the benefits of a 
central file server (a shared namespace, location-
transparent access, and reliable data storage) and the 
benefits of local desktop file systems (low cost, privacy 
from nosy sysadmins, and resistance to geographically 
localized faults).  Farsite replaces the physical security 
of a server in a locked room with the virtual security of 
cryptography, randomized replication, and Byzantine 
fault-tolerance [8].  Farsite is designed to support 
typical desktop file-I/O workloads in academic and 
corporate environments, rather than the high-
performance I/O of scientific applications or the large-
scale write sharing of database applications.  It requires 
minimal administrative effort to initially configure and 
practically no central administration to maintain.  With 
a few notable exceptions (such as crash recovery and 
interaction between multiple Byzantine-fault-tolerant 
groups), nearly all of the design we describe has been 
implemented. 

Traditionally, file service for workstations has been 
provided either by a local file system such as FFS [28] 
or by a remote server-based file system such as NFS 
[39] or AFS [21].  Server-based file systems provide a 
shared namespace among users, and they can offer 
greater file reliability than local file systems because of 
better maintained, superior quality, and more highly 
redundant components.  Servers also afford greater 
physical security than personal workstations in offices. 

However, server-based systems carry a direct cost in 
equipment, physical plant, and personnel beyond those 
already sunk into the desktop infrastructure commonly 
found in modern companies and institutions.  A server 
requires a dedicated administrative staff, upon whose 
competence its reliability depends [19] and upon whose 
trustworthiness its security depends [47].  Physically 
centralized servers are vulnerable to geographically 
localized faults, and their store of increasingly sensitive 
and valuable information makes them attractive, 
concentrated targets for subversion and data theft, in 
contrast to the inherent decentralization of desktop 
workstations. 

In designing Farsite, our goal has been to harness the 
collective resources of loosely coupled, insecure, and 
unreliable machines to provide logically centralized, 
secure, and reliable file-storage service.  Our system 
protects and preserves file data and directory metadata 
primarily through the techniques of cryptography and 
replication.  Since file data is large and opaque to the 
system, the techniques of encryption, one-way hashing, 
and raw replication provide means to ensure its privacy, 
integrity, and durability, respectively.  By contrast, 
directory metadata is relatively small, but it must be 
comprehensible and revisable directly by the system; 
therefore, it is maintained by Byzantine-replicated 
state-machines [8, 36] and specialized cryptographic 
techniques that permit metadata syntax enforcement 
without compromising privacy [15].  One of Farsite’s 
key design objectives is to provide the benefits of 
Byzantine fault-tolerance while avoiding the cost of full 
Byzantine agreement in the common case, by using 
signed and dated certificates to cache the authorization 
granted through Byzantine operations. 



Both Farsite’s intended workload and its expected 
machine characteristics are those typically observed on 
desktop machines in academic and corporate settings.  
These workloads exhibit high access locality, a low 
persistent update rate, and a pattern of read/write 
sharing that is usually sequential and rarely concurrent 
[22, 48].  The expected machine characteristics include 
a high fail-stop rate (often just a user turning a machine 
off for a while) [6] and a low but significant rate [41] of 
malicious or opportunistic subversion.  In our design, 
analysis, evaluation, and discussion, we focus on this 
environment, but we note that corporate administrators 
might choose to supplement Farsite’s reliability and 
security by adding userless machines to the system or 
even running entirely on machines in locked rooms. 

Farsite requires no central administration beyond that 
needed to initially configure a minimal system and to 
authenticate new users and machines as they join the 
system.  Administration is mainly an issue of signing 
certificates:  Machine certificates bind machines to their 
public keys; user certificates bind users to their public 
keys; and namespace certificates bind namespace roots 
to their managing machines.  Beyond initially signing 
the namespace certificate and subsequently signing 
certificates for new machines and users, no effort is 
required from a central administrator. 

There are many directions we could have explored in 
the Farsite design space that we have chosen not to.  
Farsite is not a high-speed parallel I/O system such as 
SGI's XFS [43], and it does not efficiently support 
large-scale write sharing of files.  Farsite is intended to 
emulate the behavior of a traditional local file system, 
in particular NTFS [42]; therefore, it introduces no new 
user-visible semantics, such as an object-model 
interface, transactional support, versioning [39], user-
specifiable file importance, or Coda-like [22] hooks for 
application-specific conflict resolvers to support 
concurrent file updates during disconnected operation. 

We have implemented most – but not all – of the design 
described in this paper.  The exceptions, which mainly 
relate to scalability and crash recovery, are itemized in 
section 6 and identified throughout the text with the 
term Farsite design, indicating a mechanism that we 
have designed but not yet implemented. 

The following section presents a detailed overview of 
the system.  Section 3, the bulk of the paper, describes 
the mechanisms that provide Farsite’s key features.  
Section 4 describes our prototype implementation.  
Section 5 analytically evaluates our design’s scalability 
and empirically evaluates our prototype’s performance.  
We discuss future work in section 6, related work in 
section 7, and conclusions in section 8. 

2. System Overview 

This section provides a background and overview of 
Farsite by itemizing underlying design assumptions, 
highlighting two enabling technology trends, explaining 
the fundamental concept of namespace roots, describing 
Farsite’s certification model and mechanisms, outlining 
the system architecture, and describing several semantic 
differences between Farsite and a local file system. 

2.1 Design Assumptions 

Most of our design assumptions stem from the fact that 
Farsite is intended to run on the desktop workstations of 
a large corporation or university.  Thus, we assume a 
maximum scale of ~105 machines, none of which are 
dedicated servers, and all of which are interconnected 
by a high-bandwidth, low-latency network whose 
topology can be ignored.  Machine availability is 
assumed to be lower than that of dedicated servers but 
higher than that of hosts on the Internet; specifically, 
we expect the majority of machines to be up and 
accessible for the majority of the time.  We assume 
machine downtimes to be generally uncorrelated and 
permanent machine failures to be mostly independent.  
Although Farsite tolerates large-scale read-only sharing 
and small-scale read/write sharing, we assume that no 
files are both read by many users and also frequently 
updated by at least one user.  Empirical data [6, 48] 
corroborates this set of assumptions. 

We assume that a small but significant fraction of users 
will maliciously attempt to destroy or corrupt file data 
or metadata, a reasonable assumption for our target 
environment but an unreasonably optimistic one on the 
open Internet.  We assume that a large fraction of users 
may independently and opportunistically attempt to 
read file data or metadata to which they have not been 
granted access.  Each machine is assumed to be under 
the control of its immediate user, and a party of 
malicious users can subvert only machines owned by 
members of the party. 

We assume that the local machine of each user can be 
trusted to perform correctly for that user, and no user-
sensitive data persists beyond user logoff or system 
reboot.  This latter assumption is known to be false 
without a technique such as crypto-paging [50], which 
is not employed by any commodity operating system 
including Windows, the platform for our prototype. 

2.2 Enabling Technology Trends 

Two technology trends are fundamental in rendering 
Farsite's design practical: a general increase in unused 
disk capacity and a decrease in the computational cost 
of cryptographic operations relative to I/O. 



A very large fraction of the disk space on desktop 
workstations is unused, and disk capacity is increasing 
at a faster rate than disk usage.  In 1998, measurements 
of 4800 desktop workstations at Microsoft [13] showed 
that 49% of disk space was unused.  In 1999 and 2000, 
we measured the unused portions to be 50% and 58%. 

As computation speed has increased with Moore’s Law, 
the cost of cryptographic operations has fallen relative 
to the cost of the I/O operations that are the mainstay of 
a file system.  We measured a modern workstation and 
found a symmetric encryption bandwidth of 72 MB/s 
and a one-way hashing bandwidth of 53 MB/s, both of 
which exceed the disk’s sequential-I/O bandwidth of 32 
MB/s.  Encrypting or decrypting 32 KB of data adds 
roughly one millisecond of latency to the file-read/write 
path.  Computing an RSA signature with a 1024-bit key 
takes 6.5 milliseconds, which is less than one rotation 
time for a 7200-RPM disk. 

The large amount of unused disk capacity enables the 
use of replication for reliability, and the relatively low 
cost of strong cryptography enables distributed security. 

2.3 Namespace Roots 

The primary construct established by a file system is a 
hierarchical directory namespace, which is the logical 
repository for files.  Since a namespace hierarchy is a 
tree, it has to have a root.  Rather than mandating a 
single namespace root for any given collection of 
machines that form a Farsite system, we have chosen to 
allow the flexibility of multiple roots, each of which 
can be regarded as the name of a virtual file server that 
is collaboratively created by the participating machines.  
An administrator creates a namespace root simply by 
specifying a unique (for that administrator) root name 
and designating a set of machines to manage the root.  
These machines will form a Byzantine-fault-tolerant 
group (see subsection 2.5), so it is not crucial to select a 
specially protected set of machines to manage the root. 

2.4 Trust and Certification 

The security of any distributed system is essentially an 
issue of managing trust.  Users need to trust in the 
authority of machines that offer to present data and 
metadata.  Machines need to trust the validity of 
requests from remote users to modify file contents or 
regions of the namespace.  Security components that 
rely on redundancy need to trust that an apparently 
distinct set of machines is truly distinct and not a single 
malicious machine pretending to be many, a potentially 
devastating attack known as a Sybil attack [11]. 

Farsite manages trust using public-key-cryptographic 
certificates.  A certificate is a semantically meaningful 
data structure that has been signed using a private key.  

The principal types of certificates are namespace 
certificates, user certificates, and machine certificates.  
A namespace certificate associates the root of a file-
system namespace with a set of machines that manage 
the root metadata.  A user certificate associates a user 
with his personal public key, so that the user identity 
can be validated for access control.  A machine 
certificate associates a machine with its own public 
key, which is used for establishing the validity of the 
machine as a physically unique resource. 

Trust is bootstrapped by fiat:  Machines are instructed 
to accept the authorization of any certificate that can be 
validated with one or more particular public keys.  The 
corresponding private keys are known as certification 
authorities (CAs).  Consider a company with a central 
certification department, which generates a public/ 
private key pair to function as a CA.  Every employee 
generates a public/private key pair, and the CA signs a 
certificate associating the employee’s username with 
the public key.  For a small set of machines, the CA 
generates public/private key pairs and embeds the 
public keys in a namespace certificate that designates 
these machines as managers of its namespace root.  The 
CA then performs the following four operations for 
every machine in the company:  (1) Have the machine 
generate a public/private key pair; (2) sign a certificate 
associating the machine with the public key; (3) install 
the machine certificate and root namespace certificate 
on the machine; and (4) instruct the machine to accept 
any certificate signed by the CA. 

Farsite’s certification model is more general than the 
above paragraph suggests, because machine certificates 
are not signed directly by CAs but rather are signed by 
users whose certificates designate them as authorized to 
certify machines, akin to Windows’ model for domain 
administration.  This generalization allows a company 
to separate the responsibilities of authenticating users 
and machines, e.g., among HR and IT departments.  A 
single machine can participate in multiple CA domains, 
but responsibility granted by one CA is only delegated 
to other machines authorized by that same CA. 

A machine’s private key is stored on the machine itself.  
In the Farsite design, each user private key is encrypted 
with a symmetric key derived from the user’s password 
and then stored in a globally-readable directory in 
Farsite, where it can be accessed upon login.  CA 
private keys should be kept offline, because the entire 
security of a Farsite installation rests on their secrecy. 

User or machine keys can be revoked by the issuing 
CA, using the standard techniques [29]:  Signed 
revocation lists are periodically posted in a prominent, 
highly replicated location.  All certificates include an 
expiration date, which allows revocation lists to be 
garbage collected. 



2.5 System Architecture 

We now present a high-level overview of the Farsite 
architecture, beginning with a simplified system and 
subsequently introducing some of Farsite’s key aspects. 

2.5.1 Basic System 
Every machine in Farsite may perform three roles:  It is 
a client, a member of a directory group, and a file host, 
but we initially ignore the latter of these.  A client is a 
machine that directly interacts with a user.  A directory 
group is a set of machines that collectively manage file 
information using a Byzantine-fault-tolerant protocol 
[8]:  Every member of the group stores a replica of the 
information, and as the group receives client requests, 
each member processes these requests deterministically, 
updates its replica, and sends replies to the client.  The 
Byzantine protocol guarantees data consistency as long 
as fewer than a third of the machines misbehave. 

Consider a system that includes several clients and one 
directory group.  For the moment, imagine that the 
directory group manages all of the file-system data and 
metadata, storing it redundantly on all machines in the 
group.  When a client wishes to read a file, it sends a 
message to the directory group, which replies with the 
contents of the requested file.  If the client updates the 
file, it sends the update to the directory group.  If 
another client tries to open the file while the first client 
has it open, the directory group evaluates the specified 
sharing semantics requested by the two clients to 
determine whether to grant the second client access. 

2.5.2 System Enhancements 
The above-described system provides reliability and 
data integrity through Byzantine replication.  However, 
it may have performance problems since all file-system 
requests involve remote Byzantine operations; it does 
not provide data privacy from users who have physical 
access to the directory group members; it does not have 
the means to enforce user access control; it consumes a 
large amount of storage space since files are replicated 
on every directory group member, and it does not scale. 

Farsite enhances the basic system in several ways.  It 
adds local caching of file content on the client to 
improve read performance.  Farsite’s directory groups 
issue leases on files to clients, granting them access to 
the files for a specified period of time, so a client with 
an active lease and a cached copy of a file can perform 
operations entirely locally.  Farsite delays pushing 
updates to the directory group, because most file writes 
are deleted or overwritten shortly after they occur [4, 
48].  To protect user privacy and provide read-access 
control, clients encrypt written file data with the public 
keys of all authorized readers; and the directory group 
enforces write-access control by cryptographically 
validating requests from users before accepting updates. 

Since Byzantine groups fail to make progress if a third 
or more of their members fail, directory groups require 
a high replication factor (e.g., 7 or 10) [8].  However, 
since the vast majority of file-system data is opaque file 
content, we can offload the storage of this content onto 
a smaller number of other machines (“file hosts”), using 
a level of indirection.  By keeping a cryptographically 
secure hash of the content on the directory group, 
putative file content returned from a file host can be 
validated by the directory group, thereby preventing the 
file host from corrupting the data.  Therefore, Farsite 
can tolerate the failure of all but one machine in a set of 
file hosts, thus allowing a far lower replication factor 
(e.g., 3 or 4) [6] for the lion’s share of file-system data. 

As machines and users join a Farsite system, the 
volume of file-system metadata will grow.  At some 
point, the storage and/or operation load will overwhelm 
the directory group that manages the namespace.  The 
Farsite design addresses this problem by allowing the 
directory group to delegate a portion of its namespace 
to another directory group.  Specifically, the group 
randomly selects, from all of the machines it knows 
about, a set of machines that it then instructs to form a 
new directory group.  The first group collectively signs 
a new namespace certificate delegating authority over a 
portion of its namespace to the newly formed group.  
This group can further delegate a portion of its region 
of the namespace.  Because each file-system namespace 
forms a hierarchical tree, each directory group can 
delegate any sub-subtree of the subtree that it manages 
without involving any other extant directory groups. 

In this enhanced system, when a client wishes to read a 
file, it sends a message to the directory group that 
manages the file’s metadata.  This group can prove to 
the client that it has authority over this directory by 
presenting a namespace certificate signed by its parent 
group, another certificate signed by its parent’s parent, 
and so on up to the root namespace certificate signed by 
a CA that the client regards as authoritative.  The group 
replies with these namespace certificates, a lease on the 
file, a one-way hash of the file contents, and a list of 
file hosts that store encrypted replicas of the file.  The 
client retrieves a replica from a file host and validates 
its contents using the one-way hash.  If the user on the 
client machine has read access to the file, then he can 
use his private key to decrypt the file.  If the client 
updates the file, then, after a delay, it sends an updated 
hash to the directory group.  The directory group 
verifies the user’s permission to write to the file, and it 
instructs the file hosts to retrieve copies of the new data 
from the client.  If another client tries to open the file 
while the first client has an active lease, the directory 
group may need to contact the first client to see whether 
the file is still in use, and the group may recall the lease 
to satisfy the new request. 



2.6 Semantic Differences from NTFS 

Despite our goal of emulating a local NTFS file system 
as closely as possible, performance or behavioral issues 
have occasionally motivated semantics in Farsite that 
diverge from those of NTFS. 

If many (e.g., more than a thousand) clients hold a file 
open concurrently, the load of consistency management 
– via querying and possibly recalling leases – becomes 
excessive, reducing system performance.  To prevent 
this, the Farsite design places a hard limit on the 
number of clients that can have a file open for 
concurrent writing and a soft limit on the number that 
can have a file open for concurrent reading.  Additional 
attempts to open the file for writing will fail with a 
sharing violation.  Additional attempts to open the file 
for reading will not receive a handle to the file; instead, 
they will receive a handle to a snapshot of the file, 
taken at the time of the open request.  Because it is only 
a snapshot, it will not change to reflect updates by 
remote writers, and so it may become stale.  Also, an 
open snapshot handle will not prevent another client 
from opening the file for exclusive access, as a real file 
handle would.  An application can query the Farsite 
client to find out whether it has a snapshot handle or a 
true file handle, but this is not part of NTFS semantics. 

NTFS does not allow a directory to be renamed if there 
is an open handle on a file in the directory or in any of 
its descendents.  In a system of 105 machines, there will 
almost always be an open handle on a file somewhere 
in the namespace, so these semantics would effectively 
prevent a directory near the root of the tree from ever 
being renamed.  Thus, we instead implement the Unix-
like semantics of not name-locking an open file’s path. 

The results of directory rename operations are not 
propagated synchronously to all descendent directory 
groups during the rename operation, because this would 
unacceptably retard the rename operation, particularly 
for directories near the root of the namespace tree.  
Instead, they are propagated lazily, so they might not be 
immediately visible to all clients. 

Windows applications can register to be informed about 
changes that occur in directories or directory subtrees.  
This notification is specified to be best-effort, so we 
support it without issuing read leases to registrants.  
However, for reasons of scalability, we only support 
notification on single directories and not on subtrees. 

3. File System Features 

This section describes the mechanisms behind Farsite’s 
key features, which include reliability and availability, 
security, durability, consistency, scalability, efficiency, 
and manageability. 

3.1 Reliability and Availability 

Farsite achieves reliability (long-term data persistence) 
and availability (immediate accessibility of file data 
when requested) mainly through replication.  Directory 
metadata is replicated among members of a directory 
group, and file data is replicated on multiple file hosts.  
Directory groups employ Byzantine-fault-tolerant 
replication, and file hosts employ raw replication. 

For redundantly storing file data, Farsite could have 
used an erasure coding scheme [3] rather than raw 
replication.  We chose the latter in part because it is 
simpler and in part because we had concerns about the 
additional latency introduced by fragment reassembly 
of erasure-coded data during file reads.  Some empirical 
data [25] suggests that our performance concerns might 
have been overly pessimistic, so we may revisit this 
decision in the future. The file replication subsystem is 
a readily separable component of both the architecture 
and the implementation, so it will be straightforward to 
replace if we so decide. 

With regard to reliability, replication guards against the 
permanent death of individual machines, including 
data-loss failures (such as head crashes) and explicit 
user decommissioning.  With regard to availability, 
replication guards against the transient inaccessibility of 
individual machines, including system crashes, network 
partitions, and explicit shutdowns.  In a directory group 
of RD members, metadata is preserved and accessible if 
no more than (RD – 1) / 3 of the machines die.  For 
files replicated on RF file hosts, file data is preserved 
and accessible if at least one file host remains alive. 

In the Farsite design, when a machine is unavailable for 
an extended period of time, its functions migrate to one 
or more other machines, using the other replicas of the 
file data and directory metadata to regenerate that data 
and metadata on the replacement machines.  Thus, data 
is lost permanently only if too many machines fail 
within too small a time window to permit regeneration. 

Because the volume of directory data is much smaller 
than that of file data, directory migration is performed 
more aggressively than file-host migration:  Whenever 
a directory group member is down or inaccessible for 
even a short time, the other members of the group select 
a replacement randomly from the set of accessible 
machines they know about.  Since low-availability 
machines are – by definition – up for a smaller fraction 
of time than high-availability machines, they are more 
likely to have their state migrated to another machine 
and less likely to be an accessible target for migration 
from another machine.  These factors bias directory-
group membership toward highly availability machines, 
without introducing security-impairing non-randomness 
into member selection.  This bias is desirable since 



Byzantine agreement is only possible when more than 
two thirds of the replicas are operational.  The increase 
in the (light) metadata workload on high-availability 
machines is compensated by a small decrease in their 
(heavy) file storage and replication workload. 

Farsite improves global file availability by continuously 
relocating file replicas at a sustainable background rate 
[14].  Overall mean file uptime is maximized by 
achieving an equitable distribution of file availability, 
because low-availability files degrade mean file uptime 
more than high-availability files improve it.  Therefore, 
Farsite successively swaps the machine locations of 
replicas of high-availability files with those of low-
availability files, which progressively equalizes file 
availability.  Simulation experiments [14] driven by 
actual measurements of desktop machine availability 
show that Farsite needs to swap 1% of file replicas per 
day to compensate for changes in machine availability. 

File availability is further improved by caching file data 
on client disks.  These caches are not fixed in size but 
rather hold file content for a specified interval called 
the cache retention period (roughly one week) [6]. 

3.2 Security 

3.2.1 Access Control 
Farsite uses different mechanisms to enforce write- and 
read-access controls.  Because directory groups only 
modify their shared state via a Byzantine-fault-tolerant 
protocol, we trust the group not to make an incorrect 
update to directory metadata.  This metadata includes 
an access control list (ACL) of public keys of all users 
who are authorized writers to that directory and to files 
therein.  When a client establishes cryptographically 
authenticated channels to a directory group’s members, 
the channel-establishment protocol involves a user’s 
private key, thereby authenticating the messages on that 
channel as originating from a specific user.  The 
directory group validates the authorization of a user’s 
update request before accepting the update. 

Because a single compromised directory-group member 
can inappropriately disclose information, Farsite 
enforces read-access control via strong cryptography, as 
described in the next subsection. 

3.2.2 Privacy 
Both file content and user-sensitive metadata (meaning 
file and directory names) are encrypted for privacy. 

When a client creates a new file, it randomly generates 
a symmetric file key with which it encrypts the file.  It 
then encrypts the file key using the public keys of all 
authorized readers of the file, and it stores the file key 
encryptions with the file, so a user with a corresponding 
private key can decrypt the file key and therewith the 

file.  Actually, there is one more level of indirection 
because of the need to identify and coalesce identical 
files (see subsection 3.6.1) even if they are encrypted 
with different user keys:  The client first computes a 
one-way hash of each block of the file, and this hash is 
used as a key for encrypting the block.  The file key is 
used to encrypt the hashes rather than to encrypt the file 
blocks directly.  We call this technique convergent 
encryption [12], because identical file plaintext 
converges to identical ciphertext, irrespective of the 
user keys.  Performing encryption on a block level 
enables a client to write an individual block without 
having to rewrite the entire file.  It also enables the 
client to read individual blocks without having to wait 
for the download of an entire file from a file host. 

To prevent members of a directory group from viewing 
file or directory names, they are encrypted by clients 
before being sent to the group, using a symmetric key 
that is encrypted with the public keys of authorized 
directory readers and stored in the directory metadata 
[15].  To prevent a malicious client from encrypting a 
syntactically illegal name [31], the Farsite design uses a 
technique called exclusive encryption, which augments 
a cryptosystem in a way that guarantees that decryption 
can only produce legal names no matter what bit string 
is given as putative ciphertext [15]. 

3.2.3 Integrity 
As long as fewer than one third of the members of a 
directory group are faulty or malicious, the integrity of 
directory metadata is maintained by the Byzantine-
fault-tolerant protocol.  Integrity of file data is ensured 
by computing a Merkle hash tree [30] over the file data 
blocks, storing a copy of the tree with the file, and 
keeping a copy of the root hash in the directory group 
that manages the file’s metadata.  Because of the tree, 
the cost of an in-place file-block update is logarithmic – 
rather than linear – in the file size.  The hash tree also 
enables a client to validate any file block in logarithmic 
time, without waiting to download the entire file.  The 
time to validate the entire file is linear in the file size, 
not log-linear, because the count of internal hash nodes 
is proportional to the count of leaf content nodes. 

3.3 Durability 

When an application creates, modifies, renames, or 
deletes a file or directory, these updates to metadata are 
committed only on the client’s local disk and not by a 
Byzantine operation to the directory group, due to the 
high cost of the latter.  The updates are written into a 
log (much as in Coda [22]), which is compressed when 
possible via techniques such as removing matching 
create-delete operation pairs.  The log is pushed back to 
the directory group periodically and also when a lease 
is recalled, as described in subsection 3.4.  Because 



client machines are not fully trusted, the directory 
group verifies the legality of each log entry before 
performing the update operation that it specifies. 

When a client machine reboots after a crash, it needs to 
send committed updates to the directory group and have 
the group accept them as validly originating from the 
user.  The two obvious ways of accomplishing this are 
unacceptable:  Private-key-signing every committed 
update would be prohibitively expensive (roughly a 
disk seek time), and holding the user’s private key on 
the client through a crash would open a security hole. 

Instead, when first contacting a directory group, a client 
generates a random authenticator key and splits it into 
secret shares [46], which it distributes among members 
of the directory group.  This key is not stored on the 
client’s local disk, so it is unavailable to an attacker 
after a crash (modulo the lack of crypto-paging in the 
underlying operating system – see subsection 2.1).  
With this key, the client signs each committed update 
using a message authentication code (MAC) [29].  
(Symmetric-key MACs are much faster than public-key 
signatures.)  When recovering from a crash, the client 
sends the MAC and authorization certificates to the 
directory group along with the locally committed 
updates.  In a single transaction, the group members 
first batch the set of updates, then jointly reconstruct the 
authenticator key, validate the batch of updates, and 
discard the key.  Once the key has been reconstructed, 
no further updates will be accepted.  (The recovery 
phase of this process is not yet implemented.) 

Modifying a file (unlike creating, renaming, or deleting 
it) affects not only the file metadata but also the file 
content.  It is necessary to update the content atomically 
with the metadata; otherwise, they may be left in an 
inconsistent state following a crash, and the file content 
will be unverifiable.  For the rare [48] cases when an 
existing block is overwritten, the new content is logged 
along with the metadata before the file is updated, so a 
partial write can be rolled forward from the log.  When 
a client appends a new block to the end of a file, the 
content need not be logged; it is sufficient to atomically 
update the file length and content hash after writing the 
new block.  If a crash leaves a partially written block, it 
can be rolled backward to an empty block [20]. 

3.4 Consistency 

The ultimate responsibility for consistency of file data 
and directory metadata lies with the directory group that 
manages the file or directory.  However, temporary, 
post-hoc-verifiable control can be loaned to client 
machines via a lease mechanism.  There are four 
classes of leases in Farsite: content leases, name leases, 
mode leases, and access leases.  They are described in 
the following four subsections. 

3.4.1 Data Consistency 
Content leases govern which client machines currently 
have control of a file’s content.  There are two content-
lease types: read/write and read-only, and they support 
single-writer multi-reader semantics.  A read-only lease 
assures a client that the file data it sees is not stale.  A 
read/write lease entitles a client to perform write 
operations to its local copy of the file.  Applications are 
not aware of whether their clients hold content leases. 

When an application opens a file, the client requests a 
content lease from the directory group that manages the 
file.  When the application closes the file, the client 
does not immediately cancel its lease, since it may soon 
need to open that file again [48].  If another client 
makes a valid request for a new content lease while the 
first client holds a conflicting lease, the directory group 
will recall the lease from the first client.  When this 
client returns the lease, it will also push all of its logged 
updates to the directory group.  The group will apply 
these updates before issuing the new content lease to 
the other client, thereby maintaining consistency. 

Since read/write and write/write file sharing on 
workstations is usually sequential [22, 48], it is often 
tolerably efficient to ping-pong leases between clients 
as they make alternate file accesses.  However, as a 
performance optimization, the Farsite design includes a 
mechanism similar to that in Sprite [35]: redirecting 
concurrent non-read-only accesses through a single 
client machine.  This approach is not scalable, but 
Farsite is not designed for large-scale write sharing.  
We have not yet determined an appropriate policy for 
when concurrent non-read-only accesses should switch 
from lease ping-pong to single-client serialization. 

Content leases have variable granularity:  A lease may 
cover a single file, or it may cover an entire directory of 
files, similar to a volume lease in AFS [21].  Directory 
groups may issue broader leases than those requested 
by the client, if no other clients have recently made 
conflicting accesses to the broader set of files. 

Because clients can fail or become disconnected, they 
may be unable to respond to a lease recall.  To prevent 
this situation from rendering a file permanently 
inaccessible, leases include expiration times.  The lease 
time varies depending upon the type of lease (i.e., read-
only leases last for longer than read/write leases) and 
upon the observed degree of sharing on the file.  The 
directory group treats lease expiration identically to a 
client’s closing the file without making further updates. 

There are several options for handling lease expiration 
on a disconnected client:  The most pessimistic strategy 
is to close all handles to the file and drop any logged 
updates, since it may not be possible to apply the 
updates if the file is modified by another client after the 



lease expires.  We could, however, save the logged 
updates and, if the file has not changed, apply them 
after re-establishing communications with the directory 
group.  We may wish to keep file handles open for read 
access to potentially stale data, or – most optimistically 
– even allow further updates, since we might be able to 
apply these later.  We have not yet explored this space 
nor implemented any mechanisms. 

Since the Windows directory-listing functions are 
specified to be best-effort, we support them using a 
snapshot of directory contents rather than with a lease. 

As described in subsection 2.7, the number of leases 
issued per file is limited for performance reasons. 

3.4.2 Namespace Consistency 
Shared file-system namespaces commonly [34] contain 
regions that are private to particular users.  To allow 
clients to modify such regions without having to 
frequently contact the directory group that manages the 
region, Farsite introduces the concept of name leases. 

Name leases govern which client machine currently has 
control over a name in the directory namespace.  There 
is only one type of name lease, but it has two different 
meanings depending on whether a directory (or file) 
with that name exists:  If there is no such extant name, 
then a name lease entitles a client to create a file or 
directory with that name.  If a directory with the name 
exists, then the name lease entitles a client to create 
files or subdirectories under that directory with any 
non-extant name.  This dual meaning implies that when 
a client uses a name lease to create a new directory, it 
can then immediately create files and subdirectories in 
that directory.  To rename a file or directory, a client 
must obtain a name lease on the target name. 

Like content leases, name leases can be recalled if a 
client wants to create a name that falls within the scope 
of a name lease that has been issued to another client.  
The discussion above regarding expiration of content 
leases also applies to name leases. 

3.4.3 Windows File-Sharing Semantics 
Windows supports application-level consistency by 
providing explicit control over file-sharing semantics.  
When an application opens a file, it specifies two 
parameters: (1) the access mode, which is the types of 
access it wants, and (2) the sharing mode, which is the 
types of access it is willing to concurrently allow 
others.  There are many different access modes, but 
from the perspective of a distributed system, they can 
be distilled down to three (and finer distinctions can be 
enforced locally by the client): read access, write 
access, and delete access.  There are also three sharing 
modes: read sharing, write sharing, and delete sharing, 
which permit other applications to open the file for read 
access, write access, and delete access, respectively. 

As an example, if an application tries to open a file with 
read access mode, the open will fail if another 
application has the file open without read sharing mode.  
Conversely, if an application tries to open a file without 
read sharing mode, the open will fail if another 
application has the file open with read access mode. 

To support these semantics, Farsite employs six types 
of mode leases: read, write, delete, exclude-read, 
exclude-write, and exclude-delete.  When a client opens 
a file, Farsite translates the requested access and share 
modes into the corresponding mode-lease types:  Each 
access mode implies a need for the corresponding mode 
lease, and the lack of each sharing mode implies a need 
for the corresponding exclude lease.  For example, if an 
application opens a file for read access, the client will 
request a read mode lease, and if the open allows only 
read sharing, then it will also request exclude-write and 
exclude-delete mode leases.  When a directory group 
processes a client’s open request, it determines whether 
it can issue the requested leases without conflicting 
with any extant mode leases on the file.  If it cannot, it 
contacts the client or clients who hold conflicting mode 
leases to see if they are willing to have their leases 
revoked or downgraded, which they may be if their 
applications no longer have open handles on the file.  
The mode-lease conflicts are the obvious ones: read 
conflicts with exclude-read, write with exclude-write, 
and delete with exclude-delete. 

3.4.4 Windows Deletion Semantics 
Windows has surprisingly complex deletion semantics:  
A file is deleted by opening it, marking it for deletion, 
and closing it.  Since there may be multiple handles 
open on a file, the file is not truly deleted until the last 
handle on a deletion-marked file is closed.  While the 
file is marked for deletion, no new handles may be 
opened on the file, but any application that has an open 
delete-access handle can clear the deletion mark, 
thereby canceling the deletion and also permitting new 
handles on the file to be opened. 

To support these semantics, the Farsite design employs 
three types of access leases: public, protected, and 
private.  All three types of access leases indicate that 
the client has access to the file.  Protected leases also 
indicate that no other client will be granted access 
without first contacting the client who holds a protected 
lease.  Private leases further indicate that no other client 
has any access lease on the file.  When a client opens a 
file, the managing directory group checks to see 
whether it has issued a private or protected access lease 
to any other client.  If it has, it downgrades this lease to 
a public lease, thereby forcing a metadata pushback (as 
described in subsection 3.3), before issuing an access 
lease to the new client. 



To mark a file for deletion, a client must first obtain a 
private or protected access lease on the file.  If the 
directory group thereafter receives a different client’s 
request to open the file, downgrading this access lease 
to a public lease will force a metadata pushback, thus 
informing the directory group of whether the client has 
delete-marked the file.  If the file has been marked, then 
the directory group will deny the open request. 

If a client has a private access lease on a file, it is 
guaranteed that no other client has an open handle, so it 
can delete the file as an entirely local operation. 

3.5 System Scalability 

The Farsite design uses two main mechanisms to keep a 
node’s computation, communication, and storage from 
growing with the system size: hint-based pathname 
translation and delayed directory-change notification. 

When a directory group becomes overloaded, at least 
(2 RD + 1) / 3 of its RD members can sign a certificate 
that delegates part of its namespace to another group.  
When a client attempts to open a file or directory with a 
particular pathname, it needs to determine which group 
of machines is responsible for that name.  The basis 
mechanism is to contact successive directory groups 
until the responsible group is found.  This search begins 
with the group that manages the root of the namespace, 
and each contacted group provides a delegation 
certificate that indicates which group to contact next. 

This basis approach clearly does not scale, because all 
pathname translations require contacting the root 
directory group.  Therefore, to perform translations in a 
scalable fashion, the Farsite design uses a hint-based 
scheme that tolerates corrupt directory group members, 
group membership changes, and stale delegations:  
Each client maintains a cache of pathnames and their 
mappings to directory groups, similar to prefix tables in 
Sprite [35].  A client translates a path by finding the 
longest-matching prefix in its cache and contacting the 
indicated directory group.  There are three cases:  (1) 
Because of access locality, the most common case is 
that the contacted group manages the pathname.  (2) If 
the group manages only a path prefix of the name, then 
it replies with all of its delegation certificates, which the 
client adds to its hint cache.  (3) If the group does not 
manage a path prefix of the name, then it informs the 
client, which removes the stale hint that led it to the 
incorrect group.  In the latter two cases, the client again 
finds the longest-matching prefix and repeats the above 
steps.  Because of the signed delegation certificates, no 
part of this protocol requires Byzantine operations.  
Each step either removes old information or adds new 
information about at least one pathname component, so 
the translation terminates after no more than twice the 
number of components in the path being translated. 

Directory-change notification is a Windows mechanism 
that allows applications to register for callbacks when 
changes occur to a specified directory.  The archetypal 
example is Windows Explorer, which registers a 
notification for the directory currently displayed.  Since 
Windows specifies this notification to be best-effort, the 
Farsite design supports it in a delayed manner:  For any 
directory for which a notification has been registered, 
the directory group packages the complete directory 
information, signs it to authenticate its contents, and 
sends it to the registered clients.  The transmission work 
can be divided among members of the directory group 
and also among clients using application-level multicast 
[16]. Farsite clients automatically register for directory-
change notification when a user lists a directory, so 
repeat listings need not make multiple remote requests. 

3.6 Efficiency 

3.6.1 Space Efficiency 
File and directory replication dramatically increase the 
storage requirements of the system.  To make room for 
this additional storage, Farsite reclaims space from 
incidentally duplicated files, such as workgroup-shared 
documents or multiple copies of common applications. 

Measurements of 550 desktop file systems at Microsoft 
[6] show that almost half of all occupied disk space can 
be reclaimed by eliminating duplicates.  The Farsite 
design detects files with duplicate content by storing 
file-content hashes in a scalable, distributed, fault-
tolerant database [12].  It then co-locates replicas of 
identical files onto the same set of file hosts, where they 
are coalesced by Windows’ Single Instance Store [7]. 

3.6.2 Time Efficiency (Performance) 
Many of the mechanisms already described have been 
designed in part for their effect on system performance.  
Caching encrypted file content on client disks improves 
not only file availability but also file-read performance 
(further improved by caching decrypted file content in 
memory).  Farsite’s various lease mechanisms and its 
hint-based pathname translation not only reduce the 
load on directory groups but also eliminate the latency 
of network round trips.  Performance is the primary 
motivation behind limiting the count of leases per file, 
using Merkle trees for data integrity, and MAC-logging 
metadata updates on clients. 

In addition, Farsite inserts a delay between the creation 
or update of a file and the replication of the new file 
content, thus providing an opportunity to abort the 
replication if the operation that motivated it is 
superseded.  Since the majority of file creations and 
updates are followed by deletions or other updates 
shortly thereafter [4, 48], this delay permits a dramatic 
reduction in network file-replication traffic [6]. 



3.7 System Manageability 

3.7.1 Local-Machine Administration 
Although Farsite requires little central administration, 
users may occasionally need or want to perform local-
system administrative tasks, such as hardware upgrades, 
software upgrades, and backup of private data. 

When using a local file system, upgrading a machine’s 
hardware by replacing the disk (or by replacing the 
entire machine) necessitates copying all file-system 
structure and content from the old disk to the new one.  
In Farsite, file data and metadata are replicated on other 
machines for reliability, so removing the old disk (or 
decommissioning an old machine) is merely a special 
case of hardware failure.  In its capacities as file host 
and directory group member, the machine’s functions 
will be migrated; and in its capacity as a client, the hint 
cache and content cache will gradually refill.  However, 
since users replace their machines far more frequently 
than machines fail, Farsite’s reliability is substantially 
improved by providing users a means to indicate their 
intention to decommission a machine or disk, spurring a 
preemptive migration of the machine’s functions [6]. 

To address the need for upgrades and bug fixes, Farsite 
supports interoperation between machines running 
different versions of its software by including major 
and minor version numbers in connection-establishment 
messages.  Minor-version changes can – by definition – 
be ignored, and later versions of the software can send 
and understand all earlier major versions of messages.  
This backward compatibility permits users to self-pace 
their upgrades, using a suggestion-based model similar 
to Windows Update [32].  Updated executables need 
not be sourced centrally:  If they are signed using a 
private key whose public counterpart is baked into the 
Farsite code, upgrades can be obtained from any other 
machine running a more recent version of Farsite code. 

Backup processes are commonly used for two purposes: 
reliability and archiving.  In Farsite, there is little need 
for the former, since the multiple on-line copies of each 
file on independent machines should be more reliable 
than a single extra copy on a backup tape whose quality 
is rarely verified.  For archival purposes, automatic on-
line versioning [40] would be a more valuable system 
addition than manual off-line backup.  However, if 
users still wish to backup their own regions of the 
namespace, existing backup utilities should work fine, 
except for two problems: pollution of the local cache 
and weakening of privacy from storing decrypted data 
on tape.  To address the first problem, we could exploit 
a flag that Windows backup utilities use to indicate 
their purpose in opening files:  Farsite could respond to 
this flag by not locally caching the file.  The second 
problem, which is outside of Farsite’s domain, could be 
addressed by an encrypting backup utility. 

3.7.2 Autonomic System Operation 
Farsite administers itself in a distributed, Byzantine-
fault-tolerant fashion.  Self-administration tasks are 
either lazy follow-ups scheduled after client-initiated 
operations or continual background tasks performed 
periodically.  The details of these tasks (file replication, 
replica relocation, directory migration, namespace 
delegation, and duplicate-file identification/coalescing) 
have been described above, but in this section we 
describe their substrate: two semantic extensions to the 
conventional model of Byzantine fault-tolerance, timed 
Byzantine operations and Byzantine outcalls. 

In the standard conception of Byzantine fault-tolerant 
distributed systems [8], an operation is initiated by a 
single machine and performed by a Byzantine-fault-
tolerant replica group.  This modifies the shared state of 
the group members and returns a result to the initiator.  
The purpose of the Byzantine protocol is to guarantee 
that the state update and the returned result are correct. 

For lazy and periodic tasks (e.g., replica relocation), 
directory groups need to initiate operations in response 
to a timer, rather than in response to a client request.  
This is complicated because Byzantine replicas perform 
operations in lock step, but the clocks of the group 
members cannot be perfectly synchronized.  Farsite’s 
timed Byzantine operations work as follows:  The 
Byzantine-replicated state includes RD member time 
values, each associated with one of the RD machines in 
the group.  The kth largest member time value (where k 
= (RD – 1) / 3 + 1 ) is the group time.  When each 
machine’s local time indicates that a timed operation 
should be performed, it invokes the Byzantine protocol 
to update its replicated member time.  If this update 
increments the group time, then the group performs all 
operations scheduled to occur before the group time. 

Self-administration tasks invert the standard model of 
Byzantine-fault-tolerance:  The directory group invokes 
an operation (e.g., instruction to create a file replica) on 
a single remote machine, which sends a reply back to 
the group.  We perform these Byzantine outcalls using a 
hint-based scheme:  A Byzantine operation updates the 
replicated state to enqueue a request to a remote 
machine.  Then, members of the directory group, acting 
as individuals, send hint messages to the remote 
machine, suggesting that it invoke a Byzantine 
operation to see if the directory group has any work for 
it to do.  When the machine invokes the Byzantine 
operation, the request is dequeued and returned to the 
invoking machine.  The hint messages are staggered in 
time, so in the common case, after one member sends a 
hint message, the remote machine dequeues its request, 
preventing the other members from sending redundant 
hints.  If the machine needs to reply to the group, it 
does so by invoking another Byzantine operation. 



4. Implementation 

Farsite is implemented as two components: a user-level 
service (daemon) and a kernel-level driver.  The driver 
implements only those operations whose functionality 
or performance necessitates placement in the kernel: 
exporting a file-system interface, interacting with the 
cache manager, and encrypting and decrypting file 
content.  All other functions are implemented in user 
level: managing the local file cache, fetching files from 
remote machines, validating file content, replicating 
and relocating files, issuing leases, managing metadata, 
and executing the Byzantine-fault-tolerant protocol. 

Windows’ native remote file system is RDR / SRV, a 
pair of file-system drivers that communicate via the 
CIFS protocol [42].  RDR lives under RDBSS, a driver 
that provides a general framework for implementing 
network file systems.  RDR accepts file-system calls 
from applications and redirects them via the network to 
SRV running on another machine, which communicates 
with NTFS to satisfy the request. 

We took advantage of this framework by implementing 
Farsite’s kernel driver under RDBSS.  The Farsite Mini 
Redirector (FMR) accepts file-system calls, interacts 
with Farsite’s user-level component, uses NTFS as a 
local persistent store, and performs encryption and 
decryption on the file-I/O read and write paths. 

Our user-level component is called the Farsite Local 
Manager (FLM).  The control channel by which FLMs 
on different machines communicate is an encrypted, 
authenticated connection established on top of TCP.  
The data channel by which encrypted file content is 
retrieved from other machines is a CIFS connection 
established by the RDR and SRV components of the 
two machines.  This architecture is illustrated in Fig. 1. 

5. Evaluation 

In the following two subsections, we evaluate Farsite’s 
scalability by calculating the expected central loads of 
certification, directory access, and path translation as a 
function of system size; and we evaluate Farsite’s 
performance by benchmarking our prototype. 

5.1 Scalability Analysis 

Farsite’s scalability target is ~105 machines.  Scale is 
potentially limited by two points of centralization: 
certification authorities and root directory groups. 

Farsite’s certification authorities sign certificates offline 
rather than interactively processing verifications online.  
Therefore, their workload is determined by the number 
of private-key signatures they have to perform, not by 
the much greater number of verifications required.  If a 
company issues machine and user certificates with a 
one-month lifetime, then in a system of 105 machines 
and users, the CA will have to sign 2 × 105 certificates 
per month.  Each RSA private-key signature takes less 
than 10 ms of CPU time, so the total computational 
workload is less than one CPU-hour per month. 

Load on a directory group can be categorized into two 
general classes: the direct load of accesses and updates 
to the metadata it manages and the indirect load of 
performing pathname translations for directory groups 
that manage directories lower in the hierarchy.  As a 
Farsite installation grows, the count of client machines 
in the system, all of which could concurrently access 
the same directory, also grows.  Since the count of files 
per directory is independent of system scale [6], the 
direct load is bounded by limiting the number of 
outstanding leases per file (see subsection 2.7) and by 
distributing the transmission of directory-change 
notifications (see subsection 3.5) using application-
level multicast, which is demonstrably efficient for such 
batch-update processes [16]. 

The indirect load on a directory group due to pathname 
translations is heavily reduced by the hint-caching 
mechanism described in subsection 3.5.  When a new 
client joins the system, its first file access contacts the 
root directory group.  If machines have a mean lifetime 
of one year [6], then a system of ~105 machines will see 
roughly 300 new machines per day, placing a trivial 
translation load on the root group from initial requests.  
Since the group responds with all of its delegation 
certificates, each client should never need to contact the 
root group again.  Before a directory group’s delegation 
certificates expire, it issues new certificates with later 
expiration dates and passes them down the directory-
group hierarchy and on to clients. 
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Fig. 1: Farsite components in system context 



5.2 Performance Measurements 

For our performance evaluation, we configured a five-
machine Farsite system using 1-GHz P3 machines, each 
with 512 MB of memory, two 114-GB Maxtor 
4G120J6 drives, and a 100-Mbps Intel 82559 NIC, 
interconnected by a Cisco WS-C2948G network switch.  
Four machines served as file hosts and as members of a 
directory group, and one machine served as a client. 

We collected a one-hour NTFS file-system trace from a 
developer’s machine in our research group.  The trace, 
collected from 11 AM to noon PDT on September 13, 
2002, includes 450,164 file-system operations whose 
temporal frequency and type breakdown are typical of 
the file-system workload of this machine over the 
working hours in a measured three-week period.  We 
replayed this trace on a Farsite client machine, and for 
comparison, we also replayed it onto a local NTFS 
partition and to a remote machine via CIFS. 

Fig. 2 shows CDFs of operation timings during these 
experiments.  For operations with very short durations 
(less than 7 µsec), Farsite is actually faster than NTFS, 
primarily due to a shorter code path.  Nearly half of all 
operations are in this category.  For the remainder, 
except for the slowest 1.4% of operations, Farsite's 
speed is between that of NTFS and CIFS. 

We broke down the operation timings by operation type 
for the six types that took 99% of all I/O time.  Farsite’s 
mean operation durations are 2 to 4 times as long as 
those of NTFS for reads, writes, and closes; they are 9 
times as long for opens; and they are 20 times as long 
for stats and directory queries.  Over the entire trace, 
Farsite displayed 5.6 times the file-I/O latency of 
NTFS.  Some of this slowdown is due to making 
kernel/user crossings between the FMR and the FLM, 
and much of it is due to untuned code. 

Relative to CIFS, Farsite’s mean operation durations 
are 2 times as long on writes but only 0.4 times as long 
on reads and 0.7 times as long on stats.  Overall, Farsite 
displayed 0.8 times the file-I/O latency of CIFS. 

Table 1: Andrew benchmark timings (seconds) 

NTFS CIFS Farsite 

10.83 ± 0.05 29.30 ± 0.05 27.9 ± 0.1 

To evaluate Farsite’s sensitivity to network latency, we 
inserted a one-second delay into network transmissions.  
Because the vast majority of Farsite’s operations are 
performed entirely locally, the effect on the log-scaled 
CDF was merely to stretch the thin upper tail to the 
right, which is nearly invisible in Fig 2.  This delay did, 
however, double Farsite’s total file-I/O latency. 

Primarily because it is customary to do so, we also ran a 
version of the Andrew benchmark that we increased 
substantially in size and modified to run on Windows.  
This benchmark performs successive phases of creating 
directories, copying files, listing metadata, processing 
file content, and compiling the file-system code.  Table 
1 shows the time, with 95% confidence intervals, to 
complete this process, averaged over 1000 runs.  
Overall, our untuned implementation performs slightly 
better than CIFS and about one third the speed of local 
NTFS. 

6. Future Work 

Although we have implemented much of the Farsite 
design, several significant components remain, mainly 
those concerned with scalability (namespace delegation, 
distributed pathname translation, and directory-change 
notification) and those concerned with crash-recovery 
(directory-group membership change and torn-write 
repair).  The mechanism for distributed duplicate 
detection is operational, but it has yet to be integrated 
into the rest of the system.  In addition, several smaller 
components have not yet been completed, including 
exclusive encryption of filenames, serializing multiple 
writers on a single machine, cleanly supporting lease 
expirations on clients, and full support for Windows 
deletion semantics. 

Farsite requires two additional mechanisms for which 
we have not yet developed designs.  First, to prevent a 
single user from consuming all available space in the 
system, we need a mechanism to enforce per-user space 
quotas; our intent is to limit each user’s storage-space 
consumption to an amount proportional to that user’s 
machines’ storage-space contribution, with an expected 
proportionality constant near unity [6].  Second, Farsite 
relocates file replicas among machines according to the 
measured availability of those machines [14], which 
requires a mechanism to measure machine availability.  
Given Farsite’s design assumptions, these mechanisms 
must be scalable, decentralized, fault-tolerant, and 
secure, making their design rather more demanding 
than one might initially presume. 
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7. Related Work 

Farsite has many forebears in the history of network file 
systems.  NFS [39] provides server-based, location-
transparent file storage for diskless clients.  AFS [21] 
improves performance and availability on disk-enabled 
workstations via leases and client-side file caching.  In 
Sprite [35], clients use prefix tables for searching the 
file namespace.  Coda [22] replicates files on multiple 
servers to improve availability.  The xFS [1] file system 
decentralizes file-storage service among a set of trusted 
workstations, as does the Frangipani [45] file system 
running on top of the Petal [24] distributed virtual disk.  
All of these systems rely on trusted machines, and the 
decentralized systems (xFS and Frangipani) maintain 
per-client state that is proportional to the system size. 

An important area of distributed-file-systems research, 
but one that is orthogonal to Farsite, is disconnected 
operation.  The Coda [22], Ficus [37], and Bayou [44] 
systems researched this area extensively, and Farsite 
could adopt the established solution of application-
specific resolvers for concurrent update conflicts. 

Several earlier networked file systems have addressed 
one or more aspects of security.  Blaze’s Cryptographic 
File System [5] encrypts a single user’s files on a client 
machine and stores the encrypted files on a server.  BFS 
[8] replaces a single NFS server with a Byzantine-fault-
tolerant replica group.  SUNDR [27] guarantees file 
privacy, integrity, and consistency despite a potentially 
malicious server, but it does this by placing trust in all 
client machines (unlike Farsite, which requires only that 
each user trust the client machine he is directly using).  
SFS [26] constructs “self-certifying pathnames” by 
embedding hashes of public keys into file names, thus 
defending read-only data against compromised servers 
or compromised networks. 

A number of distributed storage systems attempt to 
address the issue of scalability.  Inspired by peer-to-
peer file-sharing applications such as Napster [33], 
Gnutella [17], and Freenet [9], storage systems such as 
CFS [10] and PAST [38] employ scalable, distributed 
algorithms for routing and storing data.  Widespread 
data distribution is employed by the Eternity Service’s 
[2] replication system and by Archival Intermemory’s 
[18] erasure-coding mechanism to prevent data loss 
despite attack by powerful adversaries, and PASIS [49] 
additionally employs secret sharing for data security.  
OceanStore [23] is designed to store all of the world’s 
data (1023 bytes) using trans-continentally distributed, 
Byzantine-fault-tolerant replica groups to provide user-
selectable consistency semantics.  These systems have 
flat namespaces; they do not export file-system 
interfaces; and (with the exception of OceanStore) they 
are designed for publishing or archiving data, rather 
than for interactively using and updating data. 

8. Conclusions 

Farsite is a scalable, decentralized, network file system 
wherein a loosely coupled collection of insecure and 
unreliable machines collaboratively establish a virtual 
file server that is secure and reliable.  Farsite provides 
the shared namespace, location-transparent access, and 
reliable data storage of a central file server and also the 
low cost, decentralized security, and privacy of desktop 
workstations.  It requires no central-administrative 
effort apart from signing user and machine certificates. 

Farsite’s core architecture is a collection of interacting, 
Byzantine-fault-tolerant replica groups, arranged in a 
tree that overlays the file-system namespace hierarchy.  
Because the vast majority of file-system data is opaque 
file content, Farsite maintains only indirection pointers 
and cryptographic checksums of this data as part of the 
Byzantine-replicated state.  Actual content is encrypted 
and stored using raw (non-Byzantine) replication; 
however, the architecture could alternatively employ 
erasure-coded replication to improve storage efficiency. 

Farsite is designed to support the file-I/O workload of 
desktop computers in a large company or university.  It 
provides availability and reliability through replication; 
privacy and authentication through cryptography; 
integrity through Byzantine-fault-tolerance techniques; 
consistency through leases of variable granularity and 
duration; scalability through namespace delegation; and 
reasonable performance through client caching, hint-
based pathname translation, and lazy update commit. 

In large part, Farsite’s design is a careful synthesis of 
techniques that are well known within the systems and 
security communities, including replication, Byzantine-
fault-tolerance, cryptography, certificates, leases, client 
caching, and secret sharing.  However, we have also 
developed several new techniques to address issues that 
have arisen in Farsite’s design:  Convergent encryption 
permits identifying and coalescing duplicate files 
encrypted with different users’ keys.  Exclusive 
encryption enforces filename syntax while maintaining 
filename privacy.  A scalable, distributed, fault-tolerant 
database supports distributed duplicate-file detection.  
We use a novel combination of secret sharing, message 
authentication codes, and logging to enable secure crash 
recovery.  Timed Byzantine operations and Byzantine 
outcalls supplement the conventional model of 
Byzantine fault-tolerance to permit directory groups to 
perform autonomous maintenance functions. 

Analysis suggests that our design should be able to 
scale to our target of ~105 machines.  Experiments 
demonstrate that our untuned prototype provides 
tolerable performance relative to a local NTFS file 
system, and it performs significantly better than remote 
file access via CIFS. 
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