
FARSITE: Federated, Available, and Reliable Storage
for an Incompletely Trusted Environment

Atul Adya, William J. Bolosky, Miguel Castro, Ronnie Chaiken, Gerald Cermak,
John R. Douceur, Jon Howell, Jacob R. Lorch, Marvin Theimer, Roger P. Wattenhofer

Microsoft Research, Redmond, WA 98052

{adya, bolosky, mcastro, rchaiken, gcermak, johndo, howell, lorch, theimer}@microsoft.com;
wattenhofer@inf.ethz.ch

Abstract

Farsite is a secure, scalable file system that logically functions as a centralized file server but is physically
distributed among a set of untrusted computers. Farsite provides file availability and reliability through randomized
replicated storage; it ensures the secrecy of file contents with cryptographic techniques; it maintains the integrity of
file and directory data with a Byzantine-fault-tolerant protocol; it is designed to be scalable by using a distributed
hint mechanism and delegation certificates for pathname translations; and it achieves good performance by locally
caching file data, lazily propagating file updates, and varying the duration and granularity of content leases. We
report on the design of Farsite and the lessons we have learned by implementing much of that design.

1. Introduction

This paper describes Farsite, a serverless distributed file
system that logically functions as a centralized file
server but whose physical realization is dispersed
among a network of untrusted desktop workstations.
Farsite is intended to provide both the benefits of a
central file server (a shared namespace, location-
transparent access, and reliable data storage) and the
benefits of local desktop file systems (low cost, privacy
from nosy sysadmins, and resistance to geographically
localized faults). Farsite replaces the physical security
of a server in a locked room with the virtual security of
cryptography, randomized replication, and Byzantine
fault-tolerance [8]. Farsite is designed to support
typical desktop file-I/O workloads in academic and
corporate environments, rather than the high-
performance I/O of scientific applications or the large-
scale write sharing of database applications. It requires
minimal administrative effort to initially configure and
practically no central administration to maintain. With
a few notable exceptions (such as crash recovery and
interaction between multiple Byzantine-fault-tolerant
groups), nearly all of the design we describe has been
implemented.

Traditionally, file service for workstations has been
provided either by a local file system such as FFS [28]
or by a remote server-based file system such as NFS
[39] or AFS [21]. Server-based file systems provide a
shared namespace among users, and they can offer
greater file reliability than local file systems because of
better maintained, superior quality, and more highly
redundant components. Servers also afford greater
physical security than personal workstations in offices.

However, server-based systems carry a direct cost in
equipment, physical plant, and personnel beyond those
already sunk into the desktop infrastructure commonly
found in modern companies and institutions. A server
requires a dedicated administrative staff, upon whose
competence its reliability depends [19] and upon whose
trustworthiness its security depends [47]. Physically
centralized servers are vulnerable to geographically
localized faults, and their store of increasingly sensitive
and valuable information makes them attractive,
concentrated targets for subversion and data theft, in
contrast to the inherent decentralization of desktop
workstations.

In designing Farsite, our goal has been to harness the
collective resources of loosely coupled, insecure, and
unreliable machines to provide logically centralized,
secure, and reliable file-storage service. Our system
protects and preserves file data and directory metadata
primarily through the techniques of cryptography and
replication. Since file data is large and opaque to the
system, the techniques of encryption, one-way hashing,
and raw replication provide means to ensure its privacy,
integrity, and durability, respectively. By contrast,
directory metadata is relatively small, but it must be
comprehensible and revisable directly by the system;
therefore, it is maintained by Byzantine-replicated
state-machines [8, 36] and specialized cryptographic
techniques that permit metadata syntax enforcement
without compromising privacy [15]. One of Farsite’s
key design objectives is to provide the benefits of
Byzantine fault-tolerance while avoiding the cost of full
Byzantine agreement in the common case, by using
signed and dated certificates to cache the authorization
granted through Byzantine operations.

Both Farsite’s intended workload and its expected
machine characteristics are those typically observed on
desktop machines in academic and corporate settings.
These workloads exhibit high access locality, a low
persistent update rate, and a pattern of read/write
sharing that is usually sequential and rarely concurrent
[22, 48]. The expected machine characteristics include
a high fail-stop rate (often just a user turning a machine
off for a while) [6] and a low but significant rate [41] of
malicious or opportunistic subversion. In our design,
analysis, evaluation, and discussion, we focus on this
environment, but we note that corporate administrators
might choose to supplement Farsite’s reliability and
security by adding userless machines to the system or
even running entirely on machines in locked rooms.

Farsite requires no central administration beyond that
needed to initially configure a minimal system and to
authenticate new users and machines as they join the
system. Administration is mainly an issue of signing
certificates: Machine certificates bind machines to their
public keys; user certificates bind users to their public
keys; and namespace certificates bind namespace roots
to their managing machines. Beyond initially signing
the namespace certificate and subsequently signing
certificates for new machines and users, no effort is
required from a central administrator.

There are many directions we could have explored in
the Farsite design space that we have chosen not to.
Farsite is not a high-speed parallel I/O system such as
SGI's XFS [43], and it does not efficiently support
large-scale write sharing of files. Farsite is intended to
emulate the behavior of a traditional local file system,
in particular NTFS [42]; therefore, it introduces no new
user-visible semantics, such as an object-model
interface, transactional support, versioning [39], user-
specifiable file importance, or Coda-like [22] hooks for
application-specific conflict resolvers to support
concurrent file updates during disconnected operation.

We have implemented most – but not all – of the design
described in this paper. The exceptions, which mainly
relate to scalability and crash recovery, are itemized in
section 6 and identified throughout the text with the
term Farsite design, indicating a mechanism that we
have designed but not yet implemented.

The following section presents a detailed overview of
the system. Section 3, the bulk of the paper, describes
the mechanisms that provide Farsite’s key features.
Section 4 describes our prototype implementation.
Section 5 analytically evaluates our design’s scalability
and empirically evaluates our prototype’s performance.
We discuss future work in section 6, related work in
section 7, and conclusions in section 8.

2. System Overview

This section provides a background and overview of
Farsite by itemizing underlying design assumptions,
highlighting two enabling technology trends, explaining
the fundamental concept of namespace roots, describing
Farsite’s certification model and mechanisms, outlining
the system architecture, and describing several semantic
differences between Farsite and a local file system.

2.1 Design Assumptions

Most of our design assumptions stem from the fact that
Farsite is intended to run on the desktop workstations of
a large corporation or university. Thus, we assume a
maximum scale of ~105 machines, none of which are
dedicated servers, and all of which are interconnected
by a high-bandwidth, low-latency network whose
topology can be ignored. Machine availability is
assumed to be lower than that of dedicated servers but
higher than that of hosts on the Internet; specifically,
we expect the majority of machines to be up and
accessible for the majority of the time. We assume
machine downtimes to be generally uncorrelated and
permanent machine failures to be mostly independent.
Although Farsite tolerates large-scale read-only sharing
and small-scale read/write sharing, we assume that no
files are both read by many users and also frequently
updated by at least one user. Empirical data [6, 48]
corroborates this set of assumptions.

We assume that a small but significant fraction of users
will maliciously attempt to destroy or corrupt file data
or metadata, a reasonable assumption for our target
environment but an unreasonably optimistic one on the
open Internet. We assume that a large fraction of users
may independently and opportunistically attempt to
read file data or metadata to which they have not been
granted access. Each machine is assumed to be under
the control of its immediate user, and a party of
malicious users can subvert only machines owned by
members of the party.

We assume that the local machine of each user can be
trusted to perform correctly for that user, and no user-
sensitive data persists beyond user logoff or system
reboot. This latter assumption is known to be false
without a technique such as crypto-paging [50], which
is not employed by any commodity operating system
including Windows, the platform for our prototype.

2.2 Enabling Technology Trends

Two technology trends are fundamental in rendering
Farsite's design practical: a general increase in unused
disk capacity and a decrease in the computational cost
of cryptographic operations relative to I/O.

A very large fraction of the disk space on desktop
workstations is unused, and disk capacity is increasing
at a faster rate than disk usage. In 1998, measurements
of 4800 desktop workstations at Microsoft [13] showed
that 49% of disk space was unused. In 1999 and 2000,
we measured the unused portions to be 50% and 58%.

As computation speed has increased with Moore’s Law,
the cost of cryptographic operations has fallen relative
to the cost of the I/O operations that are the mainstay of
a file system. We measured a modern workstation and
found a symmetric encryption bandwidth of 72 MB/s
and a one-way hashing bandwidth of 53 MB/s, both of
which exceed the disk’s sequential-I/O bandwidth of 32
MB/s. Encrypting or decrypting 32 KB of data adds
roughly one millisecond of latency to the file-read/write
path. Computing an RSA signature with a 1024-bit key
takes 6.5 milliseconds, which is less than one rotation
time for a 7200-RPM disk.

The large amount of unused disk capacity enables the
use of replication for reliability, and the relatively low
cost of strong cryptography enables distributed security.

2.3 Namespace Roots

The primary construct established by a file system is a
hierarchical directory namespace, which is the logical
repository for files. Since a namespace hierarchy is a
tree, it has to have a root. Rather than mandating a
single namespace root for any given collection of
machines that form a Farsite system, we have chosen to
allow the flexibility of multiple roots, each of which
can be regarded as the name of a virtual file server that
is collaboratively created by the participating machines.
An administrator creates a namespace root simply by
specifying a unique (for that administrator) root name
and designating a set of machines to manage the root.
These machines will form a Byzantine-fault-tolerant
group (see subsection 2.5), so it is not crucial to select a
specially protected set of machines to manage the root.

2.4 Trust and Certification

The security of any distributed system is essentially an
issue of managing trust. Users need to trust in the
authority of machines that offer to present data and
metadata. Machines need to trust the validity of
requests from remote users to modify file contents or
regions of the namespace. Security components that
rely on redundancy need to trust that an apparently
distinct set of machines is truly distinct and not a single
malicious machine pretending to be many, a potentially
devastating attack known as a Sybil attack [11].

Farsite manages trust using public-key-cryptographic
certificates. A certificate is a semantically meaningful
data structure that has been signed using a private key.

The principal types of certificates are namespace
certificates, user certificates, and machine certificates.
A namespace certificate associates the root of a file-
system namespace with a set of machines that manage
the root metadata. A user certificate associates a user
with his personal public key, so that the user identity
can be validated for access control. A machine
certificate associates a machine with its own public
key, which is used for establishing the validity of the
machine as a physically unique resource.

Trust is bootstrapped by fiat: Machines are instructed
to accept the authorization of any certificate that can be
validated with one or more particular public keys. The
corresponding private keys are known as certification
authorities (CAs). Consider a company with a central
certification department, which generates a public/
private key pair to function as a CA. Every employee
generates a public/private key pair, and the CA signs a
certificate associating the employee’s username with
the public key. For a small set of machines, the CA
generates public/private key pairs and embeds the
public keys in a namespace certificate that designates
these machines as managers of its namespace root. The
CA then performs the following four operations for
every machine in the company: (1) Have the machine
generate a public/private key pair; (2) sign a certificate
associating the machine with the public key; (3) install
the machine certificate and root namespace certificate
on the machine; and (4) instruct the machine to accept
any certificate signed by the CA.

Farsite’s certification model is more general than the
above paragraph suggests, because machine certificates
are not signed directly by CAs but rather are signed by
users whose certificates designate them as authorized to
certify machines, akin to Windows’ model for domain
administration. This generalization allows a company
to separate the responsibilities of authenticating users
and machines, e.g., among HR and IT departments. A
single machine can participate in multiple CA domains,
but responsibility granted by one CA is only delegated
to other machines authorized by that same CA.

A machine’s private key is stored on the machine itself.
In the Farsite design, each user private key is encrypted
with a symmetric key derived from the user’s password
and then stored in a globally-readable directory in
Farsite, where it can be accessed upon login. CA
private keys should be kept offline, because the entire
security of a Farsite installation rests on their secrecy.

User or machine keys can be revoked by the issuing
CA, using the standard techniques [29]: Signed
revocation lists are periodically posted in a prominent,
highly replicated location. All certificates include an
expiration date, which allows revocation lists to be
garbage collected.

2.5 System Architecture

We now present a high-level overview of the Farsite
architecture, beginning with a simplified system and
subsequently introducing some of Farsite’s key aspects.

2.5.1 Basic System
Every machine in Farsite may perform three roles: It is
a client, a member of a directory group, and a file host,
but we initially ignore the latter of these. A client is a
machine that directly interacts with a user. A directory
group is a set of machines that collectively manage file
information using a Byzantine-fault-tolerant protocol
[8]: Every member of the group stores a replica of the
information, and as the group receives client requests,
each member processes these requests deterministically,
updates its replica, and sends replies to the client. The
Byzantine protocol guarantees data consistency as long
as fewer than a third of the machines misbehave.

Consider a system that includes several clients and one
directory group. For the moment, imagine that the
directory group manages all of the file-system data and
metadata, storing it redundantly on all machines in the
group. When a client wishes to read a file, it sends a
message to the directory group, which replies with the
contents of the requested file. If the client updates the
file, it sends the update to the directory group. If
another client tries to open the file while the first client
has it open, the directory group evaluates the specified
sharing semantics requested by the two clients to
determine whether to grant the second client access.

2.5.2 System Enhancements
The above-described system provides reliability and
data integrity through Byzantine replication. However,
it may have performance problems since all file-system
requests involve remote Byzantine operations; it does
not provide data privacy from users who have physical
access to the directory group members; it does not have
the means to enforce user access control; it consumes a
large amount of storage space since files are replicated
on every directory group member, and it does not scale.

Farsite enhances the basic system in several ways. It
adds local caching of file content on the client to
improve read performance. Farsite’s directory groups
issue leases on files to clients, granting them access to
the files for a specified period of time, so a client with
an active lease and a cached copy of a file can perform
operations entirely locally. Farsite delays pushing
updates to the directory group, because most file writes
are deleted or overwritten shortly after they occur [4,
48]. To protect user privacy and provide read-access
control, clients encrypt written file data with the public
keys of all authorized readers; and the directory group
enforces write-access control by cryptographically
validating requests from users before accepting updates.

Since Byzantine groups fail to make progress if a third
or more of their members fail, directory groups require
a high replication factor (e.g., 7 or 10) [8]. However,
since the vast majority of file-system data is opaque file
content, we can offload the storage of this content onto
a smaller number of other machines (“file hosts”), using
a level of indirection. By keeping a cryptographically
secure hash of the content on the directory group,
putative file content returned from a file host can be
validated by the directory group, thereby preventing the
file host from corrupting the data. Therefore, Farsite
can tolerate the failure of all but one machine in a set of
file hosts, thus allowing a far lower replication factor
(e.g., 3 or 4) [6] for the lion’s share of file-system data.

As machines and users join a Farsite system, the
volume of file-system metadata will grow. At some
point, the storage and/or operation load will overwhelm
the directory group that manages the namespace. The
Farsite design addresses this problem by allowing the
directory group to delegate a portion of its namespace
to another directory group. Specifically, the group
randomly selects, from all of the machines it knows
about, a set of machines that it then instructs to form a
new directory group. The first group collectively signs
a new namespace certificate delegating authority over a
portion of its namespace to the newly formed group.
This group can further delegate a portion of its region
of the namespace. Because each file-system namespace
forms a hierarchical tree, each directory group can
delegate any sub-subtree of the subtree that it manages
without involving any other extant directory groups.

In this enhanced system, when a client wishes to read a
file, it sends a message to the directory group that
manages the file’s metadata. This group can prove to
the client that it has authority over this directory by
presenting a namespace certificate signed by its parent
group, another certificate signed by its parent’s parent,
and so on up to the root namespace certificate signed by
a CA that the client regards as authoritative. The group
replies with these namespace certificates, a lease on the
file, a one-way hash of the file contents, and a list of
file hosts that store encrypted replicas of the file. The
client retrieves a replica from a file host and validates
its contents using the one-way hash. If the user on the
client machine has read access to the file, then he can
use his private key to decrypt the file. If the client
updates the file, then, after a delay, it sends an updated
hash to the directory group. The directory group
verifies the user’s permission to write to the file, and it
instructs the file hosts to retrieve copies of the new data
from the client. If another client tries to open the file
while the first client has an active lease, the directory
group may need to contact the first client to see whether
the file is still in use, and the group may recall the lease
to satisfy the new request.

2.6 Semantic Differences from NTFS

Despite our goal of emulating a local NTFS file system
as closely as possible, performance or behavioral issues
have occasionally motivated semantics in Farsite that
diverge from those of NTFS.

If many (e.g., more than a thousand) clients hold a file
open concurrently, the load of consistency management
– via querying and possibly recalling leases – becomes
excessive, reducing system performance. To prevent
this, the Farsite design places a hard limit on the
number of clients that can have a file open for
concurrent writing and a soft limit on the number that
can have a file open for concurrent reading. Additional
attempts to open the file for writing will fail with a
sharing violation. Additional attempts to open the file
for reading will not receive a handle to the file; instead,
they will receive a handle to a snapshot of the file,
taken at the time of the open request. Because it is only
a snapshot, it will not change to reflect updates by
remote writers, and so it may become stale. Also, an
open snapshot handle will not prevent another client
from opening the file for exclusive access, as a real file
handle would. An application can query the Farsite
client to find out whether it has a snapshot handle or a
true file handle, but this is not part of NTFS semantics.

NTFS does not allow a directory to be renamed if there
is an open handle on a file in the directory or in any of
its descendents. In a system of 105 machines, there will
almost always be an open handle on a file somewhere
in the namespace, so these semantics would effectively
prevent a directory near the root of the tree from ever
being renamed. Thus, we instead implement the Unix-
like semantics of not name-locking an open file’s path.

The results of directory rename operations are not
propagated synchronously to all descendent directory
groups during the rename operation, because this would
unacceptably retard the rename operation, particularly
for directories near the root of the namespace tree.
Instead, they are propagated lazily, so they might not be
immediately visible to all clients.

Windows applications can register to be informed about
changes that occur in directories or directory subtrees.
This notification is specified to be best-effort, so we
support it without issuing read leases to registrants.
However, for reasons of scalability, we only support
notification on single directories and not on subtrees.

3. File System Features

This section describes the mechanisms behind Farsite’s
key features, which include reliability and availability,
security, durability, consistency, scalability, efficiency,
and manageability.

3.1 Reliability and Availability

Farsite achieves reliability (long-term data persistence)
and availability (immediate accessibility of file data
when requested) mainly through replication. Directory
metadata is replicated among members of a directory
group, and file data is replicated on multiple file hosts.
Directory groups employ Byzantine-fault-tolerant
replication, and file hosts employ raw replication.

For redundantly storing file data, Farsite could have
used an erasure coding scheme [3] rather than raw
replication. We chose the latter in part because it is
simpler and in part because we had concerns about the
additional latency introduced by fragment reassembly
of erasure-coded data during file reads. Some empirical
data [25] suggests that our performance concerns might
have been overly pessimistic, so we may revisit this
decision in the future. The file replication subsystem is
a readily separable component of both the architecture
and the implementation, so it will be straightforward to
replace if we so decide.

With regard to reliability, replication guards against the
permanent death of individual machines, including
data-loss failures (such as head crashes) and explicit
user decommissioning. With regard to availability,
replication guards against the transient inaccessibility of
individual machines, including system crashes, network
partitions, and explicit shutdowns. In a directory group
of RD members, metadata is preserved and accessible if
no more than (RD – 1) / 3 of the machines die. For
files replicated on RF file hosts, file data is preserved
and accessible if at least one file host remains alive.

In the Farsite design, when a machine is unavailable for
an extended period of time, its functions migrate to one
or more other machines, using the other replicas of the
file data and directory metadata to regenerate that data
and metadata on the replacement machines. Thus, data
is lost permanently only if too many machines fail
within too small a time window to permit regeneration.

Because the volume of directory data is much smaller
than that of file data, directory migration is performed
more aggressively than file-host migration: Whenever
a directory group member is down or inaccessible for
even a short time, the other members of the group select
a replacement randomly from the set of accessible
machines they know about. Since low-availability
machines are – by definition – up for a smaller fraction
of time than high-availability machines, they are more
likely to have their state migrated to another machine
and less likely to be an accessible target for migration
from another machine. These factors bias directory-
group membership toward highly availability machines,
without introducing security-impairing non-randomness
into member selection. This bias is desirable since

Byzantine agreement is only possible when more than
two thirds of the replicas are operational. The increase
in the (light) metadata workload on high-availability
machines is compensated by a small decrease in their
(heavy) file storage and replication workload.

Farsite improves global file availability by continuously
relocating file replicas at a sustainable background rate
[14]. Overall mean file uptime is maximized by
achieving an equitable distribution of file availability,
because low-availability files degrade mean file uptime
more than high-availability files improve it. Therefore,
Farsite successively swaps the machine locations of
replicas of high-availability files with those of low-
availability files, which progressively equalizes file
availability. Simulation experiments [14] driven by
actual measurements of desktop machine availability
show that Farsite needs to swap 1% of file replicas per
day to compensate for changes in machine availability.

File availability is further improved by caching file data
on client disks. These caches are not fixed in size but
rather hold file content for a specified interval called
the cache retention period (roughly one week) [6].

3.2 Security

3.2.1 Access Control
Farsite uses different mechanisms to enforce write- and
read-access controls. Because directory groups only
modify their shared state via a Byzantine-fault-tolerant
protocol, we trust the group not to make an incorrect
update to directory metadata. This metadata includes
an access control list (ACL) of public keys of all users
who are authorized writers to that directory and to files
therein. When a client establishes cryptographically
authenticated channels to a directory group’s members,
the channel-establishment protocol involves a user’s
private key, thereby authenticating the messages on that
channel as originating from a specific user. The
directory group validates the authorization of a user’s
update request before accepting the update.

Because a single compromised directory-group member
can inappropriately disclose information, Farsite
enforces read-access control via strong cryptography, as
described in the next subsection.

3.2.2 Privacy
Both file content and user-sensitive metadata (meaning
file and directory names) are encrypted for privacy.

When a client creates a new file, it randomly generates
a symmetric file key with which it encrypts the file. It
then encrypts the file key using the public keys of all
authorized readers of the file, and it stores the file key
encryptions with the file, so a user with a corresponding
private key can decrypt the file key and therewith the

file. Actually, there is one more level of indirection
because of the need to identify and coalesce identical
files (see subsection 3.6.1) even if they are encrypted
with different user keys: The client first computes a
one-way hash of each block of the file, and this hash is
used as a key for encrypting the block. The file key is
used to encrypt the hashes rather than to encrypt the file
blocks directly. We call this technique convergent
encryption [12], because identical file plaintext
converges to identical ciphertext, irrespective of the
user keys. Performing encryption on a block level
enables a client to write an individual block without
having to rewrite the entire file. It also enables the
client to read individual blocks without having to wait
for the download of an entire file from a file host.

To prevent members of a directory group from viewing
file or directory names, they are encrypted by clients
before being sent to the group, using a symmetric key
that is encrypted with the public keys of authorized
directory readers and stored in the directory metadata
[15]. To prevent a malicious client from encrypting a
syntactically illegal name [31], the Farsite design uses a
technique called exclusive encryption, which augments
a cryptosystem in a way that guarantees that decryption
can only produce legal names no matter what bit string
is given as putative ciphertext [15].

3.2.3 Integrity
As long as fewer than one third of the members of a
directory group are faulty or malicious, the integrity of
directory metadata is maintained by the Byzantine-
fault-tolerant protocol. Integrity of file data is ensured
by computing a Merkle hash tree [30] over the file data
blocks, storing a copy of the tree with the file, and
keeping a copy of the root hash in the directory group
that manages the file’s metadata. Because of the tree,
the cost of an in-place file-block update is logarithmic –
rather than linear – in the file size. The hash tree also
enables a client to validate any file block in logarithmic
time, without waiting to download the entire file. The
time to validate the entire file is linear in the file size,
not log-linear, because the count of internal hash nodes
is proportional to the count of leaf content nodes.

3.3 Durability

When an application creates, modifies, renames, or
deletes a file or directory, these updates to metadata are
committed only on the client’s local disk and not by a
Byzantine operation to the directory group, due to the
high cost of the latter. The updates are written into a
log (much as in Coda [22]), which is compressed when
possible via techniques such as removing matching
create-delete operation pairs. The log is pushed back to
the directory group periodically and also when a lease
is recalled, as described in subsection 3.4. Because

client machines are not fully trusted, the directory
group verifies the legality of each log entry before
performing the update operation that it specifies.

When a client machine reboots after a crash, it needs to
send committed updates to the directory group and have
the group accept them as validly originating from the
user. The two obvious ways of accomplishing this are
unacceptable: Private-key-signing every committed
update would be prohibitively expensive (roughly a
disk seek time), and holding the user’s private key on
the client through a crash would open a security hole.

Instead, when first contacting a directory group, a client
generates a random authenticator key and splits it into
secret shares [46], which it distributes among members
of the directory group. This key is not stored on the
client’s local disk, so it is unavailable to an attacker
after a crash (modulo the lack of crypto-paging in the
underlying operating system – see subsection 2.1).
With this key, the client signs each committed update
using a message authentication code (MAC) [29].
(Symmetric-key MACs are much faster than public-key
signatures.) When recovering from a crash, the client
sends the MAC and authorization certificates to the
directory group along with the locally committed
updates. In a single transaction, the group members
first batch the set of updates, then jointly reconstruct the
authenticator key, validate the batch of updates, and
discard the key. Once the key has been reconstructed,
no further updates will be accepted. (The recovery
phase of this process is not yet implemented.)

Modifying a file (unlike creating, renaming, or deleting
it) affects not only the file metadata but also the file
content. It is necessary to update the content atomically
with the metadata; otherwise, they may be left in an
inconsistent state following a crash, and the file content
will be unverifiable. For the rare [48] cases when an
existing block is overwritten, the new content is logged
along with the metadata before the file is updated, so a
partial write can be rolled forward from the log. When
a client appends a new block to the end of a file, the
content need not be logged; it is sufficient to atomically
update the file length and content hash after writing the
new block. If a crash leaves a partially written block, it
can be rolled backward to an empty block [20].

3.4 Consistency

The ultimate responsibility for consistency of file data
and directory metadata lies with the directory group that
manages the file or directory. However, temporary,
post-hoc-verifiable control can be loaned to client
machines via a lease mechanism. There are four
classes of leases in Farsite: content leases, name leases,
mode leases, and access leases. They are described in
the following four subsections.

3.4.1 Data Consistency
Content leases govern which client machines currently
have control of a file’s content. There are two content-
lease types: read/write and read-only, and they support
single-writer multi-reader semantics. A read-only lease
assures a client that the file data it sees is not stale. A
read/write lease entitles a client to perform write
operations to its local copy of the file. Applications are
not aware of whether their clients hold content leases.

When an application opens a file, the client requests a
content lease from the directory group that manages the
file. When the application closes the file, the client
does not immediately cancel its lease, since it may soon
need to open that file again [48]. If another client
makes a valid request for a new content lease while the
first client holds a conflicting lease, the directory group
will recall the lease from the first client. When this
client returns the lease, it will also push all of its logged
updates to the directory group. The group will apply
these updates before issuing the new content lease to
the other client, thereby maintaining consistency.

Since read/write and write/write file sharing on
workstations is usually sequential [22, 48], it is often
tolerably efficient to ping-pong leases between clients
as they make alternate file accesses. However, as a
performance optimization, the Farsite design includes a
mechanism similar to that in Sprite [35]: redirecting
concurrent non-read-only accesses through a single
client machine. This approach is not scalable, but
Farsite is not designed for large-scale write sharing.
We have not yet determined an appropriate policy for
when concurrent non-read-only accesses should switch
from lease ping-pong to single-client serialization.

Content leases have variable granularity: A lease may
cover a single file, or it may cover an entire directory of
files, similar to a volume lease in AFS [21]. Directory
groups may issue broader leases than those requested
by the client, if no other clients have recently made
conflicting accesses to the broader set of files.

Because clients can fail or become disconnected, they
may be unable to respond to a lease recall. To prevent
this situation from rendering a file permanently
inaccessible, leases include expiration times. The lease
time varies depending upon the type of lease (i.e., read-
only leases last for longer than read/write leases) and
upon the observed degree of sharing on the file. The
directory group treats lease expiration identically to a
client’s closing the file without making further updates.

There are several options for handling lease expiration
on a disconnected client: The most pessimistic strategy
is to close all handles to the file and drop any logged
updates, since it may not be possible to apply the
updates if the file is modified by another client after the

lease expires. We could, however, save the logged
updates and, if the file has not changed, apply them
after re-establishing communications with the directory
group. We may wish to keep file handles open for read
access to potentially stale data, or – most optimistically
– even allow further updates, since we might be able to
apply these later. We have not yet explored this space
nor implemented any mechanisms.

Since the Windows directory-listing functions are
specified to be best-effort, we support them using a
snapshot of directory contents rather than with a lease.

As described in subsection 2.7, the number of leases
issued per file is limited for performance reasons.

3.4.2 Namespace Consistency
Shared file-system namespaces commonly [34] contain
regions that are private to particular users. To allow
clients to modify such regions without having to
frequently contact the directory group that manages the
region, Farsite introduces the concept of name leases.

Name leases govern which client machine currently has
control over a name in the directory namespace. There
is only one type of name lease, but it has two different
meanings depending on whether a directory (or file)
with that name exists: If there is no such extant name,
then a name lease entitles a client to create a file or
directory with that name. If a directory with the name
exists, then the name lease entitles a client to create
files or subdirectories under that directory with any
non-extant name. This dual meaning implies that when
a client uses a name lease to create a new directory, it
can then immediately create files and subdirectories in
that directory. To rename a file or directory, a client
must obtain a name lease on the target name.

Like content leases, name leases can be recalled if a
client wants to create a name that falls within the scope
of a name lease that has been issued to another client.
The discussion above regarding expiration of content
leases also applies to name leases.

3.4.3 Windows File-Sharing Semantics
Windows supports application-level consistency by
providing explicit control over file-sharing semantics.
When an application opens a file, it specifies two
parameters: (1) the access mode, which is the types of
access it wants, and (2) the sharing mode, which is the
types of access it is willing to concurrently allow
others. There are many different access modes, but
from the perspective of a distributed system, they can
be distilled down to three (and finer distinctions can be
enforced locally by the client): read access, write
access, and delete access. There are also three sharing
modes: read sharing, write sharing, and delete sharing,
which permit other applications to open the file for read
access, write access, and delete access, respectively.

As an example, if an application tries to open a file with
read access mode, the open will fail if another
application has the file open without read sharing mode.
Conversely, if an application tries to open a file without
read sharing mode, the open will fail if another
application has the file open with read access mode.

To support these semantics, Farsite employs six types
of mode leases: read, write, delete, exclude-read,
exclude-write, and exclude-delete. When a client opens
a file, Farsite translates the requested access and share
modes into the corresponding mode-lease types: Each
access mode implies a need for the corresponding mode
lease, and the lack of each sharing mode implies a need
for the corresponding exclude lease. For example, if an
application opens a file for read access, the client will
request a read mode lease, and if the open allows only
read sharing, then it will also request exclude-write and
exclude-delete mode leases. When a directory group
processes a client’s open request, it determines whether
it can issue the requested leases without conflicting
with any extant mode leases on the file. If it cannot, it
contacts the client or clients who hold conflicting mode
leases to see if they are willing to have their leases
revoked or downgraded, which they may be if their
applications no longer have open handles on the file.
The mode-lease conflicts are the obvious ones: read
conflicts with exclude-read, write with exclude-write,
and delete with exclude-delete.

3.4.4 Windows Deletion Semantics
Windows has surprisingly complex deletion semantics:
A file is deleted by opening it, marking it for deletion,
and closing it. Since there may be multiple handles
open on a file, the file is not truly deleted until the last
handle on a deletion-marked file is closed. While the
file is marked for deletion, no new handles may be
opened on the file, but any application that has an open
delete-access handle can clear the deletion mark,
thereby canceling the deletion and also permitting new
handles on the file to be opened.

To support these semantics, the Farsite design employs
three types of access leases: public, protected, and
private. All three types of access leases indicate that
the client has access to the file. Protected leases also
indicate that no other client will be granted access
without first contacting the client who holds a protected
lease. Private leases further indicate that no other client
has any access lease on the file. When a client opens a
file, the managing directory group checks to see
whether it has issued a private or protected access lease
to any other client. If it has, it downgrades this lease to
a public lease, thereby forcing a metadata pushback (as
described in subsection 3.3), before issuing an access
lease to the new client.

To mark a file for deletion, a client must first obtain a
private or protected access lease on the file. If the
directory group thereafter receives a different client’s
request to open the file, downgrading this access lease
to a public lease will force a metadata pushback, thus
informing the directory group of whether the client has
delete-marked the file. If the file has been marked, then
the directory group will deny the open request.

If a client has a private access lease on a file, it is
guaranteed that no other client has an open handle, so it
can delete the file as an entirely local operation.

3.5 System Scalability

The Farsite design uses two main mechanisms to keep a
node’s computation, communication, and storage from
growing with the system size: hint-based pathname
translation and delayed directory-change notification.

When a directory group becomes overloaded, at least
(2 RD + 1) / 3 of its RD members can sign a certificate
that delegates part of its namespace to another group.
When a client attempts to open a file or directory with a
particular pathname, it needs to determine which group
of machines is responsible for that name. The basis
mechanism is to contact successive directory groups
until the responsible group is found. This search begins
with the group that manages the root of the namespace,
and each contacted group provides a delegation
certificate that indicates which group to contact next.

This basis approach clearly does not scale, because all
pathname translations require contacting the root
directory group. Therefore, to perform translations in a
scalable fashion, the Farsite design uses a hint-based
scheme that tolerates corrupt directory group members,
group membership changes, and stale delegations:
Each client maintains a cache of pathnames and their
mappings to directory groups, similar to prefix tables in
Sprite [35]. A client translates a path by finding the
longest-matching prefix in its cache and contacting the
indicated directory group. There are three cases: (1)
Because of access locality, the most common case is
that the contacted group manages the pathname. (2) If
the group manages only a path prefix of the name, then
it replies with all of its delegation certificates, which the
client adds to its hint cache. (3) If the group does not
manage a path prefix of the name, then it informs the
client, which removes the stale hint that led it to the
incorrect group. In the latter two cases, the client again
finds the longest-matching prefix and repeats the above
steps. Because of the signed delegation certificates, no
part of this protocol requires Byzantine operations.
Each step either removes old information or adds new
information about at least one pathname component, so
the translation terminates after no more than twice the
number of components in the path being translated.

Directory-change notification is a Windows mechanism
that allows applications to register for callbacks when
changes occur to a specified directory. The archetypal
example is Windows Explorer, which registers a
notification for the directory currently displayed. Since
Windows specifies this notification to be best-effort, the
Farsite design supports it in a delayed manner: For any
directory for which a notification has been registered,
the directory group packages the complete directory
information, signs it to authenticate its contents, and
sends it to the registered clients. The transmission work
can be divided among members of the directory group
and also among clients using application-level multicast
[16]. Farsite clients automatically register for directory-
change notification when a user lists a directory, so
repeat listings need not make multiple remote requests.

3.6 Efficiency

3.6.1 Space Efficiency
File and directory replication dramatically increase the
storage requirements of the system. To make room for
this additional storage, Farsite reclaims space from
incidentally duplicated files, such as workgroup-shared
documents or multiple copies of common applications.

Measurements of 550 desktop file systems at Microsoft
[6] show that almost half of all occupied disk space can
be reclaimed by eliminating duplicates. The Farsite
design detects files with duplicate content by storing
file-content hashes in a scalable, distributed, fault-
tolerant database [12]. It then co-locates replicas of
identical files onto the same set of file hosts, where they
are coalesced by Windows’ Single Instance Store [7].

3.6.2 Time Efficiency (Performance)
Many of the mechanisms already described have been
designed in part for their effect on system performance.
Caching encrypted file content on client disks improves
not only file availability but also file-read performance
(further improved by caching decrypted file content in
memory). Farsite’s various lease mechanisms and its
hint-based pathname translation not only reduce the
load on directory groups but also eliminate the latency
of network round trips. Performance is the primary
motivation behind limiting the count of leases per file,
using Merkle trees for data integrity, and MAC-logging
metadata updates on clients.

In addition, Farsite inserts a delay between the creation
or update of a file and the replication of the new file
content, thus providing an opportunity to abort the
replication if the operation that motivated it is
superseded. Since the majority of file creations and
updates are followed by deletions or other updates
shortly thereafter [4, 48], this delay permits a dramatic
reduction in network file-replication traffic [6].

3.7 System Manageability

3.7.1 Local-Machine Administration
Although Farsite requires little central administration,
users may occasionally need or want to perform local-
system administrative tasks, such as hardware upgrades,
software upgrades, and backup of private data.

When using a local file system, upgrading a machine’s
hardware by replacing the disk (or by replacing the
entire machine) necessitates copying all file-system
structure and content from the old disk to the new one.
In Farsite, file data and metadata are replicated on other
machines for reliability, so removing the old disk (or
decommissioning an old machine) is merely a special
case of hardware failure. In its capacities as file host
and directory group member, the machine’s functions
will be migrated; and in its capacity as a client, the hint
cache and content cache will gradually refill. However,
since users replace their machines far more frequently
than machines fail, Farsite’s reliability is substantially
improved by providing users a means to indicate their
intention to decommission a machine or disk, spurring a
preemptive migration of the machine’s functions [6].

To address the need for upgrades and bug fixes, Farsite
supports interoperation between machines running
different versions of its software by including major
and minor version numbers in connection-establishment
messages. Minor-version changes can – by definition –
be ignored, and later versions of the software can send
and understand all earlier major versions of messages.
This backward compatibility permits users to self-pace
their upgrades, using a suggestion-based model similar
to Windows Update [32]. Updated executables need
not be sourced centrally: If they are signed using a
private key whose public counterpart is baked into the
Farsite code, upgrades can be obtained from any other
machine running a more recent version of Farsite code.

Backup processes are commonly used for two purposes:
reliability and archiving. In Farsite, there is little need
for the former, since the multiple on-line copies of each
file on independent machines should be more reliable
than a single extra copy on a backup tape whose quality
is rarely verified. For archival purposes, automatic on-
line versioning [40] would be a more valuable system
addition than manual off-line backup. However, if
users still wish to backup their own regions of the
namespace, existing backup utilities should work fine,
except for two problems: pollution of the local cache
and weakening of privacy from storing decrypted data
on tape. To address the first problem, we could exploit
a flag that Windows backup utilities use to indicate
their purpose in opening files: Farsite could respond to
this flag by not locally caching the file. The second
problem, which is outside of Farsite’s domain, could be
addressed by an encrypting backup utility.

3.7.2 Autonomic System Operation
Farsite administers itself in a distributed, Byzantine-
fault-tolerant fashion. Self-administration tasks are
either lazy follow-ups scheduled after client-initiated
operations or continual background tasks performed
periodically. The details of these tasks (file replication,
replica relocation, directory migration, namespace
delegation, and duplicate-file identification/coalescing)
have been described above, but in this section we
describe their substrate: two semantic extensions to the
conventional model of Byzantine fault-tolerance, timed
Byzantine operations and Byzantine outcalls.

In the standard conception of Byzantine fault-tolerant
distributed systems [8], an operation is initiated by a
single machine and performed by a Byzantine-fault-
tolerant replica group. This modifies the shared state of
the group members and returns a result to the initiator.
The purpose of the Byzantine protocol is to guarantee
that the state update and the returned result are correct.

For lazy and periodic tasks (e.g., replica relocation),
directory groups need to initiate operations in response
to a timer, rather than in response to a client request.
This is complicated because Byzantine replicas perform
operations in lock step, but the clocks of the group
members cannot be perfectly synchronized. Farsite’s
timed Byzantine operations work as follows: The
Byzantine-replicated state includes RD member time
values, each associated with one of the RD machines in
the group. The kth largest member time value (where k
= (RD – 1) / 3 + 1) is the group time. When each
machine’s local time indicates that a timed operation
should be performed, it invokes the Byzantine protocol
to update its replicated member time. If this update
increments the group time, then the group performs all
operations scheduled to occur before the group time.

Self-administration tasks invert the standard model of
Byzantine-fault-tolerance: The directory group invokes
an operation (e.g., instruction to create a file replica) on
a single remote machine, which sends a reply back to
the group. We perform these Byzantine outcalls using a
hint-based scheme: A Byzantine operation updates the
replicated state to enqueue a request to a remote
machine. Then, members of the directory group, acting
as individuals, send hint messages to the remote
machine, suggesting that it invoke a Byzantine
operation to see if the directory group has any work for
it to do. When the machine invokes the Byzantine
operation, the request is dequeued and returned to the
invoking machine. The hint messages are staggered in
time, so in the common case, after one member sends a
hint message, the remote machine dequeues its request,
preventing the other members from sending redundant
hints. If the machine needs to reply to the group, it
does so by invoking another Byzantine operation.

4. Implementation

Farsite is implemented as two components: a user-level
service (daemon) and a kernel-level driver. The driver
implements only those operations whose functionality
or performance necessitates placement in the kernel:
exporting a file-system interface, interacting with the
cache manager, and encrypting and decrypting file
content. All other functions are implemented in user
level: managing the local file cache, fetching files from
remote machines, validating file content, replicating
and relocating files, issuing leases, managing metadata,
and executing the Byzantine-fault-tolerant protocol.

Windows’ native remote file system is RDR / SRV, a
pair of file-system drivers that communicate via the
CIFS protocol [42]. RDR lives under RDBSS, a driver
that provides a general framework for implementing
network file systems. RDR accepts file-system calls
from applications and redirects them via the network to
SRV running on another machine, which communicates
with NTFS to satisfy the request.

We took advantage of this framework by implementing
Farsite’s kernel driver under RDBSS. The Farsite Mini
Redirector (FMR) accepts file-system calls, interacts
with Farsite’s user-level component, uses NTFS as a
local persistent store, and performs encryption and
decryption on the file-I/O read and write paths.

Our user-level component is called the Farsite Local
Manager (FLM). The control channel by which FLMs
on different machines communicate is an encrypted,
authenticated connection established on top of TCP.
The data channel by which encrypted file content is
retrieved from other machines is a CIFS connection
established by the RDR and SRV components of the
two machines. This architecture is illustrated in Fig. 1.

5. Evaluation

In the following two subsections, we evaluate Farsite’s
scalability by calculating the expected central loads of
certification, directory access, and path translation as a
function of system size; and we evaluate Farsite’s
performance by benchmarking our prototype.

5.1 Scalability Analysis

Farsite’s scalability target is ~105 machines. Scale is
potentially limited by two points of centralization:
certification authorities and root directory groups.

Farsite’s certification authorities sign certificates offline
rather than interactively processing verifications online.
Therefore, their workload is determined by the number
of private-key signatures they have to perform, not by
the much greater number of verifications required. If a
company issues machine and user certificates with a
one-month lifetime, then in a system of 105 machines
and users, the CA will have to sign 2 × 105 certificates
per month. Each RSA private-key signature takes less
than 10 ms of CPU time, so the total computational
workload is less than one CPU-hour per month.

Load on a directory group can be categorized into two
general classes: the direct load of accesses and updates
to the metadata it manages and the indirect load of
performing pathname translations for directory groups
that manage directories lower in the hierarchy. As a
Farsite installation grows, the count of client machines
in the system, all of which could concurrently access
the same directory, also grows. Since the count of files
per directory is independent of system scale [6], the
direct load is bounded by limiting the number of
outstanding leases per file (see subsection 2.7) and by
distributing the transmission of directory-change
notifications (see subsection 3.5) using application-
level multicast, which is demonstrably efficient for such
batch-update processes [16].

The indirect load on a directory group due to pathname
translations is heavily reduced by the hint-caching
mechanism described in subsection 3.5. When a new
client joins the system, its first file access contacts the
root directory group. If machines have a mean lifetime
of one year [6], then a system of ~105 machines will see
roughly 300 new machines per day, placing a trivial
translation load on the root group from initial requests.
Since the group responds with all of its delegation
certificates, each client should never need to contact the
root group again. Before a directory group’s delegation
certificates expire, it issues new certificates with later
expiration dates and passes them down the directory-
group hierarchy and on to clients.

user

kernel

FLM

RDR SRV

NTFS

CIFS
TCP

FMR

Application Application

RDBSS

Fig. 1: Farsite components in system context

5.2 Performance Measurements

For our performance evaluation, we configured a five-
machine Farsite system using 1-GHz P3 machines, each
with 512 MB of memory, two 114-GB Maxtor
4G120J6 drives, and a 100-Mbps Intel 82559 NIC,
interconnected by a Cisco WS-C2948G network switch.
Four machines served as file hosts and as members of a
directory group, and one machine served as a client.

We collected a one-hour NTFS file-system trace from a
developer’s machine in our research group. The trace,
collected from 11 AM to noon PDT on September 13,
2002, includes 450,164 file-system operations whose
temporal frequency and type breakdown are typical of
the file-system workload of this machine over the
working hours in a measured three-week period. We
replayed this trace on a Farsite client machine, and for
comparison, we also replayed it onto a local NTFS
partition and to a remote machine via CIFS.

Fig. 2 shows CDFs of operation timings during these
experiments. For operations with very short durations
(less than 7 µsec), Farsite is actually faster than NTFS,
primarily due to a shorter code path. Nearly half of all
operations are in this category. For the remainder,
except for the slowest 1.4% of operations, Farsite's
speed is between that of NTFS and CIFS.

We broke down the operation timings by operation type
for the six types that took 99% of all I/O time. Farsite’s
mean operation durations are 2 to 4 times as long as
those of NTFS for reads, writes, and closes; they are 9
times as long for opens; and they are 20 times as long
for stats and directory queries. Over the entire trace,
Farsite displayed 5.6 times the file-I/O latency of
NTFS. Some of this slowdown is due to making
kernel/user crossings between the FMR and the FLM,
and much of it is due to untuned code.

Relative to CIFS, Farsite’s mean operation durations
are 2 times as long on writes but only 0.4 times as long
on reads and 0.7 times as long on stats. Overall, Farsite
displayed 0.8 times the file-I/O latency of CIFS.

Table 1: Andrew benchmark timings (seconds)

NTFS CIFS Farsite

10.83 ± 0.05 29.30 ± 0.05 27.9 ± 0.1

To evaluate Farsite’s sensitivity to network latency, we
inserted a one-second delay into network transmissions.
Because the vast majority of Farsite’s operations are
performed entirely locally, the effect on the log-scaled
CDF was merely to stretch the thin upper tail to the
right, which is nearly invisible in Fig 2. This delay did,
however, double Farsite’s total file-I/O latency.

Primarily because it is customary to do so, we also ran a
version of the Andrew benchmark that we increased
substantially in size and modified to run on Windows.
This benchmark performs successive phases of creating
directories, copying files, listing metadata, processing
file content, and compiling the file-system code. Table
1 shows the time, with 95% confidence intervals, to
complete this process, averaged over 1000 runs.
Overall, our untuned implementation performs slightly
better than CIFS and about one third the speed of local
NTFS.

6. Future Work

Although we have implemented much of the Farsite
design, several significant components remain, mainly
those concerned with scalability (namespace delegation,
distributed pathname translation, and directory-change
notification) and those concerned with crash-recovery
(directory-group membership change and torn-write
repair). The mechanism for distributed duplicate
detection is operational, but it has yet to be integrated
into the rest of the system. In addition, several smaller
components have not yet been completed, including
exclusive encryption of filenames, serializing multiple
writers on a single machine, cleanly supporting lease
expirations on clients, and full support for Windows
deletion semantics.

Farsite requires two additional mechanisms for which
we have not yet developed designs. First, to prevent a
single user from consuming all available space in the
system, we need a mechanism to enforce per-user space
quotas; our intent is to limit each user’s storage-space
consumption to an amount proportional to that user’s
machines’ storage-space contribution, with an expected
proportionality constant near unity [6]. Second, Farsite
relocates file replicas among machines according to the
measured availability of those machines [14], which
requires a mechanism to measure machine availability.
Given Farsite’s design assumptions, these mechanisms
must be scalable, decentralized, fault-tolerant, and
secure, making their design rather more demanding
than one might initially presume.

0

0.2

0.4

0.6

0.8

1

0.001 0.01 0.1 1 10 100

operation tim ing (m illiseconds), log scale

cu
m

u
la

ti
ve

 f
re

q
u

en
cy

NTFS Farsite Farsite + delay CIFS

Fig. 2: CDF of trace-replay operation timings

7. Related Work

Farsite has many forebears in the history of network file
systems. NFS [39] provides server-based, location-
transparent file storage for diskless clients. AFS [21]
improves performance and availability on disk-enabled
workstations via leases and client-side file caching. In
Sprite [35], clients use prefix tables for searching the
file namespace. Coda [22] replicates files on multiple
servers to improve availability. The xFS [1] file system
decentralizes file-storage service among a set of trusted
workstations, as does the Frangipani [45] file system
running on top of the Petal [24] distributed virtual disk.
All of these systems rely on trusted machines, and the
decentralized systems (xFS and Frangipani) maintain
per-client state that is proportional to the system size.

An important area of distributed-file-systems research,
but one that is orthogonal to Farsite, is disconnected
operation. The Coda [22], Ficus [37], and Bayou [44]
systems researched this area extensively, and Farsite
could adopt the established solution of application-
specific resolvers for concurrent update conflicts.

Several earlier networked file systems have addressed
one or more aspects of security. Blaze’s Cryptographic
File System [5] encrypts a single user’s files on a client
machine and stores the encrypted files on a server. BFS
[8] replaces a single NFS server with a Byzantine-fault-
tolerant replica group. SUNDR [27] guarantees file
privacy, integrity, and consistency despite a potentially
malicious server, but it does this by placing trust in all
client machines (unlike Farsite, which requires only that
each user trust the client machine he is directly using).
SFS [26] constructs “self-certifying pathnames” by
embedding hashes of public keys into file names, thus
defending read-only data against compromised servers
or compromised networks.

A number of distributed storage systems attempt to
address the issue of scalability. Inspired by peer-to-
peer file-sharing applications such as Napster [33],
Gnutella [17], and Freenet [9], storage systems such as
CFS [10] and PAST [38] employ scalable, distributed
algorithms for routing and storing data. Widespread
data distribution is employed by the Eternity Service’s
[2] replication system and by Archival Intermemory’s
[18] erasure-coding mechanism to prevent data loss
despite attack by powerful adversaries, and PASIS [49]
additionally employs secret sharing for data security.
OceanStore [23] is designed to store all of the world’s
data (1023 bytes) using trans-continentally distributed,
Byzantine-fault-tolerant replica groups to provide user-
selectable consistency semantics. These systems have
flat namespaces; they do not export file-system
interfaces; and (with the exception of OceanStore) they
are designed for publishing or archiving data, rather
than for interactively using and updating data.

8. Conclusions

Farsite is a scalable, decentralized, network file system
wherein a loosely coupled collection of insecure and
unreliable machines collaboratively establish a virtual
file server that is secure and reliable. Farsite provides
the shared namespace, location-transparent access, and
reliable data storage of a central file server and also the
low cost, decentralized security, and privacy of desktop
workstations. It requires no central-administrative
effort apart from signing user and machine certificates.

Farsite’s core architecture is a collection of interacting,
Byzantine-fault-tolerant replica groups, arranged in a
tree that overlays the file-system namespace hierarchy.
Because the vast majority of file-system data is opaque
file content, Farsite maintains only indirection pointers
and cryptographic checksums of this data as part of the
Byzantine-replicated state. Actual content is encrypted
and stored using raw (non-Byzantine) replication;
however, the architecture could alternatively employ
erasure-coded replication to improve storage efficiency.

Farsite is designed to support the file-I/O workload of
desktop computers in a large company or university. It
provides availability and reliability through replication;
privacy and authentication through cryptography;
integrity through Byzantine-fault-tolerance techniques;
consistency through leases of variable granularity and
duration; scalability through namespace delegation; and
reasonable performance through client caching, hint-
based pathname translation, and lazy update commit.

In large part, Farsite’s design is a careful synthesis of
techniques that are well known within the systems and
security communities, including replication, Byzantine-
fault-tolerance, cryptography, certificates, leases, client
caching, and secret sharing. However, we have also
developed several new techniques to address issues that
have arisen in Farsite’s design: Convergent encryption
permits identifying and coalescing duplicate files
encrypted with different users’ keys. Exclusive
encryption enforces filename syntax while maintaining
filename privacy. A scalable, distributed, fault-tolerant
database supports distributed duplicate-file detection.
We use a novel combination of secret sharing, message
authentication codes, and logging to enable secure crash
recovery. Timed Byzantine operations and Byzantine
outcalls supplement the conventional model of
Byzantine fault-tolerance to permit directory groups to
perform autonomous maintenance functions.

Analysis suggests that our design should be able to
scale to our target of ~105 machines. Experiments
demonstrate that our untuned prototype provides
tolerable performance relative to a local NTFS file
system, and it performs significantly better than remote
file access via CIFS.

References
[1] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D.

Roselli, R. Wang. Serverless Network File Systems.
15th SOSP, Dec 1995.

[2] R. J. Anderson, “The Eternity Service”, PRAGO-CRYPT
’96, CTU Publishing, Sep/Oct 1996.

[3] R. E. Blahut, Theory and Practice of Error Control
Codes, Addison Wesley, 1983.

[4] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W.
Shirriff, J. K. Ousterhout. “Measurements of a
Distributed File System.” 13th SOSP, Oct 1991.

[5] M. Blaze, “A Cryptographic File System for Unix”, Ist
Computer and Comm. Security, ACM, Nov 1993.

[6] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer,
“Feasibility of a Serverless Distributed File System
Deployed on an Existing Set of Desktop PCs”,
SIGMETRICS 2000, ACM, Jun 2000.

[7] W. J. Bolosky, S. Corbin, D. Goebel, J. R. Douceur.
Single Instance Storage in Windows 2000. 4th Usenix
Windows System Symposium, Aug 2000.

[8] M. Castro and B. Liskov, “Practical Byzantine Fault
Tolerance”, 3rd OSDI, USENIX, Feb 1999.

[9] I. Clarke, O. Sandberg, B. Wiley, and T. Hong, “Freenet:
A Distributed Anonymous Information Storage and
Retrieval System”, ICSI Workshop on Design Issues in
Anonymity and Unobervability, Jul 2000.

[10] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, I.
Stoica, “Wide-Area Cooperative Storage with CFS”,
SOSP, Oct 2001.

[11] J. R. Douceur, “The Sybil Attack”, 1st IPTPS, Mar 2002.
[12] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, M.

Theimer, “Reclaiming Space from duplicate Files in a
Serverless Distributed File System”, ICDCS, Jul 2002.

[13] J. R. Douceur and W. J. Bolosky, “A Large-Scale Study
of File-System Contents”, SIGMETRICS, May 1999.

[14] J. R. Douceur and R. P. Wattenhofer, “Optimizing File
Availability in a Secure Serverless Distributed File
System”, 20th SRDS, IEEE, Oct 2001.

[15] J. R. Douceur, A. Adya; J. Benaloh; W. J. Bolosky; G.
Yuval, “A Secure Directory Service based on Exclusive
Encryption”, (to appear) 18th ACSAC, Dec 2002.

[16] J. Gemmell, E. M. Schooler, J. Gray, “Fcast Multicast
File Distribution: ‘Tune in, Download, and Drop Out’”,
Internet, Multimedia Systems and Applications, 1999.

[17] Gnutella, http://gnutelladev.wego.com.
[18] A. Goldberg and P. Yianilos, “Towards an Archival

Intermemory”, International Forum on Research and
Technology Advances in Digital Libraries, Apr 1998.

[19] J. Gray. “Why do Computers Stop and What Can Be
Done About It?”, 5th SRDS, Jan. 1986.

[20] J. Gray and A. Reuter, Transaction Processiong:
Concepts and Techniques. Morgan Kaufmann, 1993.

[21] J. Howard, M. Kazar, S. Menees, D. Nichols, M.
Satyanarayanan, R. Sidebotham, M. West, “Scale and
Performance in a Distributed File System”, TOCS 6(1),
Feb 1988.

[22] J. Kistler, M. Satyanarayanan. Disconnected operation
in the Coda File System. TOCS 10(1), Feb 1992.

[23] J. Kubiatowicz, et al., “OceanStore: An Architecture for
Global-Scale Persistent Storage”, 9th ASPLOS, ACM,
Nov 2000.

[24] E. Lee, C. Thekkath. Petal: Distributed virtual disks.
7th ASPLOS, Oct 1996.

[25] M. Luby, “Benchmark Comparisons of Erasure Codes”,
http://www.icsi.berkeley.edu/~luby/erasure.html

[26] D. Mazières, M. Kaminsky, M. F. Kaashoek, E. Witchel,
“Separating Key Management from File System
Security”, SOSP, Dec 1999.

[27] D. Mazières and D. Shasha, “Don't Trust Your File
Server”, 8th HotOS, May 2001.

[28] M. McKusick, W. Joy, S. Leffler, R. Fabry. A Fast File
System for UNIX. TOCS, 2(3):181-197, Aug 1984.

[29] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1997.

[30] R. Merkle, “Protocols for Public Key Cryptosystems”,
IEEE Symposium on Security and Privacy, 1980.

[31] Microsoft, “File Name Conventions”, MSDN, Apr 2002.
[32] Microsoft, “About Windows Update”,

http://v4.windowsupdate.microsoft.com/en/about.asp
[33] Napster, http://www.napster.com.
[34] E. Nemeth, G. Snyder, S. Seebass, T. R. Hein, UNIX

System Administration Handbook, Prentice Hall, 2000.
[35] J. K. Ousterhout, A, R. Cherenson, F. Douglis, M. N.

Nelson, B. B. Welch, “The Sprite Network Operating
System”, IEEE Computer Group Magazine 21 (2), 1988.

[36] M. Pease, R. Shostak, L. Lamport “Reaching Agreement
in the Presence of Faults”, JACM 27(2), Apr 1980.

[37] G. J. Popek, R. G. Guy, T. W. Page, J. S. Heidemann,
“Replication in Ficus Distributed File Systems”, IEEE
Workshop on Management of Replicated Data, 1990.

[38] A. Rowstron and P. Druschel. “Storage Management
and Caching in PAST, a Large-Scale, Persistent Peer-to-
Peer Storage Utility”, SOSP, Oct 2001.

[39] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, B.
Lyon. Design and Implementation of the Sun Network
File System. Summer USENIX Proceedings, 1985.

[40] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C.
Veitch, R. W. Carton, J. Ofir, “Deciding When to Forget
in the Elephant File System”, 17th SOSP, Dec 1999.

[41] S. T. Shafer, “The Enemy Within”, Red Herring, Jan
2002.

[42] D. A. Solomon and M. E. Russinovich, Inside Microsoft
Windows 2000 Third Edition, Microsoft Press, 2000.

[43] A. Sweeny, D. Doucette, W. Hu, C. Anderson, M.
Nishimoto, G. Peck, “Scalability in the XFS File
System”, USENIX, 1996.

[44] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers,
Managing Update Conflicts in Bayou, a Weakly
Connected Replicated Storage System, 15th SOSP, 1995.

[45] C. Thekkath, T. Mann, E. Lee. Frangipani: A Scalable
Distributed File System. 16th SOSP, Dec 1997.

[46] M. Tompa and H. Woll, “How to Share a Secret with
Cheaters”, Journal of Cryptology 1(2), 1998.

[47] S. Travaglia, P. Abrams, Bastard Operator from Hell,
Plan Nine Publishing, Apr 2001.

[48] W. Vogels. File system usage in Windows NT 4.0. 17th
SOSP, Dec 1999.

[49] J. Wylie, M. Bigrigg, J. Strunk, G. Ganger, H. Kilite, P.
Khosla, “Survivalbe Information Storage Systems”,
IEEE Computer 33(8), Aug 2000.

[50] B. Yee and J. D. Tygar, “Secure Coprocessors in
Electronic Commerce Applications”, USENIX 95, 1995.

