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Abstract

We present the first large-scale analysis of hardware failure

rates on a million consumer PCs. We find that many failures

are neither transient nor independent. Instead, a large portion

of hardware induced failures are recurrent: a machine that

crashes from a fault in hardware is up to two orders of mag-

nitude more likely to crash a second time. For example, ma-

chines with at least 30 days of accumulated CPU time over

an 8 month period had a 1 in 190 chance of crashing due

to a CPU subsystem fault. Further, machines that crashed

once had a probability of 1 in 3.3 of crashing a second

time. Our study examines failures due to faults within the

CPU, DRAM and disk subsystems. Our analysis spans desk-

tops and laptops, CPU vendor, overclocking, underclocking,

generic vs. brand name, and characteristics such as machine

speed and calendar age. Among our many results, we find

that CPU fault rates are correlated with the number of cycles

executed, underclocked machines are significantly more reli-

able than machines running at their rated speed, and laptops

are more reliable than desktops.

Categories and Subject Descriptors D.4.5 [Operating Sys-

tems]: Reliability

General Terms Measurement, reliability

Keywords Fault tolerance, hardware faults

1. Introduction

We present the first large-scale analysis of hardware failure

rates on consumer PCs by studying failures in the CPU,

DRAM, and disk subsystems. We find that many failures are

neither transient (one-off) nor independent (memoryless).

Instead, a large portion of hardware-induced failures are

recurrent. Hardware crashes increase in likelihood by up to
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two orders of magnitude after a first such crash occurs, and

DRAM failures are likely to recur in the same location.

Three conditions motivate a hardware-failure study par-

ticularly targeted at consumer machines. First, in contrast to

servers, consumer machines tend to lack significant error-

resiliency features, such as ECC for memory and RAID for

disks, which increases the likelihood that a hardware er-

ror will have an impact on a machine’s operation. Second,

whereas the failure of a single server in a data center can

often be masked by the application-level logic that parti-

tions tasks among machines, the failure of a single con-

sumer machine directly affects the user of that machine.

Moreover, there are good reasons to expect that server-class

and consumer-class machines will exhibit different failure

characteristics: Consumer machines are built with cheaper

components, and they run in harsher environments, with

wider temperature variation, greater mechanical stresses,

more ambient dust, and more frequent power cycling. Third,

although there now exists a significant body of work on an-

alyzing hardware failures in server machines [Bairavasun-

daram et al. 2007, 2008; Kalyanakrishnam et al. 1999; Op-

penheimer et al. 2003; Pinheiro et al. 2007; Schroeder and

Gibson 2006, 2007; Schroeder et al. 2009; Xu et al. 1999],

there is a dearth of information on consumer machines, even

though they constitute the vast majority of machines sold

and used each year.

Studying consumer machines brings new challenges not

present when studying server-class machines. Consumer

machines are geographically remote, widely distributed, and

independently administered, which complicates data col-

lection. There are no field reports from repair technicians

or outage logs filed by customers, as used by other stud-

ies [Gray 1987, 1990; Kalyanakrishnam et al. 1999; Oppen-

heimer et al. 2003; Schroeder and Gibson 2006; Xu et al.

1999]. The general lack of ECC precludes tracking ECC er-

rors as a means for determining memory failures, as used in

server studies [Constantinescu 2003; Schroeder et al. 2009].

To address these challenges, we employ data sets from

the Windows Error Reporting (WER) system [Glerum et al.

2009], which was built to support diagnosis of software

faults that occur in the field. Through post hoc analysis of re-



ports from roughly one million machines, we are able to iso-

late several narrow classes of failures that are highly likely

to have a root cause in hardware: machine-check exceptions

reported by the CPU, single-bit errors in the kernel region of

DRAM, and OS-critical read failures in the disk subsystem.

This methodology has two unfortunate limitations. First,

since WER logs are generated only in response to a crash,

our study is blind to hardware failures that do not lead to

system crashes. In particular, the only DRAM bit errors that

cause system crashes are those that occur within the roughly

1.5% of memory that is occupied by kernel code pages. Er-

rors elsewhere in the memory may cause application crashes

or data corruption, but we cannot observe these.

Second, our study sheds no light on the relative frequency

of hardware-induced versus software-induced crashes. The

three types of failures we study constitute a minority of

WER entries; however, most types of CPU, memory, and

disk failures produce symptoms that are indistinguishable

from kernel-software failures. On the other hand, such a re-

sult would be relevant only for Windows machines, whereas

absolute measures of hardware failures are relevant for any

operating system, or at least any OS that relies on a function-

ing CPU, error-free memory, and a responsive disk.

Despite these limitations, our study has found a number

of interesting results. For instance, even small degrees of

overclocking significantly degrade machine reliability, and

small degrees of underclocking improve reliability over run-

ning at rated speed. We also find that faster CPUs tend to

become faulty more quickly than slower CPUs, and laptops

have lower failure rates than desktops. Beyond our results,

this study serves to inform the community that hardware

faults on consumer machines are not rare, independent, or

always transient. While prior work focused on measuring

hardware faults that may or may not cause an OS failure,

our study is the first to measure observed OS failure rates

due to faulty hardware.

In the sequel, we analyze the probability of machine fail-

ure from each failure type, as well as the conditional prob-

ability that a failure will recur (§4). We analyze the spatial

locality of DRAM failures, which informs conjectures about

the underlying fault. We analyze failure behavior of various

machine classes, by partitioning machines into populations

of overclocked vs. non-overclocked, underclocked vs. rated-

speed, white box (generic) vs. brand name, and desktops vs.

laptops (§5). We evaluate the interdependence of the three

failure types, revealing a nonintuitive set of dependency re-

lations. We analyze the effect of various machine charac-

teristics on failure rate, including CPU speed, memory size,

and calendar age (§6). We estimate the likelihood that un-

derlying faults are intermittent rather than transient (§7) in a

temporal analysis of recurring failures. Based on these and

other results, we propose several research directions for a

hardware-fault-tolerant operating system (§8).

2. Prior work

Ours is the first large-scale study of hardware failures in con-

sumer machines, and the first study of CPU subsystem fail-

ures on any class of machines. Furthermore, many of our

analyses have not been previously conducted, even for server

machines. The effect on failure rates of overclocking and un-

derclocking, brand name vs. white box, and memory size

have not been previously studied. There is no prior work

examining the relative frequency of intermittent vs. tran-

sient hardware faults, nor in studying the spatial locality of

DRAM failures. Some of our comparisons, such as desktop

vs. laptop, are not even meaningful in server systems.

However, some of our findings mirror those in prior work.

Like Schroeder et al. [2009], who conducted detailed stud-

ies of DRAM failure rates on server machines, we find that

DRAM errors are far more likely to occur than would be ex-

pected from studies of error rates induced by active radiation

sources [Constantinescu 2002; Micron 1997; Ziegler et al.

1998] or cosmic rays [Seifert et al. 2001; Ziegler et al. 1996].

Also, like Pinheiro et al. [2007] and Schroeder and Gibson

[2007], who examined disk failure rates in large data-center

installations, we find that disk MTTF times are much lower

than those specified on disk data sheets. Our findings on

conditional failure probability mirror the findings of recent

studies of DRAM failures [Schroeder et al. 2009] and disk-

subsystem failures [Jiang et al. 2008] on server machines: an

increase of up to two orders of magnitude in observed failure

rates after a first failure occurs.

Some of our findings contrast with those of prior studies.

In studying the correlation between age and DRAM failure

rates, Schroeder et al. [2009] found no infant mortality and

no increasing error rates at very old ages; by contrast, we find

minor evidence for both of these phenomena, consistent with

a bathtub curve. Constantinescu [2003], in a study of ECC

errors on 193 servers, concluded that the risk of intermittent

faults increases as chip densities and frequencies increase;

by contrast, we find that memory size (which roughly corre-

sponds to density) has only weak correlation to failure rate,

and CPU frequency has no effect on the rate of failures per

CPU cycle for non-overclocked machines.

Much of the prior work in this area addresses issues that

our study does not. Our data is unable to conclusively ad-

dress the relative frequency of hardware versus software fail-

ures, but the coarse-grained division between hardware, soft-

ware, and operator error was the focus of a study at three in-

ternet services [Oppenheimer et al. 2003] and of two studies

of Windows NT server installations [Kalyanakrishnam et al.

1999; Xu et al. 1999]. WER logs also tell us nothing about

machine temperature or the relocation of components among

machines, as studied by Pinheiro et al. [2007], Schroeder and

Gibson [2007], and Schroeder et al. [2009]. A Windows ma-

chine will submit a WER error log only if the machine recov-

ers after a crash; by contrast, Schroeder and Gibson [2006]

studied the sources of unrecoverable failures in 4,700 com-



puters across several high-performance computing clusters.

The study of disk failures by Bairavasundaram et al. [2008]

showed data corruption was neither independent across disks

nor independent within a single disk, roughly analogous to

our study of spatial locality of DRAM errors.

3. Methodology

3.1 Terminology

We begin with a brief summary of terms used throughout the

paper, derived from definitions by Patterson [2002]. We dis-

tinguish between a failure, which is deviant behavior (e.g., a

crash), and a fault, which is a defect in a component. A fail-

ure is recurrent if it occurs more than once. Faults are char-

acterized by duration as either permanent, intermittent, or

transient. A permanent fault is a persistent defect that causes

consistent failure, such as a burned-out chip. An intermittent

fault is a persistent defect that causes zero or more failures,

such as a speck of conductive dust partially bridging two

traces. A transient fault is an instantaneous defect causing a

single failure, such as an alpha particle striking a transistor.

In general, machines did not operate continuously for

the entire study period. When reporting results with re-

spect to time, we aggregate each machine’s not-necessarily-

contiguous CPU time into a quantity we call TACT, for Total

Accumulated CPU Time. CPU time is defined as time when

the machine is running. For example, an idle CPU accumu-

lates TACT, but no TACT is accumulated by a machine that

is in sleep mode.

3.2 Data sets and analysis

Our analyses employ two data sets from the Windows Error

Reporting process [Glerum et al. 2009], in which Windows

computers send crash and/or status reports to Microsoft.

The RAC data set is part of the Windows’ Customer Ex-

perience Improvement Program (CEIP), in which users opt-

in to allow their machines to send periodic machine status

reports to Microsoft. These reports indicate not only when

crashes occurred but also periods during which crashes did

not occur. If a machine crashes so severely that a crash report

is not generated, than those reports will not be present in our

data. Therefore, our analysis can be considered conservative,

since it does not capture such incidents. This data set is used

for all of the analyses in this paper other than Section 4.3.

The ATLAS data set collects and processes a crash report

whenever the Windows OS reboots after a crash. This data

set includes detailed crash information that we use to spa-

tially analyze DRAM errors in Section 4.3. We also use this

data to obtain BIOS date information for the calendar age

study in Section 6.4.

Both the ATLAS and RAC data sets are represented in

SQL databases. More details about the collection of failure

data is detailed by Glerum et al. [2009]. The analysis took

roughly one person-year of effort to complete. Of this time,

approximately 6 to 7 months was spent in exploratory work,

and the remainder of the time was spent conducting the anal-

yses that appear in this paper. Some of these analyses, such

as those in Sections 4 and 5, were completed by executing

approximately 10,000 lines of SQL written by the authors

against the two databases previously listed. Other portions

of the analysis, such as those in Section 6 and 7, required

pulling multiple pieces of data out of the database and con-

ducting additional work in Excel and Mathematica.

3.2.1 Managing selection bias

The biggest weakness of our methodology is selection bias.

Since users volunteer their machines for either or both of our

data sets, our results may not be representative of the general

population of machines in the world. In particular, the occur-

rence or type of a hardware failure might be correlated with

the machine owner’s inclination to participate in the CEIP or

to report a failure to ATLAS.

Although we cannot guarantee that self-selection bias has

not affected our results, the large size of our population

(nearly one million machines) and the wide diversity of

machine characteristics (§6) suggest that our results apply

to a large and diverse set of machines.

Moreover, since the processes by which users express

participation in RAC and ATLAS are different from each

other, we theorize that a strong correlation between these

two data sets suggests that both are likely to be representa-

tive of the world population from which they were separately

drawn. Although the two databases have different popula-

tions of users and machines, they both use the same fail-

ure categorization scheme, which is far more specific than

our three main failure types. We sorted these categories and

found matches for the top 34 categories, which account for

over 99% of all hardware-related failures, according to their

occurrence frequency within each database. The resulting

sort orders are correlated with a Spearman’s coefficient of

ρ = 0.92, which is a significance of at least 99.9%.

3.3 Types of failures

Of the many types of hardware failures, we study only

three: one in the CPU and its associated components, one in

DRAM, and one in the disk subsystem. Our specific choice

of failure types was motivated by our confidence that post-

hoc analysis can determine that a crash is due to a particular

hardware fault and is not caused by a software bug.

In addition to dictating our choice of failure types, our

use of crash logs has two additional consequences. First, we

observe only failures that cause system crashes, and not a

broader class of failures that includes application crashes or

non-crash errors. Second, we cannot observe failures due to

permanent faults, since a machine with a permanent, crash-

inducing fault would be unable to recover to produce, record,

and transmit a crash log.



kd> !chkimg -d -db !Ntfs

f9161dbd - Ntfs!NtfsCommonCleanup+18d3

[ 53:73 ]

1 error : !Ntfs (f9161dbd)

[correct] f9161dbd 53  push ebx

[faulty]   f9161dbd 738d jae Ntfs!NtfsCommonCleanup+0x1acf 

This figure shows the output of the Windows debugger when

detecting a kernel crash caused by a single-bit flip in memory.

In this example, the NTFS driver resides in a code-page

marked as read-only by the MMU. When a single bit was

flipped (0x53 to 0x73), a 1 byte instruction was decoded

as a 2-byte instruction (0x738d), causing execution to stray

into an arbitrary function.

Figure 1. Example of an error caused by a 1-bit failure

3.3.1 CPU subsystem failures

Our first type of failure occurs within the CPU or closely as-

sociated components in the core chipset. This failure occurs

when the CPU issues a machine-check exception (MCE) [In-

tel], which indicates a detected violation of an internal in-

variant. Causes include bus errors, microcode bugs, and par-

ity errors in the CPU’s caches.

3.3.2 DRAM failures

Our second type of failure results from an incorrect value in a

kernel code page, meaning regions of DRAM that hold code

for the OS kernel and kernel-level drivers. These pages have

two important properties that allow us to identify hardware

as the cause of a failure.

The first property is that the intended content of these

pages is known, because it is code from the Windows kernel

or from a Microsoft or third-party driver. The binary files are

digitally signed, so if they become corrupted on disk, they

will fail to load into memory. System crash logs include a

dump of small region of memory near the crash location,

called a mini-dump. Comparison of the mini-dump to the in-

tended content reveals any modifications to the page. In ad-

dition, manual inspection is often able to relate the observed

code change to the cause of the crash, as shown in Figure 1.

This relation substantiates the conclusion that the DRAM ac-

tually contained the observed erroneous value, in contrast to

an alternate explanation in which the state of the mini-dump

file became corrupted on disk.

The second property is that over 90% of kernel code

pages are marked read-only, so the MMU prevents software

from directly modifying the page contents. Therefore, any

changes to this memory state must be either written by DMA

hardware or generated within the memory itself. To discount

the possibility of DMA writes, we limit our study to one-

bit failures, meaning that only a single bit in the mini-dump

shows an incorrect value.

It is still possible for a buggy DMA to cause such an

error, by spuriously writing a single byte that happens to

differ in only one bit from the proper value for that location.

However, when we calculate the likelihood of a randomly

written byte differing from the correct value by exactly one

bit, it turns out to be far less probable than the rate we

observe: Of the 256 possible values that might randomly

overwrite a single byte, one of these values coincidentally

equals the correct value, eight of these values differ from the

correct value in a single bit, and the remaining 247 values

differ by more than one bit. Thus, a spurious one-byte DMA

would cause 8
247 as many single-bit errors as multi-bit errors,

but we observe over six times as many single-bit errors as

multi-bit errors.

A consequence of confining our analysis to kernel code

pages is that we will miss DRAM failures in the vast ma-

jority of memory. On a typical machine kernel code pages

occupy roughly 30 MB of memory, which is 1.5% of the

memory on the average system in our study. While our anal-

ysis provides insight into the number of operating system

crashes caused by DRAM faults in kernel code pages, no

general conclusion can be drawn about the distribution or

frequency of DRAM faults across all of the DRAM within

a machine. The analysis provides no insight into the distri-

bution of faults, and we can make no assumption since the

faults are caused by an unknown source.

3.3.3 Disk subsystem failures

Our third type of failure occurs in the disk subsystem. This

failure occurs when the operating system is unable to pro-

ceed without reading data from the disk, such as when the

memory manager tries to read in virtual-memory state that

has been paged out. If the disk does not complete the read,

even with multiple retries, the system crashes. This type of

failure can be caused by a problem in the system bus, in the

bus controller, in the cable connecting the disk to the con-

troller, or in the disk itself.

4. Measuring hardware failure rates

We begin by quantifying the probability that a machine will

fail from one of the three types of failures examined in

the study. We measured the failure rates of approximately

950,000 machines voluntarily and anonymously reporting to

the RAC database for a period of 8 months in 2008.

For each type of failure, we analyze the probability that a

machine will crash while under observation. We also analyze

the conditional probability that a machine will crash from a

hardware failure if it has already experienced one or more

failures of the same type. We begin by analyzing two subsets

of machines in our study: 577,155 machines with at least 5

days of TACT, and 124,591 machines with at least 30 days

of TACT. We note that even 5 days of TACT may represent

many more calendar days in the study if a machine is turned

on for only a few hours each day.

4.1 CPU subsystem (MCE) failures

As shown in the first row of Figure 2, machines that accu-

mulate at least 5 days of TACT have a 1 in 330 chance of



Failure min TACT Pr[1st failure] Pr[2nd fail | 1 fail] Pr[3rd fail | 2 fails]

CPU subsystem (MCE) 5 days 1 in 330 1 in 3.3 1 in 1.8

CPU subsystem (MCE) 30 days 1 in 190 1 in 2.9 1 in 1.7

Memory (DRAM one-bit flip) 5 days 1 in 2700 1 in 9.0 1 in 2.2

Memory (DRAM one-bit flip) 30 days 1 in 1700 1 in 12 1 in 2.0

Disk subsystem 5 days 1 in 470 1 in 3.4 1 in 1.9

Disk subsystem 30 days 1 in 270 1 in 3.5 1 in 1.7

Figure 2. The (conditional) probability of an OS crash from various hardware failures

crashing due to an MCE during the 8 month observation pe-

riod. After a machine has crashed once, its crash probability

increases by a factor of 100, and the probability continues

to increase with subsequent crashes. The second row in the

figure shows that the same trend holds for machines with at

least 30 days of TACT, but the initial probability of failure is

higher. Further analysis shows that, of the machines with at

least 5 days of TACT that experience a recurring crash from

an MCE, 84% of machines experience a recurrence within

10 days of TACT, and 97% of machines experience a recur-

rence within a month.

4.2 One-bit DRAM failures

The middle two rows of Figure 2 show the crash probabil-

ity for one-bit DRAM failures, which are broadly similar to

the trends for CPU subsystem failures: The failure proba-

bility jumps by more than two orders of magnitude after a

first failure is observed, and the probability further increases

with subsequent crashes. The initial failure probabilities are

nearly an order of magnitude lower than those for CPU fail-

ures, but this gap is almost erased after two repeated crashes.

In addition, since we are capturing DRAM errors in only

1.5% of the address space, it is possible that DRAM error

rates across all of DRAM may be far higher than what we

have observed. Further analysis shows that, of the machines

with at least 5 days of TACT that crash from a repeated one-

bit DRAM failure, 94% experience the second crash within

10 days of TACT, and 100% crash within 30 days.

Memory manufacturers often use a metric called FITS

(failures per billion hours of uptime) [Micron 1994] to de-

scribe the probability of an Alpha particle or neutrino flip-

ping a bit in memory. Our data suggests that FITS is an in-

sufficient metric upon which to make decisions for building

software reliability or determining whether hardware pro-

tections such as ECC should be used. Unfortunately, ECC

memory is seen as a “premium” part, and is often used

only in server machines. Field studies—such as ours—may

observe many different environmental effects, such as dirt,

heat, or assembly defects, all of which all can conspire to

increase the probability of memory errors.

4.3 Spatial analysis of one-bit DRAM failures

DRAM faults provide a unique opportunity to gain more

insight into recurring hardware faults. Each mini-dump sent

to Microsoft contains sufficient information to determine the

memory location of a one-bit fault. We can thus determine

whether recurring one-bit faults show spatial locality, which

would substantiate the hypothesis that such recurrences are

not merely coincidental.

Unfortunately, we have a fairly limited set of crash reports

on which to base this analysis, for two reasons. First, the

RAC database contains only post-processed crash results,

not actual mini-dumps, so we must analyze mini-dumps

from ATLAS instead. Therefore, we analyzed 381,315 one-

bit failures reported to the ATLAS database, only 22,319 of

which are recurrent. Second, we can determine the physical

address only for the 2707 recurrent failures that occurred

within a particular 3 MB portion of the 30 MB Windows

kernel image, because the remainder of the image is not

loaded at a deterministic physical address.

Our result is that, among machines that experienced re-

current DRAM failures, 79% experienced at least two such

failures at the same physical address with the same bit

flipped. In fact, the rate of spatial locality may even be

higher, due to a weakness in the ATLAS data set: Each ma-

chine in ATLAS is tagged with an ID that is not guaranteed

to be unique, so many observations of two failures on the

“same” machine at different locations may in fact be fail-

ures on two different machines. The identifier collision rate

is hard to quantify but known to be non-zero, so 79% is a

conservative value for spatial locality.

There is one important caveat to this result: The 3 MB

portion of the kernel image used for this analysis is the only

part of kernel code not protected by the MMU, so it is pos-

sible that the one-bit errors are due to erratic software rather

than DRAM failures. However, we observed zero spatial lo-

cality among failures on different machines. Therefore, for

software to cause the behavior we have seen, a stray thread

would have to flip the same bit across different boots of the

same machine, but never flip the same bit across two differ-

ent machines. Although this is possible, we conjecture it to

be considerably more probable that these recurring crashes

are caused by a spatially local defect in a DRAM chip.

4.4 Disk subsystem

The last two rows of Figure 2 show the crash probability

for disk subsystem failures. The first-failure probability is

one in several hundred, followed by a roughly two-order-

of-magnitude increase after a machine has failed once, and

increasing thereafter. Further analysis found that, of the ma-



CPU Vendor A CPU Vendor B

No OC OC No OC OC

Pr[1st] 1 in 400 1 in 21 1 in 390 1 in 86

Pr[2nd|1] 1 in 3.9 1 in 2.4 1 in 2.9 1 in 3.5

Pr[3rd|2] 1 in 1.9 1 in 2.1 1 in 1.5 1 in 1.3

Figure 3. CPU failures and the effects of overclocking

chines with at least 5 days of TACT, 86% of recurring disk

subsystem failures recur within 10 days of TACT, and 99%

of recurrences happen within 30 days.

These crashes are costly because all data items not yet

written to disk are permanently lost when a machine crashes

from a disk fault. Therefore, this data suggests that when a

machine fails from a disk subsystem error, it is prudent to

immediately replace the disk, rather than waiting to see if

the failure recurs.

4.5 Are failures memoryless?

The trends shown in Figure 2 strongly suggest that the oc-

currence rates of hardware failures are not memoryless. To

substantiate this conclusion rigorously, we performed a χ2

test to compare per-machine failure inter-occurrence times

to an exponential distribution. With a better than 0.001 level

of significance, observed failure inter-occurrence times are

not exponential and therefore not memoryless.

This is an important result because it suggests that mean

time to fail (MTTF) would be an inherently inappropriate

metric for hardware failures on consumer machines. MTTF

has relevance in a data center, where an operator cares about

aggregate failure behavior: Thanks to the law of large num-

bers, an operator can use the Poisson distribution to set con-

fidence bounds on the expected count of hardware failures in

a year, even though the failure inter-occurrence time for each

machine is not exponentially distributed. However, for a con-

sumer machine running a single-system OS, MTTF provides

very little insight into how frequently failures will occur in

practice. For instance, the MTTF for our studied population

is 2.07×108 CPU seconds, which is 6.56 CPU years; how-

ever, after a failure occurs, the MTTF drops to 1.17× 106

seconds, which is 13.5 CPU days.

5. Effect of machine class

Next, we partition the data set into various classes of ma-

chines, to determine their effect on OS failure rates.

5.1 Effects of Overclocking

The first class we examine is overclocked machines. When a

CPU is fabricated, the manufacturer rates the speed at which

the part passes a set of tests. We refer to this as the CPU’s

“rated” speed. Some end users and/or OEMs will overclock

the part to improve performance. However, this increases the

risk of malfunction, either from directly exceeding compo-

nent tolerances (such as gate delays) or from indirectly af-

fected environmental factors (such as overheating).

Failure type No OC OC

DRAM one-bit flip 1 in 2800 1 in 560

Disk subsystem 1 in 480 1 in 430

Figure 4. Disk, DRAM and the effects of overclocking

5.1.1 Identifying an overclocked machine

We measured the effects of overclocking on machine re-

liability from two major parts vendors of x86 compatible

CPUs. When the Windows operating system boots, it mea-

sures the actual clock speed of the machine. Identifying the

rated frequency involved a bit more work. One of the au-

thors created a SQL table that allowed us to match a CPU

model number, which is identifiable in the SMBIOS table,

to a CPU rated frequency, which was identified through a

time-intensive, but one-time manual analysis. However, we

were able to identify the rated frequency for only a subset of

the machines in our study. For our analysis of machines with

at least 5 days of TACT, we could identify the rated speed of

477,464 out of 577,155 machines. Any machine for which

we could not identify the rated speed was ignored.

We can compare the measured frequency and the rated

frequency to see if the machine is overclocked. However,

CPUs are often sold at a rated frequency that differs slightly

from the frequency at which the manufacturer established

reliable operation. For example, a 2 GHz chip might run

at 1.995 GHz in practice. To conservatively measure only

those machines explicitly overclocked by users or resellers,

we divide the machines into three groups: non-overclocked

machines, whose actual speed is within 0.5% above the rated

speed (97% of machines), unknown machines, whose actual

speed is between 0.5% and 5% above the rated speed (1% of

machines), and overclocked machines, whose actual speed is

more than 5% faster than the rated speed (2% of machines).

This analysis ignores machines in the unknown category.

A potential concern with this analysis is that TACT might

correlate with how over- or underclocked a machine is,

which would conflate our results. However, we calculated

negligible correlation (r = 0.0004) between TACT and the

ratio of actual CPU speed to rated CPU speed.

5.1.2 Overclocking analysis

Figure 3 shows the impact of an overclocked device on the

probability that a machine will crash from a machine check

exception. For brevity, results are shown only for machines

with at least 5 days of TACT; similar trends hold for ma-

chines with at least 30 days of TACT. We have divided the

analysis between two CPU vendors, labeled “Vendor A” and

“Vendor B.” The table shows that CPUs from Vendor A are

nearly 20x as likely to crash a machine during the 8 month

observation period when they are overclocked, and CPUs

from Vendor B are over 4x as likely. After a failure occurs,

all machines, irrespective of CPU vendor or overclocking,

are significantly more likely to crash from additional ma-

chine check exceptions.



Failure type UC rated

CPU subsystem (MCE) 1 in 460 1 in 330

DRAM one-bit flip 1 in 3600 1 in 2000

Disk subsystem 1 in 560 1 in 380

Figure 5. The effects of underclocking

Failure type Brand name White box

CPU subsystem (MCE) 1 in 120 1 in 93

DRAM one-bit flip 1 in 2700 1 in 950

Disk subsystem 1 in 180 1 in 180

Figure 6. Brand name vs. White box

Failure type Desktops Laptops

CPU subsystem (MCE) 1 in 120 1 in 310

DRAM one-bit flip 1 in 2700 1 in 3700

Disk subsystem 1 in 180 1 in 280

Figure 7. Desktops vs. Laptops

Figure 4 shows the probability of crashing at least once

from a disk subsystem failure or a DRAM error for over-

clocked and non-overclocked machines with at least 5 days

of TACT. For the sake of brevity, we omit the measurements

of the 2nd and 3rd failure, since they converge on a high

probability of failure when a machine has previously crashed

at least once. Overclocking increases the likelihood of one-

bit flip failures by a factor of 4; however, it does not have

much impact on the probability of disk subsystem failures.

5.2 Effects of underclocking

As noted in Section 5.1.1, CPUs that are not explicitly over-

clocked by users still run slightly above or below their rated

frequency. We were interested to see whether there was any

variance in reliability among non-overclocked machines.

Therefore, we further partitioned the non-overclocked ma-

chines into underclocked machines, which run below their

rated frequency (65% of machines), and rated machines,

which run at or no more than 0.5% above their rated fre-

quency (32% of machines). As shown in Figure 5, under-

clocked machines are between 39% and 80% less likely to

crash during the 8 month observation period than machines

with CPUs running at their rated frequency.

5.3 Brand name vs. white box

The next comparison examines whether “brand name” ma-

chines are more reliable than “white box” machines. We

identify a machine as brand name if it comes from one of

the top 20 OEM computer manufacturers as measured by

worldwide sales volume. To avoid conflation with other fac-

tors, we remove overclocked machines and laptops from our

analysis. We limited our study to failures that occur within

the first 30 days of TACT, for machines that have at least 30

recorded days of TACT. This is critical because brand name

machines have an average of 9% more TACT per machine

than white box machines, so including all observed failures

would conflate our results. Figure 6 shows that white box

machines have less reliable CPUs and dramatically less reli-

able DRAMs than brand name machines, although disks are

just as reliable.

5.4 Desktop vs. laptop machines

Our next analysis compares the reliability of desktop and

laptop machines. To avoid conflation with other factors, we

remove overclocked and white box machines from our anal-

ysis. Because desktops have 35% more TACT than laptops,

we only count failures within the first 30 days of TACT, for

machines with at least 30 days of TACT.

Although one might expect the typically abusive environ-

ment of laptops to make them less reliable, Figure 7 shows

the opposite. Laptops are between 25% and 60% less likely

than desktop machines to crash from a hardware fault over

the first 30 days of observed TACT. We hypothesize that the

durability features built into laptops (such as motion-robust

hard drives) make these machines more robust to failures in

general. Perhaps the physical environment of a home or of-

fice is not much gentler to a computer as the difference in

engineering warrants.

5.5 Interdependence of failure types

Finally, we ran an analysis to determine whether the proba-

bility of crashing from each type of hardware failure is inde-

pendent of crashing from each of the other types of hardware

failure. We ran a contingency-table analysis using a χ2 test.

(Details are in Appendix A.) We found that (1) CPU fail-

ures and DRAM failures are dependent, and (2) CPU fail-

ures and disk failures are dependent, but (3) DRAM failures

and disk failures are independent. These results are statisti-

cally strong, with levels of significance better than 10−6 for

the dependence results and a level of significance of 0.3 for

the independence result.

This is bizarre. The simplest cases would be those in

which all three are dependent, or all three are independent,

or two are dependent but each is independent of the third. Yet

we found two independent of each other but each separately

dependent on the third. This implies the existence of at least

two different factors, one (such as a flaw in the memory bus)

that affects the CPU and DRAM but not the disk, and another

(such as a flaw in the PCI bus controller) that affects the CPU

and disk but not the DRAM. Lacking the data for further

analysis, we offer these ideas as purely conjecture.

6. Effect of machine characteristics

We now examine the effect of various machine characteris-

tics on failure rate. The specific characteristics we consider

are absolute CPU speed, CPU speed ratio (speed relative to

rated speed), memory size, and calendar age.

These analyses are complicated because our sample pop-

ulation has a highly non-uniform distribution of each of

these characteristics, as shown in Figure 8. In addition, the
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Figure 8. Characterization of machines in the study

amount of sample time (in TACT) may be correlated to ma-

chine characteristics, most obviously to calendar age, since

younger machines have shorter lifetimes to sample.

To factor out these conflating issues, our primary analyti-

cal tool is the P-P plot1, a graphical technique that compares

two cumulative distribution functions by plotting one of the

functions against the other [Gibbons and Chakraborti 2003].

(An example of P-P plot construction is shown in Appendix

B.) For most of the graphs in this section, we plot a CDF

of failures (versus the characteristic under study) against the

CDF of TACT (versus the characteristic under study). If fail-

ures were to occur independently of the characteristic, the re-

sulting P-P plot would be a straight line along the line y = x.

Deviations from straight-line behavior show particular forms

of dependence.

As an aid to visual interpretation, our P-P plots show a

dashed line for y= x. They also show dotted lines that outline

a 99% confidence envelope that should contain any P-P plot

for which the two CDFs are uncorrelated. The size of the

envelope differs among plots, because the sample variance

in the failure CDF varies with the count of observed failures.

Because these P-P plots weight machines in proportion to

their TACT, there is no need to discard machines with less

than 5 days of TACT, as we did in previous sections.

6.1 CPU speed

We first consider the characteristic of CPU speed. For this

study, we limit our analysis to machine records in the RAC

data set that contain valid entries for both actual CPU speed

and rated CPU speed. As a result, we conducted the analysis

on 83% of the machines.

Figure 9 shows P-P plots for our three failure types ver-

sus TACT, relative to CPU speed. For CPU subsystem fail-

ures, we also show one plot—Figure 9(b)—that includes

only non-overclocked machines. All of the graphs in Fig-

ure 9 show P-P plots that significantly deviate (with > 99%

confidence) from the line y = x. Specifically, all of these

plots pull to the right, indicating that failures become more

common as CPU speed increases. This result suggests that

one can minimize the likelihood of failure over a given time

period by operating at the slowest CPU speed sufficient to

achieve desired performance.

1 An alternative approach is to use a technique such as principal component

analysis (PCA). However, PCA requires the data to be jointly normally

distributed. This is a strong assumption that is not defensible for our data.

Before discussing each failure type in turn, we consider

one factor that could contribute to this tendency across all

failure types: Faster CPUs execute more cycles per CPU

second, so even if the failure rate per cycle were independent

of CPU speed, the failure rate per CPU second would not

be. To factor this out, we also generate P-P plots versus total

aggregate CPU cycles (TACC), as shown in Figure 10.

CPU subsystem: Figure 9(a) shows that the frequency of

CPU failures increases dramatically as CPU speed increases.

Much of this can be accounted for by a faster machine’s

greater count of cycles per CPU second, as evidenced by the

comparative weakness of this trend in Figure 10(a). Alter-

natively, the trend is weakened when considering only non-

overclocked machines, as shown in Figure 9(b). These two

factors together can account for nearly all of the effect of

CPU speed on CPU failure rate, as shown by the lack of any

consistent pull in Figure 10(b). In other words, we see no

evidence that the per-cycle failure rate of non-overclocked

CPUs is dependent on CPU speed.

Memory: Figure 9(c) shows a positive correlation be-

tween memory failures and CPU speed, except at the ex-

trema of the distribution. The 99% confidence envelope is

notably wider in this graph than in Figure 9(a), because our

data set contains an order-of-magnitude fewer memory fail-

ures than CPU subsystem failures.

Figure 10(c) shows that this positive correlation decreases

when we account for the increase in cycles per CPU second.

We do not know why this is so; one possibility is that faster

CPUs tend to load and flush their caches more frequently,

which leads to a greater frequency of memory operations per

second. In any event, the positive correlation for the middle

of the distribution is still significant in Figure 10(c). This

might, for instance, indicate a correlation between DRAM

errors and package temperature, since faster CPUs tend to

run hotter, thus warming nearby DRAM.

Disk subsystem: Figures 9(d) and 10(d) show that disk

subsystem errors have a complicated relationship to CPU

speed. When calculated per unit time, the correlation is pos-

itive, but when calculated per CPU cycle, the correlation is

negative. We offer the following (untested) hypothesis to ex-

plain this behavior: We conjecture that (1) disk subsystem

failures are correlated with disk activity; (2) disk activity

per unit time increases as CPU speed increases, because the

processor spends less time in critical-path computations be-

tween disk operations; and (3) the increase in disk activity

per unit time is sub-linear with respect to CPU speed, be-
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(a) CPU failures, all (b) CPU failures, non-OC (c) memory failures (d) disk subsystem failures

The dashed line y = x shows where a perfectly independent plot would lie. The dotted lines outline a 99% confidence envelope

for independence. Whereas (a), (c), and (d) show all machines for which CPU speed could be determined, (b) shows only

machines whose CPU speeds are no more than 0.5% over rated speed.

Figure 9. P-P plots of failure count versus total aggregate CPU seconds (TACT), relative to CPU speed
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(a) CPU failures, all (b) CPU failures, non-OC (c) memory failures (d) disk subsystem failures

Figure 10. P-P plots of failure count versus total aggregate CPU cycles (TACC), relative to CPU speed

cause the disk activity rate is also constrained by the disk

speed. If all three of these conditions hold, a disk connected

to a faster CPU will perform more operations per unit time,

leading to a higher error rate per CPU second; however, the

CPU will perform more cycles per disk operation, leading to

a lower error rate per CPU cycle.

6.2 CPU speed ratio

Sections 5.1 and 5.2 investigated the effect of over- and un-

derclocking on machine stability. In the present subsection,

we study this effect more broadly. We generate P-P plots for

each failure type versus TACT, relative to the ratio of actual

CPU speed to rated CPU speed, as shown in Figure 11.

Unlike the other characteristics we study, CPU speed ra-

tio naturally divides into well-demarcated regions. Ratios

below 1 are machines that are underclocked; ratios of exactly

1 are machines that are clocked at their rated speed; and ra-

tios above 1 are machines that are overclocked. As described

in Section 5.1.1, we divide overclocked machines into those

that may be within manufacturers’ tolerances and those that

are clearly not; the dividing point is a ratio of 1.05. These

regions are demarcated in Figure 11 with long-dash lines.

All three of these P-P plots show significant positive

correlation between failures and CPU speed ratio, meaning

that failures become more common as the ratio of actual to

rated CPU speed increases.

CPU subsystem: Figure 11(a) shows the most dramatic

rightward pull of all our P-P plots, over all machine char-

acteristics and all failure types. The less-than-unity slope in

the r < 1 region graphically illustrates the lower CPU fail-

ure rates of underclocked machines (c.f. §5.2), and the nearly

vertical slope in the r > 1.05 region shows the profound ef-

fect of overclocking on CPU failures (c.f. §5.1). The sharp

knee at r = 1.05 validates our choice of 5% as a cutoff for

judging overclocking.

Memory: Figure 11(b) shows a similar trend to Fig-

ure 11(a), although it is less dramatic. In the r < 1 region,

underclocked machines account for 63% of TACT but only

52% of memory errors. In the next two regions, machines at

rated speed and those up to 5% over rated speed account for

35% of TACT and 41% of memory errors. In the r > 1.05

region, overclocked machines account for 2% of TACT and

8% of memory errors.

Disk subsystem: Figure 11(c) also shows a positive cor-

relation, but it is more spread out than for the other two fail-

ure types. In marked contrast to Figures 11(a) and 11(b), the

upper-right end of the plot falls almost perfectly on the y = x

line: The top 14% of overclocked CPU seconds account for

14% of all disk subsystem failures. This is consistent with

the result from Section 5.1.2 that overclocking does not have

a large effect on disk subsystem faults.

6.3 Memory size

Next, we consider the characteristic of machine DRAM size,

for which P-P plots of failures versus TACT are shown in

Figure 12. While one might expect that DRAM size has lim-
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(a) CPU subsystem failures (b) memory failures (c) disk subsystem failures

Figure 11. P-P plots of failure count versus TACT, relative to the ratio of CPU speed to rated speed
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(a) CPU subsystem failures (b) memory failures (c) disk subsystem failures

Figure 12. P-P plots of failure count versus TACT, relative to DRAM size

ited impact on the stability of a machine, we instead find that

our three failure types have widely differing relationships to

this characteristic.

CPU subsystem: Figure 12(a) shows that CPU subsys-

tem failures have a strong positive correlation to the amount

of DRAM in a machine. This is the only strong correlation

we have observed for which we can offer no interesting hy-

pothesis. We have been unable to imagine a plausible causal

chain that would link memory size to CPU subsystem fail-

ures. Instead, we conjecture that this may be an artifact of

some other correlative factor. For example, DRAM size may

coincidentally correlate with particular CPU models.

Memory: Figure 12(b) shows that memory failures have

a weak positive correlation to memory size. The curve barely

leaves the 99% confidence envelope for uncorrelated P-P

plots. We cannot infer much meaning from this graph, be-

cause the only DRAM failures we catch are in kernel code

pages, and the size of the kernel text segment is indepen-

dent of the overall DRAM size. Therefore, if the overall rate

of DRAM failures were to increase linearly with increasing

DRAM size, our study would not reveal this trend.

Disk subsystem: Figure 12(c) shows that disk subsystem

failures have a negative correlation to memory size. This is

intuitively reasonable, since the only type of disk subsystem

failure we catch is an OS-critical disk read failure, such as

paging in virtual-memory state. As memory size increases,

paging activity decreases, which reduces the opportunities

for such errors to manifest. This explanation is consistent

with the observation that the strongest negative correlation

(the greatest deviation of P-P plot slope from unity) is in the

lower part of the distribution, where the effect of memory

size on paging activity would be most pronounced.

6.4 Calendar age

Lastly, we consider the characteristic of calendar age. To ap-

proximate a machine’s date of manufacture, we use the re-

lease date of the BIOS version on the machine. This is ac-

curate to within several months, because new BIOS versions

are typically released every few months over the lifetime of

a machine model. The RAC database does not contain BIOS

dates, but ATLAS does, so we match machine models across

the two data sets. This limits us to the 44% of machines in

RAC with models we could identify via ATLAS. Moreover,

we cannot determine BIOS date for a model that never re-

ported a crash via ATLAS, so there is selection bias against

highly reliable models.

Figure 13 shows P-P plots for our three failure types ver-

sus TACT, relative to BIOS date. As with the characteristic

of DRAM size, our three failure types differ widely in rela-

tion to BIOS date.

In discussing failure rate versus age, it is common to in-

voke the bathtub curve [Wilkins 2009], a compound distribu-

tion that combines the failure-inducing effects of burn-in and

wear-out, leading to higher failure rates among both young

and old machines, with lower failure rates in the middle. Our

P-P plots show evidence of both of these phenomena, albeit

not consistently across failure types.

CPU subsystem: Figure 13(a) shows that CPU subsys-

tem failures have a positive correlation to BIOS date, mean-

ing that younger machines show a greater incidence of CPU

subsystem failures. This could be due to burn-in, but this
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(a) CPU subsystem failures (b) memory failures (c) disk subsystem failures

Figure 13. P-P plots of failure count versus TACT, relative to BIOS date

leaves open the question of why there is no evidence of wear-

out. A possibility is that machine owners rarely keep a CPU

long enough for it to wear out, in contrast to DIMMs and

disks, which may be relocated from discarded old machines

to replacement new machines.

Memory: Figure 13(b) shows that memory failures have

no significant correlation to BIOS date, at the 99% confi-

dence level. With lower confidence, we can see a serpen-

tine shape, in which young and old machines account for a

disproportionate share of failures, consistent with a bathtub

curve. Unfortunately, among machines for which we were

able to determine a BIOS date, the count of memory fail-

ures is so small that our confidence envelope is very large. A

larger sample might well show a significant bathtub shape.

Disk subsystem: Figure 13(c) shows that disk subsystem

failures have a negative correlation to BIOS date, meaning

that older machines show a greater incidence of disk subsys-

tem failures. Since disks are mechanical devices, it would

not be surprising to find that wear-out is the dominant ef-

fect of age-related failure. Alternatively, it could be that disk

manufacturers do an effective job of burning-in disks at the

factory, so burn-in effects are not visible in our data from

consumer machines.

7. Temporal analysis

In this section, we briefly analyze the temporal behavior

of faulty machines. In particular, we estimate the fraction

of non-permanent faults that are intermittent as opposed to

transient, using 755,539 records from the RAC data set.

As a first-level approximation, we assume that every re-

curring failure indicates an intermittent fault, and that every

non-recurring failure indicates a transient fault. Figure 14

shows the measured rates of recurring failures for each fail-

ure type. Of the machines that experienced a CPU subsystem

crash, 30% experienced such a crash more than once. The

comparable values for memory and disk subsystem crashes

are 15% and 29%.

The recurrence or non-recurrence of a failure is only an

approximation for the intermittence or transience of a fault,

for two reasons: First, a transient fault can manifest as a re-

curring failure if multiple faults coincidentally develop on

the same machine. Second, an intermittent fault can man-

Recurrent Intermittent

(measured) (estimated)

CPU (MCE) failures 30% 39%

DRAM failures 15% 19%

DISK failures 29% 39%

Figure 14. Failure and fault probabilities

ifest as a non-recurring failure if only a single failure in-

stance occurs during the observation period. We have de-

veloped estimators for the probabilities that these conditions

occur, based on empirically-derived models of failure co-

occurrence patterns, failure recurrence times, and machine

observation periods. From these, we have analytically com-

puted maximum-likelihood estimates for the probability of

intermittent faults. (This is briefly described in Appendix C.)

Figure 14 shows the resulting estimates for each failure type.

Of the machines that experienced a CPU subsystem crash,

an estimated 39% have an underlying intermittent fault. The

comparable values for memory and disk subsystem crashes

are 19% and 39%.

8. A hardware-fault-tolerant OS

Although many distributed systems regard hardware fail-

ures to be normal occurrences, single-machine systems com-

monly consider hardware failures to be drastic exceptions

that lead inexorably to crashes. While some research [Ka-

dav et al. 2009; Rinard et al. 2004] has already begun to

change this view, the results in the present paper suggest

more work is warranted towards an operating system de-

signed with faulty hardware as a first-order concern.

For example, a hardware-fault-tolerant (HWFT) OS might

map out faulty memory locations (§4.3), just as disks map

out bad sectors. In a multi-core system, the HWFT OS could

map out intermittently bad cores (§7). More interestingly,

the HWFT OS might respond to an MCE (§4.1) by migrat-

ing to a properly functioning core, or it might minimize sus-

ceptibility to MCEs by executing redundantly on multiple

cores [Bressoud and Schneider 1996]. A HWFT OS might

be structured such that after boot, no disk read is so critical

as to warrant a crash on failure (§3.3.3). Kernel data struc-

tures could be designed to be robust against bit errors (§4.2).

Dynamic frequency scaling, currently used for power and



energy management, could be used to improve reliability

(§5.2), running at rated speed only for performance-critical

operations. We expect that many other ideas will occur to

operating-system researchers who begin to think of hard-

ware failures as commonplace even on single machines.

9. Conclusion

This paper presents the first large-scale study of hardware-

induced operating system failures on consumer machines.

Using post-hoc analysis of machine status reports and OS

crash logs, we find that:

• Failure rates are non-trivial. Hardware crash rates are

up to 1 in 190 over an 8 month observation period.

• Recurrent failures are common. Hardware crashes in-

crease in likelihood by up to two orders of magnitude af-

ter a first such crash occurs, and 20% to 40% of machines

have faults that are intermittent rather than transient.

• Recurrent failures happen quickly. As many as 97% of

recurring failures occur within 10 days of the first failure

on a machine.

• CPU speed matters. Even minor overclocking signifi-

cantly degrades reliability, and minor underclocking im-

proves reliability. Even absent overclocking, faster CPUs

become faulty more rapidly than slower CPUs.

• DRAM faults have spatial locality. Almost 80% of ma-

chines that crashed more than once from a 1-bit DRAM

failure had a recurrence at the same physical address.

• Configuration matters. Brand name desktop machines

are more reliable than white box desktops, and brand

name laptops are more reliable than brand name desk-

tops. Machines with more DRAM suffer more one-bit

and CPU errors, but fewer disk failures.

Figure 15 shows a terse summary of our findings, with

comparisons against previous results where available.

Appendix A—contingency table analysis

In Section 5.5, we described an interdependence analysis of

our three failure types. Figure 16 shows the contingency ta-

bles used for this analysis. Each cell shows the exact count

of machines and (in parentheses) the expected count, to three

decimal places, if the indicated failure types were indepen-

dent. For instance, 5 machines were observed to experience

both CPU and DRAM failures, whereas the expected count

is 0.549 machines. The caption of each table shows the cal-

culated χ2 value and the resulting p-value.

Appendix B—construction of P-P plots

Figure 17 shows the two CDFs used to construct the P-P

plot in Figure 9(a). If machines had a uniform failure rate

per CPU second of execution, independent of CPU speed,

we would expect these two CDFs to look the same. Since the

machines DRAM failures no DRAM failures

CPU failures 5 (0.549) 2091 (2100)

no CPU failures 250 (254) 971,191 (971,000)

(a) CPU and DRAM failures: χ2 = 36, p-value = 1.8×10−9

machines Disk failures no Disk failures

CPU failures 13 (3.15) 2083 (2090)

no CPU failures 1452 (1460) 969,989 (970,000)

(b) CPU and disk failures: χ2 = 31, p-value = 2.8×10−8

machines Disk failures no Disk failures

DRAM failures 1 (0.384) 254 (255)

no DRAM failures 1464 (1460) 971,818 (972,000)

(c) DRAM and disk failures: χ2 = 1.0, p-value = 0.31

Figure 16. Contingency tables for failure types
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Figure 17. CDFs used to construct P-P plot in Figure 9(a)

CDFs are not the same, their differences provide information

about the dependence of failure rate on CPU speed. For

instance, machines with CPU speeds below 2000 MHz were

responsible for 46% of all TACT (Figure 17(a)) but only

26% of all CPU failures (Figure 17(b)).

It requires detailed study to extract specific comparison

points from the two CDFs. To relieve the reader of this bur-

den, we construct a P-P plot as follows: We sweep through

the range of CPU speeds in the X-axes of Figure 17. At

each speed, we take the Y-value from each curve and plot

the CDF value of CPU failures against the CDF value of

TACT. For instance, at a CPU speed of 2000 MHz, we plot

the point (0.46,0.26). The resulting curve, as seen in Fig-

ure 9(a), shows the overall effect of CPU speed on the rela-

tionship between CPU failures and TACT.

To plot the 99% confidence envelope, we rely on the

central limit theorem. Each curve of the envelope is a P-P

plot of two normal-distribution CDFs against each other. The

CDFs have unity standard deviation, and their means differ

by α/
√

N, where N is the count of observed failures. We set

α = 2.58 because 99% of the probability mass of a normal

distribution is within 2.58 standard deviations of the mean.

Appendix C—modeling failure recurrence

To estimate the probabilities of transient versus intermittent

faults, we determine parameter values that are most likely

to have produced the observed results. We cannot use a



System Topic Finding Comparison

CPU initial failure rate 1 in 190

DRAM initial failure rate 1 in 1700 consistent with Schroeder et al. [2009]

Disk initial failure rate 1 in 270 consistent with Pinheiro et al. [2007]

consistent with Schroeder and Gibson [2007]

CPU rate after first failure 2 order-of-magnitude increase

DRAM rate after first failure 2 order-of-magnitude increase consistent with Schroeder et al. [2009]

Disk rate after first failure 2 order-of-magnitude increase consistent with Jiang et al. [2008]

DRAM physical address locality identical for 70% of machines

all failure memorylessness failures are not Poisson

all overclocking failure rate increase 11% to 19x

all underclocking failure rate decrease 39% to 80%

all brand name / white box brand name up to 3x more reliable

all laptop / desktop laptops 25% to 60% more reliable

cross CPU & DRAM failures dependent

cross CPU & disk failures dependent

cross DRAM & disk failures independent

CPU increasing CPU speed fails incr. per time, const. per cycle partly agree with Constantinescu [2003]

DRAM increasing CPU speed failures increase per time & cycle

Disk increasing CPU speed fails incr. per time, decr. per cycle

CPU increasing DRAM size failure rate increase

DRAM increasing DRAM size failure rate increase (weak) weaker than Constantinescu [2003]

Disk increasing DRAM size failure rate decrease

CPU calendar age rates higher on young machines

Disk calendar age rates higher on old machines

all intermittent faults 15%–39% of faulty machines

Figure 15. Summary of our results with comparisons to prior research

standard maximum-likelihood estimator, because our data

does not fit a standard distribution.

We estimate the counts MT and MI of machines expe-

riencing transient and intermittent faults. These unknown

counts are related to the known counts MN and MR of ma-

chines that reported non-recurring and recurring failures, via

the following two equations:

MN = (1−θ)MT +φMI

MR = θMT +(1−φ)MI

where θ is the probability that a transient fault will manifest

as a recurring failure, and the φ is the probability that an

intermittent fault will manifest as a non-recurring failure.

The probability θ is equal to the likelihood that a transient

fault will afflict a machine that has already experienced a

failure of the same type. This can be trivially estimated

as the fraction of CPU time that accrued to machines that

reported failures, relative to the total CPU time accrued to

all machines.

The probability φ is the likelihood that a machine with an

intermittent fault will not exhibit a recurring failure before

the study period ends:

φ = 1−
∫ ∞

0
Pr[R = t ∧ W ≥ t] dt

where R is the time between successive recurring failures

and W is the time after a first failure that a machine remains

in the study. This equation expands to:

φ = 1−
∫ ∞

0
Pr[W ≥ t] Pr[R = t |W ≥ t] dt

It is straightforward to measure both of the distributions

in this equation. Pr[W ≥ t] is one minus the CDF of the time

between the first failure and the end of the observation pe-

riod, for all machines that experienced at least one failure.

Pr[R = t |W ≥ t] is the PDF of the time between the first

failure and the second failure, for all machines that experi-

enced at least two failures during the observation period.
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