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Abstract

Face detection has been one of the most studied topics
in the computer vision literature. In this technical report,
we survey the recent advances in face detection for the past
decade. The seminal Viola-Jones face detector is first re-
viewed. We then survey the various techniques according to
how they extract features and what learning algorithms are
adopted. It is our hope that by reviewing the many existing
algorithms, we will see even better algorithms developed to
solve this fundamental computer vision problem. 1

1. Introduction

With the rapid increase of computational powers and
availability of modern sensing, analysis and rendering
equipment and technologies, computers are becoming more
and more intelligent. Many research projects and commer-
cial products have demonstrated the capability for a com-
puter to interact with human in a natural way by looking at
people through cameras, listening to people through micro-
phones, understanding these inputs, and reacting to people
in a friendly manner.

One of the fundamental techniques that enables such nat-
ural human-computer interaction (HCI) is face detection.
Face detection is the step stone to all facial analysis algo-
rithms, including face alignment, face modeling, face re-
lighting, face recognition, face verification/authentication,
head pose tracking, facial expression tracking/recognition,
gender/age recognition, and many many more. Only when
computers can understand face well will they begin to truly
understand people’s thoughts and intentions.

Given an arbitrary image, the goal of face detection is to
determine whether or not there are any faces in the image
and, if present, return the image location and extent of each
face [112]. While this appears as a trivial task for human
beings, it is a very challenging task for computers, and has
been one of the top studied research topics in the past few
decades. The difficulty associated with face detection can
be attributed to many variations in scale, location, orienta-
tion (in-plane rotation), pose (out-of-plane rotation), facial
expression, lighting conditions, occlusions, etc, as seen in
Fig. 1.

There have been hundreds of reported approaches to
face detection. Early Works (before year 2000) had been
nicely surveyed in [112] and [30]. For instance, Yang et
al. [112] grouped the various methods into four categories:
knowledge-based methods, feature invariant approaches,
template matching methods, and appearance-based meth-

1This technical report is extracted from an early draft of the book
“Boosting-Based Face Detection and Adaptation” by Cha Zhang and
Zhengyou Zhang, Morgan & Claypool Publishers, 2010.

Figure 1. Examples of face images. Note the huge variations in
pose, facial expression, lighting conditions, etc.

ods. Knowledge-based methods use pre-defined rules to de-
termine a face based on human knowledge; feature invariant
approaches aim to find face structure features that are robust
to pose and lighting variations; template matching methods
use pre-stored face templates to judge if an image is a face;
appearance-based methods learn face models from a set of
representative training face images to perform detection. In
general, appearance-based methods had been showing supe-
rior performance to the others, thanks to the rapid growing
computation power and data storage.

The field of face detection has made significant progress
in the past decade. In particular, the seminal work by Viola
and Jones [92] has made face detection practically feasible
in real world applications such as digital cameras and photo
organization software. In this report, we present a brief
survey on the latest development in face detection tech-
niques since the publication of [112]. More attention will
be given to boosting-based face detection schemes, which
have evolved as the de-facto standard of face detection in
real-world applications since [92].

The rest of the paper is organized as follows. Section 2
gives an overview of the Viola-Jones face detector, which
also motivates many of the recent advances in face detec-
tion. Solutions to two key issues for face detection: what
features to extract, and which learning algorithm to apply,
will be surveyed in Section 3 (feature extraction), Section 4
(boosting learning algorithms) and Section 5 (other learn-
ing algorithms). Conclusions and future work are given in
Section 6.

2. The Viola-Jones Face Detector

If one were asked to name a single face detection algo-
rithm that has the most impact in the 2000’s, it will most
likely be the seminal work by Viola and Jones [92]. The
Viola-Jones face detector contains three main ideas that
make it possible to build a successful face detector that can
run in real time: the integral image, classifier learning with
AdaBoost, and the attentional cascade structure.
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Figure 2. Illustration of the integral image and Haar-like rectangle
features (a-f).

2.1. The Integral Image

Integral image, also known as a summed area table, is
an algorithm for quickly and efficiently computing the sum
of values in a rectangle subset of a grid. It was first intro-
duced to the computer graphics field by Crow [12] for use
in mipmaps. Viola and Jones applied the integral image for
rapid computation of Haar-like features, as detailed below.

The integral image is constructed as follows:

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′), (1)

where ii(x, y) is the integral image at pixel location (x, y)
and i(x′, y′) is the original image. Using the integral image
to compute the sum of any rectangular area is extremely
efficient, as shown in Fig. 2. The sum of pixels in rectangle
region ABCD can be calculated as:

∑

(x,y)∈ABCD

i(x, y) = ii(D)+ ii(A)− ii(B)− ii(C), (2)

which only requires four array references.
The integral image can be used to compute simple Haar-

like rectangular features, as shown in Fig. 2 (a-f). The fea-
tures are defined as the (weighted) intensity difference be-
tween two to four rectangles. For instance, in feature (a),
the feature value is the difference in average pixel value in
the gray and white rectangles. Since the rectangles share
corners, the computation of two rectangle features (a and b)
requires six array references, the three rectangle features (c
and d) requires eight array references, and the four rectangle
features (e and f) requires nine array references.

2.2. AdaBoost Learning

Boosting is a method of finding a highly accurate hy-
pothesis by combining many “weak” hypotheses, each with
moderate accuracy. For an introduction on boosting, we re-
fer the readers to [59] and [19].

The AdaBoost (Adaptive Boosting) algorithm is gen-
erally considered as the first step towards more practical
boosting algorithms [17, 18]. In this section, following [80]

and [19], we briefly present a generalized version of Ad-
aBoost algorithm, usually referred as RealBoost. It has been
advocated in various works [46, 6, 101, 62] that RealBoost
yields better performance than the original AdaBoost algo-
rithm.

Consider a set of training examples as S = {(xi, zi), i =
1, · · · , N}, where xi belongs to a domain or instance space
X , and zi belongs to a finite label space Z . In binary classi-
fication problems, Z = {1,−1}, where zi = 1 for positive
examples and zi = −1 for negative examples. AdaBoost
produces an additive model FT (x) =

∑T
t=1 ft(x) to pre-

dict the label of an input example x, where FT (x) is a real
valued function in the form FT : X → R. The predicted
label is ẑi = sign(FT (xi)), where sign(·) is the sign func-
tion. From the statistical view of boosting [19], AdaBoost
algorithm fits an additive logistic regression model by us-
ing adaptive Newton updates for minimizing the expected
exponential criterion:

LT =
N∑

i=1

exp{−ziF
T (xi)}. (3)

The AdaBoost learning algorithm can be considered as
to find the best additive base function ft+1(x) once F t(x)
is given. For this purpose, we assume the base function pool
{f(x)} is in the form of confidence rated decision stumps.
That is, a certain form of real feature value h(x) is first ex-
tracted from x, h : X → R. For instance, in the Viola-Jones
face detector, h(x) is the Haar-like features computed with
integral image, as was shown in Fig. 2 (a-f). A decision
threshold H divide the output of h(x) into two subregions,
u1 and u2, u1 ∪ u2 = R. The base function f(x) is thus:

f(x) = cj , if h(x) ∈ uj , j = 1, 2, (4)

which is often referred as the stump classifier. cj is called
the confidence. The optimal values of the confidence values
can be derived as follows. For j = 1, 2 and k = 1,−1, let

Wkj =
∑

i:zi=k,f(xi)∈uj

exp{−kF t(xi)}. (5)

The target criterion can thus be written as:

Lt+1 =
2∑

j=1

[
W+1je

−cj + W−1je
cj

]
. (6)

Using standard calculus, we see Lt+1 is minimized when

cj =
1
2

ln
(

W+1j

W−1j

)
. (7)

Plugging into (6), we have:

Lt+1 = 2
2∑

j=1

√
W+1jW−1j . (8)
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• Training examples S = {(xi, zi), i = 1, · · · , N}.
• T is the total number of weak classifiers to be trained.

Initialize

• Initialize example score F 0(xi) = 1
2 ln

(
N+
N−

)
,

where N+ and N− are the number of positive and
negative examples in the training data set.

Adaboost Learning
For t = 1, · · · , T :

1. For each Haar-like feature h(x) in the pool, find the
optimal threshold H and confidence score c1 and c2

to minimize the Z score Lt (8).
2. Select the best feature with the minimum Lt.
3. Update F t(xi) = F t−1(xi) + ft(xi), i = 1, · · · , N ,
4. Update W+1j ,W−1j , j = 1, 2.

Output Final classifier FT (x).
Figure 3. Adaboost learning pseudo code.
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Figure 4. The attentional cascade.

Eq. (8) is referred as the Z score in [80]. In practice, at
iteration t + 1, for every Haar-like feature h(x), we find the
optimal threshold H and confidence score c1 and c2 in order
to minimize the Z score Lt+1. A simple pseudo code of the
AdaBoost algorithm is shown in Fig. 3.

2.3. The Attentional Cascade Structure

Attentional cascade is a critical component in the Viola-
Jones detector. The key insight is that smaller, and thus
more efficient, boosted classifiers can be built which reject
most of the negative sub-windows while keeping almost all
the positive examples. Consequently, majority of the sub-
windows will be rejected in early stages of the detector,
making the detection process extremely efficient.

The overall process of classifying a sub-window thus
forms a degenerate decision tree, which was called a “cas-
cade” in [92]. As shown in Fig. 4, the input sub-windows
pass a series of nodes during detection. Each node will
make a binary decision whether the window will be kept
for the next round or rejected immediately. The number of
weak classifiers in the nodes usually increases as the num-
ber of nodes a sub-window passes. For instance, in [92], the
first five nodes contain 1, 10, 25, 25, 50 weak classifiers, re-

spectively. This is intuitive, since each node is trying to
reject a certain amount of negative windows while keeping
all the positive examples, and the task becomes harder at
late stages. Having fewer weak classifiers at early stages
also improves the speed of the detector.

The cascade structure also has an impact on the training
process. Face detection is a rare event detection task. Con-
sequently, there are usually billions of negative examples
needed in order to train a high performance face detector.
To handle the huge amount of negative training examples,
Viola and Jones [92] used a bootstrap process. That is, at
each node, a threshold was manually chosen, and the par-
tial classifier was used to scan the negative example set to
find more unrejected negative examples for the training of
the next node. Furthermore, each node is trained indepen-
dently, as if the previous nodes does not exist. One argu-
ment behind such a process is to force the addition of some
nonlinearity in the training process, which could improve
the overall performance. However, recent works showed
that it is actually beneficial not to completely separate the
training process of different nodes, as will be discussed in
Section 4.

In [92], the attentional cascade is constructed manually.
That is, the number of weak classifiers and the decision
threshold for early rejection at each node are both specified
manually. This is a non-trivial task. If the decision thresh-
olds were set too aggressively, the final detector will be
very fast, but the overall detection rate may be hurt. On the
other hand, if the decision thresholds were set very conser-
vatively, most sub-windows will need to pass through many
nodes, making the detector very slow. Combined with the
limited computational resources available in early 2000’s,
it is no wonder that training a good face detector can take
months of fine-tuning.

3. Feature Extraction
As mentioned earlier, thanks to the rapid expansion in

storage and computation resources, appearance based meth-
ods have dominated the recent advances in face detection.
The general practice is to collect a large set of face and non-
face examples, and adopt certain machine learning algo-
rithms to learn a face model to perform classification. There
are two key issues in this process: what features to extract,
and which learning algorithm to apply. In this section, we
first review the recent advances in feature extraction.

The Haar-like rectangular features as in Fig. 2 (a-f) are
very efficient to compute due to the integral image tech-
nique, and provide good performance for building frontal
face detectors. In a number of follow-up works, researchers
extended the straightforward features with more variations
in the ways rectangle features are combined.

For instance, as shown in Fig. 5, Lienhart and Maydt[49]
generalized the feature set of [92] by introducing 45 degree
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Figure 5. The rotated integral image/summed area table.
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Figure 6. (a) Rectangular features with flexible sizes and distances
introduced in [46]. (b) Diagonal filters in [38].

rotated rectangular features (a-d), and center-surround fea-
tures (e-f). In order to compute the 45 degree rotated rect-
angular features, a new rotated summed area table was in-
troduced as:

rii(x, y) =
∑

x′≤x,|y−y′|≤x−x′
i(x′, y′). (9)

As seen in Fig. 5, rii(A) is essentially the sum of pixel in-
tensities in the shaded area. The rotated summed area table
can be calculated with two passes over all pixels.

A number of researchers noted the limitation of the orig-
inal Haar-like feature set in [92] for multi-view face detec-
tion, and proposed to extend the feature set by allowing
more flexible combination of rectangular regions. For in-
stance, in [46], three types of features were defined in the
detection sub-window, as shown in Fig. 6 (a). The rectan-
gles are of flexible sizes x × y and they are at certain dis-
tances of (dx, dy) apart. The authors argued that these fea-
tures can be non-symmetrical to cater to non-symmetrical
characteristics of non-frontal faces. Jones and Viola [38]
also proposed a similar feature called diagonal filters, as
shown in Fig. 6 (b). These diagonal filters can be computed
with 16 array references to the integral image.

Jones et al. [39] further extended the Haar-like fea-
ture set to work on motion filtered images for video-based

j = (011)2 = 3

Figure 7. The joint Haar-like feature introduced in [62].

pedestrian detection. Let the previous and current video
frames be it−1 and it. Five motion filters are defined as:

∆ = |it − it−1|
U = |it − it−1 ↑ |
L = |it − it−1 ← |
R = |it − it−1 → |
D = |it − it−1 ↓ |

where {↑,←,→, ↓} are image shift operators. it ↑ is it
shifted up by one pixel. In addition to the regular rectan-
gular features (Fig. 2) on these additional motion filtered
images, Jones et al. added single box rectangular sum fea-
tures, and new features across two images. For instance:

fi = ri(∆)− ri(S), (10)

where S ∈ {U,L,R, D} and ri(·) is a single box rectangu-
lar sum within the detection window.

One must be careful that the construction of the motion
filtered images {U,L, R, D} is not scale invariant. That is,
when detecting pedestrians at different scales, these filtered
images need to be recomputed. This can be done by first
constructing a pyramid of images for it at different scales
and computing the filtered images at each level of the pyra-
mid, as was done in [39].

Mita et al. [62] proposed joint Haar-like features, which
is based on co-occurrence of multiple Haar-like features.
The authors claimed that feature co-occurrence can better
capture the characteristics of human faces, making it pos-
sible to construct a more powerful classifier. As shown
in Fig. 7, the joint Haar-like feature uses a similar feature
computation and thresholding scheme, however, only the
binary outputs of the Haar-like features are concatenated
into an index for 2F possible combinations, where F is the
number of combined features. To find distinctive feature
co-occurrences with limited computational complexity, the
suboptimal sequential forward selection scheme was used in
[62]. The number F was also heuristically limited to avoid
statistical unreliability.

To some degree, the above joint Haar-like features re-
semble a CART tree, which was explored in [8]. It was
shown that CART tree based weak classifiers improved re-
sults across various boosting algorithms with a small loss



in speed. In another variation for improving the weak clas-
sifier, [101] proposed to use a single Haar-like feature, and
equally bin the feature values into a histogram to be used
in a RealBoost learning algorithm. Similar to the number
F in the joint Haar-like features, the number of bins for the
histogram is vital to the performance of the final detector.
[101] proposed to use 64 bins. And in their later work [32],
they specifically pointed out that too fine granularity of the
histogram may cause overfitting, and suggested to use fine
granularity in the first few layers of the cascade, and coarse
granularity in latter layers. Another interesting recent work
is [107], where the authors proposed a new weak classifier
called Bayesian stump. Bayesian stump is also a histogram
based weak classifier, however, the split thresholds of the
Bayesian stump are derived from iterative split and merge
operations instead of being at equal distances and fixed. Ex-
perimental results showed that such a flexible multi-split
thresholding scheme is effective in improving the detector’s
performance.

Another limitation of the original Haar-like feature set is
its lack of robustness in handling faces under extreme light-
ing conditions, despite that the Haar features are usually
normalized by the test windows’ intensity covariance [92].
In [21] a modified census transform was adopted to gener-
ate illumination-insensitive features for face detection. On
each pixel’s 3×3 neighborhood, the authors applied a mod-
ified census transform that compares the neighborhood pix-
els with their intensity mean. The results are concatenated
into an index number representing the pixel’s local struc-
ture. During boosting, the weak classifiers are constructed
by examining the distributions of the index numbers for the
pixels. Another well-known feature set robust to illumina-
tion variations is the local binary patterns (LBP) [65], which
have been very effective for face recognition tasks [2, 117].
In [37, 119], LBP was applied for face detection tasks under
a Bayesian and a boosting framework, respectively. More
recently, inspired by LBP, Yan et al. [110] proposed locally
assembled binary feature, which showed great performance
on standard face detection data sets.

To explore possibilities to further improve performance,
more and more complex features were proposed in the lit-
erature. For instance, Liu and Shum [52] studied generic
linear features, which is defined by a mapping function
φ() : Rd → R1, where d is the size of the test patch. For
linear features, φ(x) = φT x, φ ∈ Rd. The classification
function is in the following form:

FT (x) = sign[
T∑
t

λt(φT
t x)], (11)

where λt() are R → R discriminating functions, such as
the conventional stump classifiers in AdaBoost. FT (x)
shall be 1 for positive examples and −1 for negative exam-
ples. Note the Haar-like feature set is a subset of linear fea-

tures. Another example is the anisotropic Gaussian filters
in [60]. In [10], the linear features were constructed by pre-
learning them using local non-negative matrix factorization
(LNMF), which is still sub-optimal. Instead, Liu and Shum
[52] proposed to search for the linear features by examining
the Kullback-Leibler (KL) divergence of the positive and
negative histograms projected on the feature during boost-
ing (hence the name Kullback-Leibler boosting). In [97],
the authors proposed to apply Fisher discriminant analysis
and more generally recursive nonparametric discriminant
analysis (RNDA) to find the linear projections φt. Linear
projection features are very powerful features. The selected
features shown in [52] and [97] were like face templates.
They may significantly improve the convergence speed of
the boosting classifier at early stages. However, caution
must be taken to avoid overfitting if these features are to
be used at the later stages of learning. In addition, the com-
putational load of linear features are generally much higher
than the traditional Haar-like features. Oppositely, Baluja
et al. [4] proposed to use simple pixel pairs as features, and
Abramson and Steux [1] proposed to use the relative values
of a set of control points as features. Such pixel-based fea-
ture can be computed even faster than the Haar-like features,
however, their discrimination power is generally insufficient
to build high performance detectors.

Another popular complex feature for face/object detec-
tion is based on regional statistics such as histograms. Levi
and Weiss [45] proposed local edge orientation histograms,
which computes the histogram of edges orientations in sub-
regions of the test windows. These features are then se-
lected by an AdaBoost algorithm to build the detector. The
orientation histogram is largely invariant to global illumina-
tion changes, and it is capable of capturing geometric prop-
erties of faces that are difficult to capture with linear edge
filters such as Haar-like features. However, similar to mo-
tion filters, edge based histogram features are not scale in-
variant, hence one must first scale the test images to form a
pyramid to make the local edge orientation histograms fea-
tures reliable. Later, Dalal and Triggs [13] proposed a sim-
ilar scheme called histogram of oriented gradients (HoG),
which became a very popular feature for human/pedestrian
detection [120, 25, 88, 43, 15]. In [99], the authors pro-
posed spectral histogram features, which adopts a broader
set of filters before collecting the histogram features, in-
cluding gradient filters, Laplacian of Gaussian filters and
Gabor filters. Compared with [45], the histogram features
in [99] were based on the whole testing window rather than
local regions, and support vector machines (SVMs) were
used for classification. Zhang et al. [118] proposed another
histogram-based feature called spatial histograms, which is
based on local statistics of LBP. HoG and LBP were also
combined in [98], which achieved excellent performance on
human detection with partial occlusion handling. Region



(5,3,2)
(14,3,1)

(9,13,3)

Figure 8. The sparse feature set in granular space introduced in
[33].

covariance was another statistics based feature, proposed
by Tuzel et al. [91] for generic object detection and tex-
ture classification tasks. Instead of using histograms, they
compute the covariance matrices among the color channels
and gradient images. Regional covariance features can also
be efficiently computed using integral images.

Huang et al. [33] proposed a sparse feature set in or-
der to strengthen the features’ discrimination power with-
out incurring too much additional computational cost. Each
sparse feature can be represented as:

f(x) =
∑

i

αipi(x; u, v, s), αi ∈ {−1, +1} (12)

where x is an image patch, and pi is a granule of the sparse
feature. A granule is specified by 3 parameters: horizon-
tal offset u, vertical offset v and scale s. For instance, as
shown in Fig. 8, pi(x; 5, 3, 2) is a granule with top-left cor-
ner (5,3), and scale 22 = 4, and pi(x; 9, 13, 3) is a granule
with top-left corner (9,13), and scale 23 = 8. Granules can
be computed efficiently using pre-constructed image pyra-
mids, or through the integer image. In [33], the maximum
number of granules in a single sparse feature is 8. Since the
total number of granules is large, the search space is very
large and exhaustive search is infeasible. The authors pro-
posed a heuristic search scheme, where granules are added
to a sparse feature one-by-one, with an expansion opera-
tor that removes, refines and adds granules to a partially
selected sparse feature. To reduce the computation, the au-
thors further conducted multi-scaled search, which uses a
small set of training examples to evaluate all features first
and rejects those that are unlikely to be good. The perfor-
mance of the multi-view face detector trained in [33] using
sparse features was very good.

As new features are composed in seeking the best dis-
crimination power, the feature pool becomes larger and
larger, which creates new challenges in the feature selec-
tion process. A number of recent works have attempted to
address this issue. For instance, [113] proposed to discover
compositional features using the classic frequent item-set
mining scheme in data mining. Instead of using the raw

feature values, they assume a collection of induced binary
features (e.g., decision stumps with known thresholds) are
already available. By partitioning the feature space into sub-
regions through these binary features, the training examples
can be indexed by the sub-regions they are located. The
algorithm then searches for a small subset of compositional
features that are both frequent to have statistical significance
and accurate to be useful for label prediction. The final clas-
sifier is then learned based on the selected subset of compo-
sitional features through AdaBoost. In [26], the authors first
established an analogue between compositional feature se-
lection and generative image segmentation, and applied the
Swendsen-Wang Cut algorithm to generate n-partitions for
the individual feature set, where each subset of the parti-
tion corresponds to a compositional feature. This algorithm
re-runs for every weak classifier selected by the AdaBoost
learning framework. On a person detection task tested, the
composite features showed significant improvement, espe-
cially when the individual features were very weak (e.g.,
Haar-like features).

In some applications such as object tracking, even if the
number of possible features is not extensive, an exhaus-
tive feature selection is still impractical due to computa-
tional constraints. In [53], the authors proposed a gradient
based feature selection scheme for online boosting with pri-
mary applications in person detection and tracking. Their
work iteratively updates each feature using a gradient de-
scent algorithm, by minimizing the weighted least square
error between the estimated feature response and the true
label. This is particularly attractive for tracking and up-
dating schemes such as [25], where at any time instance,
the object’s appearance is already represented by a boosted
classifier learned from previous frames. Assuming there is
no dramatic change in the appearance, the gradient descent
based algorithm can refine the features in a very efficient
manner.

There have also been many features that attempted to
model the shape of the objects. For instance, Opelt et al.
[66] composed multiple boundary fragments to weak clas-
sifiers and formed a strong “boundary-fragment-model” de-
tector using boosting. They ensure the feasibility of the fea-
ture selection process by limiting the number of boundary
fragments to 2-3 for each weak classifier. Shotton et al. [86]
learned their object detectors with a boosting algorithm and
their feature set consisted of a randomly chosen dictionary
of contour fragments. A very similar edgelet feature was
proposed in [102], and was used to learn human body part
detectors in order to handle multiple, partially occluded hu-
mans. In [79], shapelet features focusing on local regions
of the image were built from low-level gradient informa-
tion using AdaBoost for pedestrian detection. An interest-
ing side benefit of having contour/edgelet features is that
object detection and object segmentation can be performed



Table 1. Features for face/object detection.

Feature Type Representative Works
Haar-like Haar-like features [92]
features and Rotated Haar-like features [49]
its variations Rectangular features with structure [46,

38]
Haar-like features on motion filtered
image [39]

Pixel-based Pixel pairs [4]
features Control point set [1]
Binarized Modified census transform [21]
features LBP features [37, 119]

Locally assembled binary feature [110]
Generic linear Anisotropic Gaussian filters [60]
features LNMF [10]

Generic linear features with KL boost-
ing [52]
RNDA [97]

Statistics-based
features

Edge orientation histograms [45, 13]
etc.
Spectral histogram [99]
Spatial histogram (LBP-based) [118]
HoG and LBP [98]
Region covariance [91]

Composite Joint Haar-like features [62]
features Sparse feature set [33]
Shape features Boundary/contour fragments [66, 86]

Edgelet [102]
Shapelet [79]

jointly, such as the work in [104] and [23].
We summarize the features presented in this Section in

Table 1.

4. Variations of the Boosting Learning Algo-
rithm

In addition to exploring better features, another venue
to improve the detector’s performance is through improv-
ing the boosting learning algorithm, particularly under the
cascade decision structure. In the original face detection
paper by Viola and Jones [92], the standard AdaBoost algo-
rithm [17] was adopted. In a number of follow-up works
[46, 6, 101, 62], researchers advocated the use of Real-
Boost, which was explained in detail in Section 2.2. Both
Lienhart et al. [48] and Brubaker et al. [8] compared
three boosting algorithms: AdaBoost, RealBoost and Gen-
tleBoost, though they reach different conclusions as the for-
mer recommended GentleBoost while the latter showed Re-
alBoost works slightly better when combined with CART-
based weak classifiers. In the following, we describe a num-

ber of recent works on boosting learning for face/object de-
tection, with emphasis on adapting to the cascade structure,
the training speed, multi-view face detection, etc.

In [46], the authors proposed FloatBoost, which at-
tempted to overcome the monotonicity problem of the se-
quential AdaBoost Learning. Specifically, AdaBoost is a se-
quential forward search procedure using a greedy selection
strategy, which may be suboptimal. FloatBoost incorpo-
rates the idea of floating search [73] into AdaBoost, which
not only add features during training, but also backtrack
and examine the already selected features to remove those
that are least significant. The authors claimed that Float-
Boost usually needs fewer weak classifiers than AdaBoost
to achieve a given objective. Jang and Kim [36] proposed
to used evolutionary algorithms to minimize the number of
classifiers without degrading the detection accuracy. They
showed that such an algorithm can reduce the total number
of weak classifiers by over 40%. Note in practice only the
first few nodes are critical to the detection speed, since most
testing windows are rejected by the first few weak classifiers
in a cascade architecture.

As mentioned in Section 2.3, Viola and Jones [92]
trained each node independently. A number of follow-up
works showed that there is indeed information in the results
from the previous nodes, and it is best to reuse them instead
of starting from scratch at each new node. For instance, in
[108], the authors proposed to use a “chain” structure to in-
tegrate historical knowledge into successive boosting learn-
ing. At each node, the existing partial classifier is used as
a prefix classifier for further training. Boosting chain learn-
ing can thus be regarded as a variant of AdaBoost learning
with similar generalization performance and error bound. In
[101], the authors proposed the so-called nesting-structured
cascade. Instead of taking the existing partial classifier as a
prefix, they took the confidence output of the partial classi-
fier and used it as a feature to build the first weak classifier.
Both paper demonstrated better detection performance than
the original Viola-Jones face detector.

One critical challenge in training a cascade face detec-
tor is how to set the thresholds for the intermediate nodes.
This issue has inspired a lot of works in the literature. First,
Viola and Jones [93] observed that the goal of the early
stages of the cascade is mostly to retain a very high de-
tection rate, while accepting modest false positive rates if
necessary. They proposed a new scheme called asymmetric
AdaBoost, which artificially increase the weights on posi-
tive examples in each round of AdaBoost such that the er-
ror criterion biases towards having low false negative rates.
In [71], the authors extended the above work and sought
to balance the skewness of labels presented to each weak
classifiers, so that they are trained more equally. Masnadi-
Shirazi and Vasconcelos [55] further proposed a more rigor-
ous form of asymmetric boosting based on the statistical in-



terpretation of boosting [19] with an extension of the boost-
ing loss. Namely, the exponential cost criterion in Eq. (3) is
rewritten as:

LT =
N∑

i=1

exp{−ciziF
T (xi)}, (13)

where ci = C1 for positive examples and ci = C0 for nega-
tive examples. Masnadi-Shirazi and Vasconcelos [55] min-
imized the above criterion following the AnyBoost frame-
work in [57]. They were able to build a detector with very
high detection rate [56], though the performance of the de-
tector deteriorates very quickly when the required false pos-
itive rate is low.

Wu et al. [105] proposed to decouple the problems of
feature selection and ensemble classifier design in order to
introduce asymmetry. They first applied the forward fea-
ture selection algorithm to select a set of features, and then
formed the ensemble classifier by voting among the selected
features through a linear asymmetric classifier (LAC). The
LAC is supposed to be the optimal linear classifier for the
node learning goal under the assumption that the linear pro-
jection of the features for positive examples follows a Gaus-
sian distribution, and that for negative examples is symmet-
ric. Mathematically, LAC has a similar form as the well-
known Fisher discriminant analysis (FDA) [14], except that
only the covariance matrix of the positive feature projec-
tions are considered in LAC. In practice, their performance
are also similar. Applying LAC or FDA on a set of features
pre-selected by AdaBoost is equivalent to readjust the con-
fidence values of the AdaBoost learning (Eq. (7)). Since at
each node of the cascade, the AdaBoost learning usually has
not converged before moving to the next node, readjusting
these confidence values could provide better performance
for that node. However, when the full cascade classifier is
considered, the performance improvement over AdaBoost
diminished. Wu et al. attributed the phenomenon to the
booststrapping step and the post processing step, which also
have significant effects on the cascade’s performance.

With or without asymmetric boosting/learning, at the end
of each cascade node, a threshold still has to be set in order
to allow the early rejection of negative examples. These
node thresholds reflect a tradeoff between detection quality
and speed. If they are set too aggressively, the final detec-
tor will be fast, but the detection rate may drop. On the
other hand, if the thresholds are set conservatively, many
negative examples will pass the early nodes, making the de-
tector slow. In early works, the rejection thresholds were
often set in very ad hoc manners. For instance, Viola and
Jones [92] attempted to reject zero positive examples until
this become impossible and then reluctantly gave up on one
positive example at a time. Huge amount of manual tuning
is thus required to find a classifier with good balance be-
tween quality and speed, which is very inefficient. Lienhart

et al. [48] instead built the cascade targeting each node to
have 0.1% false negative rate and 50% rejection rate for the
negative examples. Such a scheme is simple to implement,
though no speed guarantee can be made about the final de-
tector.

In [87], the authors proposed to use a a ratio test to
determine the rejection thresholds. Specifically, the au-
thors viewed the cascade detector as a sequential decision-
making problem. A sequential decision-making theory had
been developed by Wald [95], which proved that the solu-
tion to minimizing the expected evaluation time for a se-
quential decision-making problem is the sequential proba-
bility ratio test. Sochman and Matas [87] abandoned the
notion of nodes, and set rejection threshold after each weak
classifier. They then approximated the joint likelihood ra-
tio of all the weak classifiers between negative and positive
examples with the likelihood ratio of the partial scores, in
which case the algorithm simplified to be rejecting a test
example if the likelihood ratio at its partial score value is
greater than 1

α , where α is the false negative rate of the en-
tire cascade. Brubaker et al. [8] proposed another fully
automatic algorithm for setting the intermediate thresholds
during training. Given the target detection and false posi-
tive rates, their algorithm used the empirical results on val-
idation data to estimate the probability that the cascade will
meet the goal criteria. Since a reasonable goal make not
be known a priori, the algorithm adjusts its cost function
depending on the attainability of the goal based on cost pre-
diction. In [107], a dynamic cascade was proposed, which
assumes that the false negative rate of the nodes changes
exponentially in each stage, following the idea in [7]. The
approach is simple and ad hoc, though it appears to work
reasonably well.

Setting intermediate thresholds during training is a spe-
cific scheme to handle huge amount of negative examples
during boosting training. Such a step is unnecessary in Ad-
aBoost, at least according to its theoretical derivation. Re-
cent development of boosting based face detector training
have shifted toward approaches where these intermediate
thresholds are not set during training, but rather done until
the whole classifier has been learnt. For instance, Luo [54]
assumed that a cascade of classifiers is already designed,
and proposed an optimization algorithm to adjust the in-
termediate thresholds. It represents each individual node
with a uniform abstraction model with parameters (e.g., the
rejection threshold) controlling the tradeoff between detec-
tion rate and false alarm rate. It then uses a greedy search
strategy to adjust the parameters such that the slope of the
logarithm scale ROC curves of all the nodes are equal. One
issue in such a scheme is that the ROC curves of the nodes
are dependent to changes in thresholds of any earlier nodes,
hence the greedy search scheme can at best be an approxi-
mation. Bourdev and Brandt [7] instead proposed a heuris-



tic approach to use a parameterized exponential curve to
set the intermediate nodes’ detection targets, called a “re-
jection distribution vector”. By adjusting the parameters
of the exponential curve, different tradeoffs can be made
between speed and quality. Perhaps a particular family of
curves is more palatable, but it is still arbitrary and non-
optimal. Zhang and Viola [115] proposed a more princi-
pled data-driven scheme for setting intermediate thresholds
named multiple instance pruning. They explored the fact
that nearby a ground truth face there are many rectangles
that can be considered as good detection. Therefore, only
one of them needs to be retained while setting the interme-
diate thresholds. Multiple instance pruning does not have
the flexibility as [7] to be very aggressive in pruning, but it
can guarantee identical detection rate as the raw classifier
on the training data set.

The remaining issue is how to train a cascade detec-
tor with billions of examples without explicitly setting the
intermediate thresholds. In [7], the authors proposed a
scheme that starts with a small set of training examples, and
adds to it new samples at each stage that the current classi-
fier misclassifies. The number of new non-faces to be added
at each training cycle affects the focus of AdaBoost during
training. If the number is too large, AdaBoost may not be
able to catch up and the false positive rate will be high. If
the number is too small, the cascade may contain too many
weak classifiers in order to reach a reasonable false positive
rate. In addition, later stages of the training will be slow due
to the increasing number of negative examples, since none
of them will be removed during the process. In [107] and
[115], the authors proposed to use importance sampling to
help address the large data set issue. The training positive or
negative data set are resampled every once a while to ensure
feasible computation. Both work reported excellent results
with such a scheme.

Training a face detector is a very time-consuming task.
In early works, due to the limited computing resources, it
could easily take months and lots of manual tuning to train a
high quality face detector. The main bottleneck is at the fea-
ture selection stage, where hundreds of thousands of Haar
features will need to be tested at each iteration. A num-
ber of papers has been published to speed up the feature
process. For instance, McCane and Novins [58] proposed
a discrete downhill search scheme to limit the number of
features compared during feature selection. Such a greedy
search strategy offered a 300–400 fold speed up in training,
though the false positive rate of the resultant detector in-
creased by almost a factor of 2. Brubaker et al. [8] studied
various filter schemes to reduce the size of the feature pool,
and showed that randomly selecting a subset of features at
each iteration for feature selection appears to work reason-
ably well. Wu et al. [106] proposed a cascade learning
algorithm based on forward feature selection [100], which

is two orders of magnitude faster than the traditional ap-
proaches. The idea is to first train a set of weak classifiers
that satisfy the maximum false positive rate requirement of
the entire detector. During feature selection, these weak
classifiers are added one by one, each making the largest
improvement to the ensemble performance. Weighting of
the weak classifiers can be conducted after the feature se-
lection step. Pham and Cham [70] presented another fast
method to train and select Haar features. It treated the train-
ing examples as high dimensional random vectors, and kept
the first and second order statistics to build classifiers from
features. The time complexity of the method is linear to
the total number of examples and the total number of Haar
features. Both [106] and [70] reported experimental results
demonstrating better ROC curve performance than the tra-
ditional AdaBoost approach, though it appears unlikely that
they can also outperform the state-of-the-art detectors such
as [101, 7].

Various efforts have also been made to improve the de-
tector’s test speed. For instance, in the sparse feature set
in [33], the authors limited the granules to be in square
shape, which is very efficient to compute in both software
and hardware through building pyramids for the test image.
For HoG and similar gradient histogram based features,
the integral histogram approach [72] was often adopted for
faster detection. Schneiderman [81] designed a feature-
centric cascade to speed up the detection. The idea is to
pre-compute a set of feature values over a regular grid in
the image, so that all the test windows can use their corre-
sponding feature values for the first stage of the detection
cascade. Since many feature values are shared by multi-
ple windows, significant gains in speed can be achieved. A
similar approach was deployed in [110] to speed up their lo-
cally assembled binary feature based detector. In [69], the
authors proposed a scheme to improve the detection speed
on quasi-repetitive inputs, such as the video input during
videoconferencing. The idea is to cache a set of image ex-
emplars, each induces its own discriminant subspace. Given
a new video frame, the algorithm quickly searches through
the exemplar database indexed with an online version of
tree-structured vector quantization, S-tree [9]. If a similar
exemplar is found, the face detector will be skipped and the
previously detected object states will be reused. This results
in about 5-fold improvement in detection speed. Similar
amount of speed-up can also be achieve through selective
attention, such as those based on motion, skin color, back-
ground modeling and subtraction, etc.

As shown in Fig. 1, in real-world images, faces have
significant variations in orientation, pose, facial expression,
lighting conditions, etc. A single cascade with Haar features
has proven to work very well with frontal or near-frontal
face detection tasks. However, extending the algorithm to
multi-pose/multi-view face detection is not straightforward.
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Figure 9. Various detector structures for multiview face detection.
Each circle represents a strong classifier. The solid arrows are pass
route, and the dashed arrows are reject route. (a) Parallel cascade
[101]. (b) Detector-pyramid [46]. (c) Decision tree I [38]. (d)
Decision tree II [20, 32, 50]. Note in (d) the early nodes are all
able to perform rejection in order to speed up the detection. In
addition, in [32, 50] the selection of the pass route for a branching
node is non-exclusive.

If faces with all pose/orientation variations are trained in
a single classifier, the results are usually sub-optimal. To
this end, researchers have proposed numerous schemes to
combat the issue, most of them following the “divide and
conquer” strategy.

Fig. 9 showed a number of detector structures for mul-
tiview face detection. Among these structures, the most
straightforward one is Fig. 9(a), the parallel cascade, by Wu
et al. [101]. An individual classifier is learned for each
view. Given a test window, it is passed to all the classifiers.
After a few nodes, one cascade with the highest score will
finish the classification and make the decision. This simple
structure could achieve rather good performance, though its
running speed is generally slow, and the correlation between
faces of different views could have been better exploited.
Li et al. [46] used a pyramid structure to handle the task,
as shown in Fig. 9(b). The detector pyramid consists of
3 levels. The first level of the pyramid works on faces at
all poses; the second level detects faces between −90◦ and
−30◦ (left profile), between −30◦ and 30◦ (frontal), and
between 30◦ and 90◦ (right profile), respectively; the third
level detects faces at 7 finer angles. Once a test window
passes one level of the detector, it will be passed to all the
children nodes for further decision. This design is more ef-
ficient than the parallel cascade structure, but still has room
to improve.

Fig. 9(c) and (d) showed two decision tree structures for
multiview face detection. In [38], the authors proposed to
first use a pose estimator to predict the face pose of a test

window. Given the predicted pose, a cascade for that pose
will be invoked to make the final decision. A decision tree
was adopted for pose estimation, which resulted in the de-
tector structure in Fig. 9(c). With this structure, a test win-
dow will only run through a single cascade once its pose has
been estimated, thus the detector is very efficient. Fröba
and Ernst [20] had a similar tree structure (Fig. 9(d)) for
frontal face detection at different orientations, except that
their early nodes were able to perform rejection to further
improve speed. However, pose/orientation estimation is a
non-trivial task, and can have many errors. If a profile face
is misclassified as frontal, it may never be detected by the
frontal face cascade. Huang et al. [32] and Lin and Liu
[50] independently proposed a very similar solution to this
issue, which were named vector boosting and multiclass
Bhattacharyya boost (MBHBoost), respectively. The idea
is to have vector valued output for each weak classifier,
which allows an example to be passed into multiple sub-
category classifiers during testing (Fig. 9(d)), and the final
results are fused from the vector output. Such a soft branch-
ing scheme can greatly reduce the risk of misclassification
during testing. Another interesting idea in [32, 50] was to
have all the subcategory classifiers share the same features.
Namely, at each iteration, only one feature is chosen to con-
struct a weak classifier with vector output, effectively shar-
ing the feature among all the subcategories. Sharing fea-
tures among multiple classifiers had been shown as a suc-
cessful idea to reduce the computational and sample com-
plexity when multiple classifiers are trained jointly [89].

Vector boosting and MBHBoost solved the issue of mis-
classification in pose estimation during testing. During
training, they still used faces manually labeled with pose in-
formation to learn the multiview detector. However, for cer-
tain object classes such as pedestrians or cars, an agreeable
manual pose labeling scheme is often unavailable. Seemann
et al. [84] extended the implicit shape model in [44] to ex-
plicitly handle and estimate viewpoints and articulations of
an object category. The training examples were first clus-
tered, with each cluster representing one articulation and
viewpoint. Separate models were then trained for each clus-
ter for classification. Shan et al. [85] proposed an exemplar-
based categorization scheme for multiview object detection.
At each round of boosting learning, the algorithm not only
selects a feature to construct a weak classifier, it also se-
lect for a set of exemplars to guide the learning to focus on
different views of the object. Tu [90] proposed probabilis-
tic boosting tree, which embedded clustering in the learning
phase. At each tree node, a strong AdaBoost based classifier
was built. The output of the AdaBoost classifier was used to
compute the posterior probabilities of the examples, which
were used to split the data into two clusters. In some sense,
the traditional boosting cascade can be viewed as a special
case of the boosting tree, where all the positive examples



are pushed into one of the child node. The performance of
boosting tree on multiview object detection is uncertain due
to the limited experimental results provided in the paper. In
[103], a similar boosted tree algorithm was proposed. In-
stead of performing clustering before boosting learning or
using posterior probabilities, they showed that by using the
previously selected features for clustering, the learning al-
gorithm converges faster and achieves better results.

Some recent works went one step further and did not
maintain a fixed subcategory label for the training exam-
ples any more. For instance, Kim and Cipolla [41] proposed
an algorithm called multiple classifier boosting, which is a
straightforward extension of the multiple instance boosting
approach in Viola et al. [94]. In this approach, the train-
ing examples no longer have a fixed subcategory label. A
set of likelihood values were maintained for each example,
which describe the probability of it belonging to the subcat-
egories during training. These likelihood values are com-
bined to compute the probability of the example being a
positive example. The learning algorithm then maximizes
the overall probability of all examples in the training data
set. Babenko et al. [3] independently developed a very simi-
lar scheme they called multi-pose learning, and further com-
bined it with multiple instance learning in a unified frame-
work. One limitation of the above approaches is that the
formulation requires a line search at each weak classifier to
find the optimal weights, which makes it slow to train and
hard to deploy feature sharing [89]. Zhang and Zhang [116]
proposed an algorithm called winner-take-all multiple cate-
gory boosting (WTA-McBoost), which is more suitable for
learning multiview detectors with huge amount of training
data. Instead of using AnyBoost [57], WTA-McBoost is de-
rived from confidence rated AdaBoost [80], which is much
more efficient to train, and easy to support feature sharing.

To summarize this Section, we make a list of the chal-
lenges and approaches to address them in Table 2.

5. Other learning schemes
As reviewed in the previous section, the seminal work by

Viola and Jones [92] has inspired a lot of research applying
the boosting cascade for face detection. Nevertheless, there
were still a few papers approaching the problem in differ-
ent ways, some providing very competitive performances.
Again, we will only focus on works not covered in [112].

Keren et al. [40] proposed Antifaces, a multi-template
scheme for detecting arbitrary objects including faces in im-
ages. The core idea is very similar to the cascade structure
in [92], which uses a set of sequential classifiers to detect
faces and rejects non-faces fast. Each classifier, referred as
a “detector” in [40], is a template image obtained through
constrained optimization, where the inner product of the
template with the example images are minimized, and the
later templates are independent to the previous ones. In-

Table 2. Face/object detection schemes to address challenges in
boosting learning.

Challenges Representative Works
General AdaBoost [92]
boosting RealBoost [46, 6, 101, 62]
schemes GentleBoost [48, 8]

FloatBoost [46]
Reuse previous Boosting chain [108]
nodes’ results Nested cascade [101]
Introduce Asymmetric Boosting [93, 71, 55]
asymmetry Linear asymmetric classifier [105]
Set intermediate Fixed node performance [48]
thresholds WaldBoost [87]
during Based on validation data [8]
training Exponential curve [107]
Set intermediate Greedy search [54]
thresholds after Soft cascade [7]
training Multiple instance pruning [115]
Speed up Greedy search in feature space [58]
training Random feature subset [8]

Forward feature selection [106]
Use feature statistics [70]

Speed up testing Reduce number of weak classifiers [46,
36]
Feature centric evaluation [81, 110]
Caching/selective attention [69] etc.

Multiview face Parallel cascade [101]
detection Pyramid structure [46]

Decision tree [38, 20]
Vector valued boosting [32, 50]

Learn without Cluster and then train [84]
subcategory Exemplar-based learning [85]
labels Probabilistic boosting tree [90]

Cluster with selected features [103]
Multiple classifier/category boosting
[41, 3, 116]

terestingly, in this approach, negative images were modeled
by a Boltzmann distribution and assumed to be smooth, thus
none is needed during template construction.

Liu [51] presented a Bayesian discriminating features
method for frontal face detection. The face class was mod-
eled as a multivariate normal distribution. A subset of the
nonfaces that lie closest to the face class was then selected
based on the face class model and also modeled with a mul-
tivariate normal distribution. The final face/nonface deci-
sion was made by a Bayesian classifier. Since only the
nonfaces closest to the face class were modeled, the ma-
jority of the nonfaces were ignored during the classification.
This was inspired by the concept of support vector machines



(SVMs) [11], where only a subset of the training examples
(the support vectors) were used to define the final classifier.

SVMs are known as maximum margin classifiers, as they
simultaneously minimize the empirical classification error
and maximize the geometric margin. Due to their superior
performance in general machine learning problems, they
have also become a very successful approach for face de-
tection [68, 27]. However, the speed of SVM based face
detectors was generally slow. Various schemes have since
been proposed to speed up the process. For instance, Romd-
hani et al. [75] proposed to compute a set of reduced set
vectors from the original support vectors. These reduced set
vectors are then tested against the test example sequentially,
making early rejections possible. Later, Rätsch et al. [74]
further improved the speed by approximating the reduced
set vectors with rectangle groups, which gained another 6-
fold speedup. Heisele et al. [29] instead used a hierarchy of
SVM classifiers with different resolutions in order to speed
up the overall system. The early classifiers are at low reso-
lution, say, 3× 3 and 5× 5 pixels, which can be computed
very efficiently to prune negative examples.

Multiview face detection has also been explored with
SVM based classifiers. Li et al. [47] proposed a multi-
view face detector similar to the approach in [78, 38]. They
first constructed a face pose estimator using support vector
regression (SVR), then trained separate face detectors for
each face pose. Yan et al. [109] instead executed multiple
SVMs first, and then applied an SVR to fuse the results and
generate the face pose. This method is slower, but it has
lower risk of assigning a face to the wrong pose SVM and
causing misclassification. Wang and Ji [96] remarked that
in the real world the face poses may vary greatly and many
SVMs are needed. They proposed an approach to combine
cascade and bagging for multiview face detection. Namely,
a cascade of SVMs were first trained through bootstrapping.
The remaining positive and negative examples were then
randomly partitioned to train a set of SVMs, whose out-
puts were then combined through majority voting. Hotta
[31] used a single SVM for multiview face detection, and
relied on the combination of local and global kernels for
better performance. No experimental results were given
in [96, 31] to compare the proposed methods with existing
schemes on standard data sets, hence it is unclear whether
these latest SVM based face detectors can outperform those
learned through boosting.

Neural networks were another popular approach to build
a face detector. Early representative methods included the
detectors by Rowley et al. [77] and Roth et al. [76].
Féraud et al. [16] proposed an approach based on a neu-
ral network model called the constrained generative model
(CGM). CGM is an autoassociative, fully connected multi-
layer perceptron (MLP) with three large layers of weights,
trained to perform nonlinear dimensionality reduction in or-

der to build a generative model for faces. Multiview face de-
tection was achieved by measuring the reconstruction errors
of multiple CGMs, combined via a conditional mixture and
an MLP gate network. In [24], the authors proposed a face
detection scheme based on a convolutional neural architec-
ture. Compared with traditional feature-based approaches,
convolutional neural network derives problem-specific fea-
ture extractors from the training examples automatically,
without making any assumptions about the features to ex-
tract or the areas of the face patterns to analyze. Osadchy
et al. [67] proposed another convolutional network based
approach, which was able to perform multiview face detec-
tion and facial pose estimation simultaneously. The idea is
to train a convolutional neural network to map face images
to points on a low dimensional face manifold parameterized
by facial pose, and non-face images to points far away from
the manifold. The detector was fast and achieved impres-
sive performance – on par with the boosting based detectors
such as [38].

Schneiderman and Kanade [83] described an object de-
tector based on detecting localized parts of the object. Each
part is a group of pixels or transform variables that are sta-
tistically dependent, and between parts it is assumed to be
statistically independent. AdaBoost was used to compute
each part’s likelihood of belonging to the detected object.
The Final decision was made by multiplying the likelihood
ratios of all the parts together and testing the result against
a predefined threshold. In a later work, Schneiderman [82]
further examined the cases where the statistical dependency
cannot be easily decomposed into separate parts. He pro-
posed a method to learn the dependency structure of a
Bayesian network based classifier. Although the problem
is known to be NP complete, he presented a scheme that se-
lects a structure by seeking to optimize a sequence of two
cost functions: the local modeling error using the likelihood
ratio test as before, and the global empirical classification
error computed on a cross-validation set of images. The
commercial PittPatt face detection software that combines
the above approach with the feature-centric cascade detec-
tion scheme in [81] showed state-of-the-art performance on
public evaluation tests [64].

Schneiderman and Kanade [83] used wavelet variables to
represent parts of the faces, which do not necessarily corre-
sponds to semantic components. In the literature, there had
been many component-based object detectors that relied on
semantically meaningful component detectors [112, 63, 5].
In the recent work by Heisele et al. [28], the authors used
100 textured 3D head models to train 14 component detec-
tors. These components were initialized by a set of refer-
ence points manually annotated for the head models, and
their rectangles were adaptively expanded during training
to ensure good performance. The final decision was made
by a linear SVM that combines all the output from the com-



Table 3. Other schemes for face/object detection (since [112]).

General Ap-
proach

Representative Works

Template
matching

Antiface [40]

Bayesian Bayesian discriminating features [52]
SVM – speed
up

Reduced set vectors and approximation
[75, 74]
Resolution based SVM cascade [29]

SVM – multi- SVR based pose estimator [47]
view face SVR fusion of multiple SVMs [109]
detection Cascade and bagging [96]

Local and global kernels [31]
Neural Constrained generative model [16]
networks Convolutional neural network [24, 67]
Part-based Wavelet localized parts [83, 82]
approaches SVM component detectors adaptively

trained [28]
Overlapping part detectors [61]

ponent detectors. Another closely related approach is to de-
tect faces/humans by integrating a set of individual detec-
tors that may have overlaps with each other. For instance,
Mikolajczyk et al. [61] applied 7 detectors to find body
parts including frontal and profile faces, frontal and profile
heads, frontal and profile upper body, and legs. A joint like-
lihood body model is then adopted to build a body structure
by starting with one part and adding the confidence pro-
vided by other body part detectors.

Once again we summarize the approaches in the section
in Table 3.

6. Conclusions and Future Work

In this paper, we surveyed some of the recent advances
in face detection. It is exciting to see face detection tech-
niques be increasingly used in real-world applications and
products. For instance, most digital cameras today have
built-in face detectors, which can help the camera to do bet-
ter auto-focusing and auto-exposure. Digital photo manage-
ment softwares such as Apple’s iPhoto, Google’s Picasa and
Microsoft’s Windows Live Photo Gallery all have excellent
face detectors to help tagging and organizing people’s photo
collections. On the other hand, as was pointed in a recent
technical report by Jain and Learned-Miller [35], face de-
tection in completely unconstrained settings remains a very
challenging task, particularly due to the significant pose and
lighting variations. In our in-house tests, the state-of-the-
art face detectors can achieve about 50-70% detection rate,
with about 0.5-3% of the detected faces being false posi-

tives. Consequently, we believe there are still a lot of works
that can be done to further improve the performance.

The most straightforward future direction is to further
improve the learning algorithm and features. The Haar fea-
tures used in the work by Viola and Jones [92] are very sim-
ple and effective for frontal face detection, but they are less
ideal for faces at arbitrary poses. Complex features may
increase the computational complexity, though they can be
used in the form of a post-filter and still be efficient, which
may significantly improve the detector’s performance. Re-
garding learning, the boosting learning scheme is great if all
the features can be pre-specified. However, other learning
algorithms such as SVM or convolutional neural networks
can often perform equally well, with built-in mechanisms
for new feature generation.

The modern face detectors are mostly appearance-based
methods, which means that they need training data to learn
the classifiers. Collecting a large amount of ground truth
data remains a very expensive task, which certainly de-
mands more research. Schemes such as multiple instance
learning boosting and multiple category boosting are help-
ful in reducing the accuracy needed for the labeled data,
though ideally one would like to leverage unlabeled data to
facilitate learning. Unsupervised or semi-supervised learn-
ing schemes would be very ideal to reduce the amount of
work needed for data collection.

Another interesting idea to improve face detection per-
formance is to consider the contextual information. Human
faces are most likely linked with other body parts, and these
other body parts can provide a strong cue of faces. There
has been some recent work on context based object cate-
gorization [22] and visual tracking [111]. One scheme of
using local context to improve face detection was also pre-
sented in [42], and we think that is a very promising direc-
tion to pursue.

In environments which have low variations, adaptation
could bring very significant improvements to face detec-
tion. Unlike in other domains such as speech recognition
and handwriting recognition, where adaptation has been in-
dispensable, adaptation for visual object detection has re-
ceived relatively little attention. Some early work has been
conducted in this area [34, 114], and we strongly believe
that this is a great direction for future work.
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