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ABSTRACT 
We describe a new design for authorization in operating systems 
in which applications are first-class entities. In this design, prin-
cipals reflect application identities. Access control lists are pat-
terns that recognize principals. We present a security model that 
embodies this design in an experimental operating system, and we 
describe the implementation of our design and its performance in 
the context of this operating system. 

Categories and Subject Descriptors 
D.4.6 [Operating Systems]: Security and Protection – access 
control, authentication.  

General Terms 
Security. 

Keywords 
Access control, application identity, capabilities, channels, dele-
gation, pattern matching, regular expressions. 

1. INTRODUCTION 
A central concern in securing a computer system is access control. 
Classically, access control employs a reference monitor: a trusted 
component that (at least notionally) makes all access deci-
sions  [4]. As input to each access decision, the reference monitor 
is presented with the identity of a principal, the identity of an 
object (system resource or data protected by the system), and the 
specific operation that the principal requests on the object; the 
reference monitor then produces a Boolean outcome. 

In the classic design for this purpose, each principal is identi-
fied by an integer identifier (a SID in Windows, a user ID in 
UNIX-based systems). Reference monitors rely on access control 

lists (ACLs), kept with each object for each possible operation. 
Each of these lists enumerates a set whose members are either 
principals or identifiers for groups. A group, in turn, is defined as 
a set whose members are either principals or identifiers for further 
groups. Access is permitted or denied on the basis of the presence 
of the requesting principal in the closure of the relevant ACL and 
its constituent groups. 

We argue that the classic design is weak in two specific areas: 
• In real systems, access requests are made by applications, 

often on behalf of users. However, most traditional secu-
rity models do not offer an accurate way of expressing 
application identity and attributes in principals. 

• User identity is often modeled uniformly regardless of 
how a user is authenticated or what execution precedes a 
request. As such, it is difficult to consider factors such as 
authentication strength, location, delegated authority, and 
application invocation history. 

This paper presents a design for addressing these weaknesses.  
We represent principals as textual names combined in a syntax 
that describes applications, users, and invocation histories. ACLs 
are patterns against which principal names are matched. We dem-
onstrate our design in the context of the Singularity operating 
system [19,20] and present a security model that takes into ac-
count the fundamental aspects of Singularity such as the channel 
abstraction, application manifests, and software isolated 
processes. Our design enables the deployment of security policies 
that are difficult or impossible to express in other frameworks. 
For example, an application can have private access to applica-
tion-specific data while also maintaining rights based on the iden-
tity of the user who invoked it. Access policy can distinguish 
different applications capable of authenticating users. Moreover, 
access to a given resource can depend on the presence of only 
trusted applications in the invocation chain from user login to 
access request, on the identities of the publishers of these applica-
tions and on assertions by those publishers. These assertions 
should alleviate the task of defining and managing security poli-
cies for administrators and users. 

Our work is guided by the following design principles: 
• Applications are first-class entities.  As such, they are 

distinct from users. It is insufficient to treat an application 
as another class of user.  In many cases both application 
and user identity are needed for making access decisions.  
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• Impersonation is deprecated. In many programming en-
vironments, executing code can adopt multiple identities 
(for example using UNIX setuid or impersonation in 
Windows [25]). By its very nature, this flexibility creates 
opportunities for attackers to gain unintended authority or 
for programmers to leave security holes. 

• Authorization decisions are late-bound.  In many sys-
tems, intermediaries make security-relevant decisions that 
cannot be observed by the authorizing agents that control 
resources.  Hence, access decisions can depend on impli-
cit (and often non-obvious) chains of trust. Instead, we at-
tempt to back-load this process by examining as much se-
curity-relevant data as practical at authorization time. 

• Applications carry security policy.  Software authors 
and publishers often know more about an application’s 
security environment than the users or administrators that 
run it. Published applications should carry annotations to 
help guide the instantiation of security policy. 

In the course of this paper, we describe how these principles 
are reflected in the design of our system.  The remainder of the 
paper is organized as follows.  Section 2 gives a brief overview of 
Singularity. Section 3 describes our security model for Singularity 
and Section 4 details its implementation.  Section 5 gives some 
motivating examples of how security policy can be deployed.  
Section 6 presents benchmark results for access control check 
performance.  Section 7 describes work related to our approach 
and Section 8 concludes. Portions of this work have appeared 
earlier in preliminary form [1]. 

2. SINGULARITY 
Singularity is an experimental micro-kernel operating system in 
which all inter-process communication takes place over bi-
directional, typed channels. A channel’s contract specifies a state 
machine that defines all allowable message flows [13]. Each 
channel has exactly two endpoints, an export side and an import 
side, and each channel endpoint is owned by exactly one process 
at any given time. Channel endpoints are fundamentally asymme-
tric. The export side is held by a provider of a contract (a server) 
and the import side is held by a consumer of that contract. 

In Singularity, the software isolated process (SIP) is the fun-
damental unit of execution and isolation. All executable code for 
a given SIP is known and fixed at process startup. Thus, runtime 
code extension is not allowed. The OS kernel and all applications 
are largely written in Sing# [13], a type-safe programming lan-
guage derived from C# [11]. Although traditional hardware-as-
sisted isolation is possible [3], isolation between SIPs is most 
often provided by the language type system rather than by hard-
ware protection. Singularity makes use of large parts of the .NET 
Common Language Runtime, but we do not adopt the .NET secu-
rity model. Direct memory sharing between SIPs is never al-
lowed. Singularity defines an Application Binary Interface (ABI) 
through which applications access OS kernel functionality, but all 
interactions between applications are conducted over channels.  

Much of the Singularity design has so far focused on opera-
tions within a single machine.  Notably, the channel infrastructure 
currently has no implementation that works across machine boun-
daries.  However, the security model described here should apply 

equally well to a distributed environment, a question to which we 
return in Section 3.3.2. 

3. SECURITY MODEL 
In the following discussion, we describe the security model we 
define for the Singularity environment. Because Singularity is a 
micro-kernel system, most important system components such as 
file systems and device drivers are not part of the kernel. Thus, 
almost all important security policy boils down to controlling 
access to resources requested over channels. 

3.1 Processes, channels, and endpoints 
Each process acts under the authority of one principal and that 
principal’s name is by default associated with all endpoints the 
process owns. Processes can transfer authority by transferring 
endpoints or delegating rights to other processes; however, the 
principal name associated with transferred authority always iden-
tifies the holder. One or more processes derive from loading and 
running an application. An application is described by a manifest. 
The principal name associated with a process derives from its 
application manifest and the principal name of the process that 
invoked it. The Singularity kernel allows a process to discover the 
principal name associated with the partner of any of its endpoints. 
The resulting principal name is then used to make access deci-
sions pertaining to messages received over channels. Thus, access 
control in Singularity is discretionary. 

Singularity endpoints can move. To determine that a message 
was sent by a specific process, the partner endpoint must not 
move between when a message it sent and when its recipient ob-
serves the sender. To enforce this, Singularity imposes static re-
strictions on the movement of endpoints. An endpoint can move 
only from a process via a message send, and then only if the local 
endpoint state machine is in a state that allows that process to 
send. Therefore, when a server receives a request on a channel, 
the server can know that the partner endpoint has transitioned 
from send to receive state, and thus the principal associated with 
the partner endpoint must be the same as when the initial message 
was sent. 

In our model, the universe of protected resources – objects in 
the access control matrix [23] – is not predefined. Applications 
act as reference monitors and define the set of objects that they 
control. For example, a file system application controls the files 
and directories that it serves, a printer subsystem controls access 
to the set of printers, and a network stack driver controls access to 
the specific protocols it supports. 

It is common for a contract provider to enforce access controls 
on the actions of an importer. The import side can impose controls 
on the server, of course, but in general applications often rely on 
system services, such as the Singularity Directory Service (de-
scribed further in Section 5.2), to provide channels trusted to 
speak for named system resources such as files or hardware de-
vices. (Here, and throughout this paper, we use the phrase “speak 
for” in the same sense as Lampson et al. [22], but we leave the 
use of a formal logic of “speaking for” to further work.) 

The fact that a request was made by a principal over a channel 
does not give the receiver the right to act as that principal in sub-
sequent communications. Authority can be passed between 
processes only through application invocation or through the me-



chanisms discussed in Section 3.5. Hence, impersonation as prac-
ticed in Windows [25] is neither supported nor required. Instead, 
we offer a precise grammar for principal names that describes 
arbitrary sequences of application invocations and delegations, 
where each sequence element is visible to the ultimate reference 
monitor. 

3.2 Application manifests 
Singularity applications are described by manifests. Manifests 
perform a similar function in the Microsoft .NET architecture [9, 
24]: they carry metadata that describe code assemblies. In particu-
lar a manifest can include strong names [26] for the named as-
sembly as well as all assemblies it depends upon. Strong names 
define not only a module name for a referenced assembly but also 
a key that can be used for verifying a signed hash of the contents 
of each assembly.  Thus, a manifest can be used to validate the 
identity of an application and all its dependencies. 

Singularity extends the .NET use of manifests in several ways.  
First, the top-level manifest for an application specifies both a 
publisher name and a publisher-designated application name.  
Publisher names are Internet domain names; although our design 
in this area is not final, a valid publisher name can be mapped to a 
public key through an X.509 certificate hierarchy. The manifest 
name, which we use to identity the application in our access con-
trol grammar, is a concatenation of the application name and pub-
lisher name. The application manifest also contains a signature 
that applies to all its metadata under the publisher key.  Hence, we 
can create a trusted path between the local root certificate(s) for 
published code and the code assemblies present at application 
loading time.  Only if all the signatures verify is the application 
granted the specified manifest name. For instance, the login appli-
cation published by singularity.microsoft.com would be called 
login.singularity.microsoft.com. For the rest of this paper, we may 
omit explicit name qualification for brevity, e.g., by writing login 
rather than login.singularity.microsoft.com. If allowed by local 
policy, applications lacking verifiable publishers can be granted 
manifest names with a default publisher name such as unknown. 

In Singularity, application manifests have been extended to re-
flect privilege assertions that stem directly from source code an-
notations. In other words, the author or publisher of an application 
may assert that it should have a specific privilege at runtime.  
Local policy dictates which publishers should be allowed to grant 
which privileges.  The use of privileges and privilege assertions is 
discussed further in Section 3.4.2. 

3.3 Principals 
There is exactly one principal associated with each Singularity 
process, and that principal is immutable. This design decision 
might make certain types of applications more difficult to imple-
ment; however, we believe that it will produce a system that is 
less prone to the misuse of multiple authorities. Many cases in 
which a computation must execute under more than one identity 
can be implemented in our design by spawning multiple 
processes. The reasonably fast process creation in Singularity [18] 
makes such an approach practical. Nonetheless, Singularity also 
provides a restricted mechanism for delegating authority that is 
then associated with a specific channel.  Under certain conditions, 
then, a process can hold channels with authority other than the 
process default. This mechanism is discussed in Section 3.5.2. 

A principal name is a string constructed from publisher names, 
application names, role names, and the operators “@” and “+” 
according to the grammar described in Figure 1. Principals in this 
grammar are compound principals [22]. Application invocation is 
the primary means of establishing new principals. 

As discussed in the previous section, application loading in-
volves checking a manifest’s signature and the signatures on all 
included components. If all signatures are in order, the application 
can be assigned a manifest name mn formed from the specified 
publisher name and application name.  During process invocation, 
the following method is called. 

Process.Create(mn, role) 

The resultant principal has the form parent@role + mn, where 
parent is the principal name of the parent process and role is an 
optional modification of the parent’s authority. 

In other words, occurrences of the “+” operator within a prin-
cipal name represent the history of application invocations that 
resulted in the currently executing application. Occurrences of the 
“@” operator indicate where an application has decided to adopt a 
distinguished role. This indication says nothing about whether the 
role is more or less privileged — that has meaning only to the 
extent that ACLs grant more or less access to the new principal 
name.  Role names are usually defined by the applications that 
adopt them and they have no explicit formal structure. However, 
it will be practical in many cases to qualify role names with a 
code publisher name or some other global qualification so as to 
avoid naming conflicts.  

Certain applications can truncate the invocation chain. In other 
words, these applications are sufficiently trusted to act as the head 
of any invocation chain that contains them.  Such applications are 
often single-function services that run independently from the 
parties that invoke them, for example file servers, network proto-
col services, or user-authentication applications. We discuss how 
we distinguish the applications in this class in Section 5.1. Trun-
cation is essential to the simplicity of principal names and access 
control policies. 

Some systems use integer values to reflect the identities of 
principals.  Doing so requires a significant infrastructure to map 
between human-readable names and integer IDs.  On the other 
hand, integer IDs offer the simplicity of dealing with fixed-size 
numbers, and guaranteed uniqueness over time. Despite these 
differences, one could easily construct data structures that mirror 
our compound principal names where our textual identifiers are 
replaced with integer IDs. The details of pattern matching for 
access control would, of course, be different, but our general ap-
proach would still apply. 

ApplicationName 
PublisherName 
ManifestName 
RoleName 
Application Role-
Principal 

AN = STRING 
PN = DomainName 
MN = AN “.” PN 
R = STRING 
AR = MN | AR “@” R
P = AR | P “+” AR 

Figure 1: Principal grammar 



It is tempting to include more information in principal names.  
In theory, one could include all sorts of information about a 
process: its parameters, its initial file system handles, all 
processes it ever invoked, etc.  However, it would rapidly grow 
difficult to specify useful access control policy.  Therefore, our 
choice to use application invocation lineage as critical marker in 
principal names reflects a tradeoff between completeness and 
simplicity. 

3.3.1 User principals and application roles 
One critical use of roles is to indicate when an application makes 
an authentication decision. For example, the system might run a 
console login application that executes as a principal login. When 
the console login application has received a satisfactory user 
name andrew and password, it will use Process.Create to start 
running a new shell as login@andrew + shell. 

Similarly, we might run the application sshd to listen for in-
coming SSH connections. After satisfactory authentication 
through the normal SSH public-key mechanisms it might fork a 
new shell process under the principal name sshd@andrew + shell. 

In these two scenarios, if shell decides to run the cat applica-
tion and cat tries to open a file, we would have an access request 
to the file system from either the principal login@andrew + shell 
+ cat or the principal sshd@andrew + shell + cat  respectively. 
The reference monitor for the file system would then consult the 
ACL on the requested file to decide whether the given principal 
should be granted access. This ACL might well differentiate the 
rights of a user who is physically present (e.g. via console login) 
from those of a remotely logged-in user. 

Another example of the utility of roles arises in the context of 
application installation.  Suppose that there is an application in-
stall that manages the installation of new software. It would be 
natural for such an application, having checked that it is installing 
certified Microsoft software, to adopt the role install@ms. Acting 
in this role, the installer might gain permission to update files 
under /apps/ms (as well as other related system resources), but 
without having rights to resources designated for other publishers. 

Nowhere in these scenarios has the system trusted any of the 
software involved: login, sshd, shell, cat, or install. All the system 
did was to certify the application invocations involved, and that, 
for example, login and sshd chose to adopt the role andrew. In 
this design trust occurs only in certifying application manifests 
(trusting that the applications really deserve their given names) 
and as a result of the way in which we write ACLs. 

Note that the syntax of role names does not preclude user 
names authenticated in the context of a network authentication 
system that supports global naming.  It would be perfectly accept-
able for a globally aware winlogin application to adopt a user role 
such as wobber.microsoft.com and thereby to authenticate as win-
login@wobber.microsoft.com. 

3.3.2 Remote principals 
As discussed in the last section, remote principals can be ac-

ceptably authenticated by applications (such as sshd) that are 
prepared to handle remote entities.  However, this approach vi-
olates one of our guiding principles which is to make late authori-
zation decisions whenever possible. If a request comes from a 
remote host that supports a compatible software stack, there is no 
reason why application invocation or delegation chains cannot 
cross machine boundaries. 

In this situation, if application instances on the two machines 
are equally trusted, then machine names are irrelevant to authori-
zation decisions. Therefore, newly launched remote processes or 
delegated endpoints can receive a principal name exactly as in the 
local case. 

Otherwise (that is, when trust policy is not uniform across ma-
chines), the situation gets harder. Our principal grammar can easi-
ly be extended to support machine IDs, so that access decisions 
may depend on these IDs. This extension is not sufficient, howev-
er. Our principal naming structure does not name credentials, but 
credentials (for example cryptographically signed statements) 
must always be present to accomplish remote authentication. 
Trusted Platform Modules [31] and attestation [12] can provide 
strong credentials for certifying the presence of remote software 
stacks. Fine-grained attestation [27] or attested labels [28] might 
also fit well with our notion of privileges. However, there still 
must be a service, perhaps an authentication agent as described in 
[33] that is capable of offering and checking credentials for 
named principals as part of remote authentication. When a remote 
entity is authenticated, it must be up to local policy to determine 
how the remote principal is named in the local principal grammar.  
For example, perhaps a certain publisher is trusted on node A but 
not known on node B. When B interprets a principal that names 
such a publisher on node A, the publisher may appear on node B 
as the unknown publisher.  

3.4 Access control 
With complex principal names such as those we propose above, 
having an ACL be merely a list (or set) of principal names does 
not give us nearly enough convenience and expressive power. For 
example, we might want to give access to a user while executing 
some of a particular set of applications, or when authenticated by 
some particular set of applications (e.g., login or sshd, but not 
ftpd); or we might want to give access to an application regardless 
of its user. While we could perhaps list all allowed principals, that 
would be awkward at best. Instead we use patterns that recognize 
principal names. 

The exact pattern recognition language that we use is not criti-
cal to this idea, although the choice of language will certainly 
have an impact on the usability of the design, and therefore on the 
security of the resulting systems. We present here a recognizer for 
a specialized subset of regular expressions. Obviously, more or 
less complex recognizers are possible, allowing the expression of 
more or less complex access control policies. Performance is, of 
course, a significant factor in this choice. We believe that regular 
expressions offer a good balance between expressiveness and per-
formance. 

An ACL is a string constructed from names, partial names, and 
special operators from the namespace of applications and roles as 

Atom = STRING | “.” | “@” | “+” | “!” 
Item = Atom | “(” ACL “)” | Item “*” | “{” ExprName “}” 
ExprName = STRING 
Seq = Item | Seq Item 
ACL = Seq | ACL “|” Seq 

Figure 2: ACL grammar 



depicted in Figure 2. The matching rules are similar to those for 
conventional regular expressions: 

• any Atom matches itself; 
• “!” matches any partial name, where: 

            PartialName = STRING | STRING “.” PartialName; 
• “( ACL )” matches ACL; 

• “Item *” matches zero or more sequential occurrences of 
Item (greedily); 

• “{ ExprName }” matches whatever is matched by the 
ACL subexpression named by ExprName; 

• “Seq Item” matches Seq followed immediately by Item; 

• “ACL | Seq” matches either ACL or Seq. 
A principal “P” matches an ACL “A” iff the string P matches 

the regular expression that is the contents of A. The match must 
be complete — all of P, not just a substring of it.  

We do not currently express negative ACLs in our system. 
However, matching a negative ACL is not much different from 
matching a positive one, so there is no reason to expect that nega-
tive ACLs would be more difficult in this system than in other 
implementations of access control. 

3.4.1 Permissions 
Access control checks often apply to specific access modes, or 
permissions.  An application seeking a specific permission to a 
resource can be thought of as acting in a specific role.  For exam-
ple, the if principal 

login@ted + app 

requires read access to a resource, we can model the requesting 
principal as the role: 

login@ted + app@read 

This principal might be matched by the ACL 

(!@ted +!@read) | (login@ted +!@write) 

which grants read access to ted logged in by any authenticator and 
subsequently running any application. However, write permission 
is controlled differently and is allowed only to ted when authenti-
cated by the login application. 

3.4.2 Subexpressions 
Subexpressions provide a means for sharing ACL fragments 
among multiple ACLs.  Subexpressions are referenced by name in 
the ACL grammar. When an ACL is interpreted, the subexpres-
sion name is resolved into a value and this value is substituted 
into the containing expression, recursively. We implement two 
standard mechanisms for mapping subexpression names to values.  

In the first mechanism, we interpret names as file paths within 
the Singularity Directory Service, and the resulting subexpres-
sions are the contents of the named files. Using the file system 
namespace to store subexpressions permits application installers 
to define security groups by simply creating files. Protection of 
the Singularity Directory Service itself is discussed in Section 5.2. 

The second mechanism applies to subexpressions whose 
names begin with the character ‘$’ by convention. These names 

are treated specially: they are interpreted by the Singularity kernel 
as follows. System policy defines a collection of names that map 
to common subexpressions. If the supplied name is in that collec-
tion, the corresponding subexpression is returned. If the supplied 
name is not present, it is deemed to name a privilege as discussed 
in Section 3.2. For each privilege, system policy defines an ACL 
that lists the publishers that can grant the privilege to running 
code.  When such a privilege is evaluated as a subexpression 
name, the kernel consults this system policy and produces a list of 
all known applications that assert the privilege and have publish-
ers that can grant it. 

A few example subexpression mappings are given in Figure 3. 
In the examples, $user resolves to the contents of the subexpres-
sion name $auth-privilege in an arbitrary role. $auth-privilege is a 
privilege granted to all applications generally trusted to au-
thenticate users, such as the login application. The subexpression 
name $app matches any application or anything that matches 
$user, and $any matches anything that matches $app plus an ar-
bitrary sequence of subsequent invocations. Hence $any matches 
any sequence of applications headed by either an application or a 
logged-in user. 

An evaluation of a privilege subexpression need only include 
currently running applications. An application that is not running 
cannot appear in a principal and therefore need not appear in an 
access control expression intended to match that principal. This 
optimization has the potential to reduce the cost of privilege eval-
uations substantially. To prevent the results of expansions from 
varying frequently when applications are short-lived, we return 
matching applications that are running or have recently run.  

File-path subexpression resolution and privilege evaluation 
correspond to what might be called the push and pull models of 
authorization [22]. In the push model, privileges associated with 
principals are gathered a priori and presented to the reference 
monitor for checking. Windows Security [10] and DCE Security 
[30] both implement this model, with group credentials gathered 
at login time or at first access to a remote domain. In the pull 
model, group memberships are gathered at the reference monitor 
on an as-needed basis with caching and pre-fetching as required 
for performance.  Taos authentication [33], the distributed securi-
ty model proposed by Kaminsky et al. [20], and the distributed 
authorization prover of Bauer et al. [7] are examples of this tech-
nique. Our authorization mechanism supports both models: ex-
pressions defined in the file system are pulled while privileges 
inferred from application manifests are pushed.  

3.4.3 ACL examples 
In general, we find that principal names often conform to the 
following pattern: 

firstApp[@user] + middleApps + lastApp 

For most access decisions, firstApp and its optional user role 
are of primary importance. lastApp actually makes the service 

$user {$auth-privilege}@! 

$app !|{$user} 

$any {$app}(+!)* 

Figure 3: Example kernel-defined subexpressions 



request mandating an access decision, and is therefore also impor-
tant, particularly where it is desirable to assert that only a specific 
application can access a certain class of resources. Specifying 
particular middleApps is useful for restricting access to a limited 
set of application, but more complicated expressions here proba-
bly have diminishing benefit.  

It might be profitable to create templates for ACLs with ap-
propriate policy defaults for firstApp, middleApps, and lastApp. 
Thus, ACLs for common cases could be specified with just a user 
name or subexpression. 

In the rest of this section we briefly discuss some example 
ACLs and their interpretations. 

login@ted + app 

This ACL matches exactly the login application in the 
role ted running the app application. 

login@ted (+!)* 

This ACL matches the login application in the role ted, 
possibly running any application or chain of applications. 

login@ted (+{$trusted-apps})* 

Like the previous example, this ACL matches the login 
application in the role ted, but in this case any child appli-
cation must match the subexpression $trusted-apps. 

login@ted + script-engine@script + {$script-tools} 

It is often desirable to constrain scripts to run within the 
context of a specific scripting engine. This ACL matches 
only when the login application in the role ted runs script 
under a specific script-engine, and the script runs any ap-
plication in $script-tools.  

{$trusted-auth}@ted  (+!.adobe.com)* 

This ACL allows access to any application that matches 
the $trusted-auth subexpression, in the role ted, and pos-
sibility running application(s) published by adobe.com 
(recursively). 

3.5 Transfer of authority  
We anticipate that requiring every process to speak for exactly 
one principal might be lead, in some cases, to poor performance 
and awkward design.  Our security model, therefore, supports two 
different means for transferring authority between processes.  The 
first is a capability-passing mechanism that allows clients to trans-
fer the right to access a given resource to other clients. The 
second is a delegation mechanism that permits clients to endow 
delegates with certain aspects of their authority dynamically (e.g., 
over multiple objects). Other means for authority transfer are 
easily imaginable. 

3.5.1 Capabilities 
Channels in Singularity can be viewed as capabilities [5]. Posses-
sion of a channel endpoint gives the caller the right to pass mes-
sages over a channel. Whether the caller can successfully invoke a 
service by doing so is at the discretion of the service provider. A 
channel over which the service provider imposes no further access 
checks (after initial binding) is essentially a capability. Service 

providers can and often do perform discretionary access control 
checks prior to granting capabilities. For example, file descriptors 
(as in UNIX) can be thought of as capabilities that are granted 
only after an access control check at file-open time. 

One common paradigm for granting capabilities in Singularity 
is for a client to create an endpoint that entails a desired set of 
permissions (rights) and then pass that endpoint to a service pro-
vider. The service provider performs an access check on the call-
er’s principal name and desired permissions, and if allowed by 
policy, accepts the channel binding. Our design allows the client 
to create channel contract subtypes that imply a specific set of 
permissions by restricting permissible message sends. Thus, a 
contract for accessing files might specify read and write messag-
es, but the read subtype of that contract would allow only read 
messages, so channel endpoints of the read subtype cannot utter 
write messages and the corresponding service provider need not 
check for write messages at runtime. 

A channel that entails permissions can be passed to another 
process. The caller should have reason to trust the recipient since 
passing a channel in this way entitles the recipient to exercise all 
the rights inherent in the channel. These rights, however, do not 
extend to passing new access control checks as the originator of 
the channel. The recipient process will have (in most cases) a 
different principal name derived from its invocation, and that 
name will apply to subsequent access checks on the channel, not 
the name of the channel originator. 

3.5.2 Delegation 
The capability-passing mechanism described above has certain 
drawbacks.  In addition to being limited to cases where the ser-
vice provider does not perform additional permission checks on 
the channel, it has two shortcomings from a policy management 
perspective: 

• Access policy for a service ends up being split between 
the service provider (where its ACL is stored) and the 
client (where its delegation policy is stored).  Ascertain-
ing the precise policy in force for the service thus be-
comes more difficult. 

• Capability-passing can cause relevant information to be 
hidden from both the service provider and the originator 
of the capability, and hence from their access policy en-
forcement mechanisms. For example, the recipient of a 
channel endpoint can pass it in turn to another recipient, 
and in the absence of further access checks by the service 
provider, that delegation step (and hence the ultimate user 
of the capability) will go completely unidentified.  Even 
if further access checks are performed, the path by which 
the capability passed into the hands of the authorized ap-
plication that uses it is nevertheless hidden.  That path 
may be significant; it may, for example, include a mali-
cious application that misrepresents the capability’s orig-
inal intended use to the application that ultimately uses it. 

In order to support more manageable delegation, Singularity 
allows a process to delegate authority at runtime. We provide two 
delegation-types, meant to address different situations. Both in-
volve channel endpoints that have been specially endowed with 
delegated authority. 



• Delegation-by-reference. A process can pass a specially-
designated endpoint to another process, perhaps referring 
to some resource, with the intent that the recipient can use 
the resulting channel to pass subsequent access checks re-
lated to that resource. 

• Delegation-by-mediation. A process may pass a desig-
nated endpoint to another process that gives the target, as 
mediator, the ability to establish new channels with dele-
gated authority. Delegation-by-mediation can be thought 
of as a special case of delegation-by-reference where the 
argument endpoint has special rights with respect to mak-
ing new channels. 

The API for delegation is built into the Singularity channel 
runtime and is further described in Section 4. The delegator expli-
citly enables delegation with respect to an endpoint, specifying 
which form of delegation is required.  It passes the endpoint 
through a channel to the delegate process. The resultant endpoint 
does not speak for the delegate directly. Instead, it speaks for a 
new compound principal that combines the delegate and the dele-
gator. As with process invocation, we use the “+” operator to join 
delegator and delegate, where the delegator is akin to the invoking 
parent-principal, and the delegate application is akin to the in-
voked child. 

In delegation-by-reference, the delegating process knows ex-
actly what resources it intends to pass to the delegate. An example 
of this sort of delegation is as follows. Imagine that a process 
wants to delegate the ability to access a specific file system subt-
ree. As in the previous section, passing a directory endpoint to a 
peer process might allow the peer to perform certain directory 
operations (enumeration, for example) without additional authori-
ty. However, opening a new directory endpoint requires an addi-
tional access check at the file system. The first case above allows 
the delegate to forward, with the endpoint, additional authority 
needed to pass such an access check. Note that in the file directo-
ry example, the delegated authority is meaningful only for opera-
tions relative to that endpoint’s subtree. This form of delegation is 
depicted in Figure 4. Client A passes an imp-endpoint, for a re-
source in server S, to another client B, who can then use it to 
communicate with S as principal A+B. 

Delegation-by-mediation is necessary to support transfer of au-
thority where the delegator cannot know a priori what channels 
the delegate might need. Such mediation is often required as a 
system structuring tool. Imagine that a service S exists and that a 
new service S΄ offers enhanced service to clients of S by acting as 
an intermediary.  An example mediator is an encrypting file sys-
tem that is layered between the client and the regular file system. 

An endpoint that is enabled for delegation-by-mediation al-
lows the delegate to create new channels with the delegated au-
thority. As depicted in Figure 5 client A passes an endpoint to an 
encryption mediator S΄, who uses it to create a channel pair, one 
endpoint of which is subsequently bound to file server S. When S΄ 
speaks on this new channel, S perceives that A+S΄ is speaking. 
Delegation-by-mediation could in theory be implemented through 
delegation-by-reference: for every channel needed by S΄ in the 
prior example, S΄ could ask A to explicitly enable delegation-by-
reference on that endpoint. This strategy does not work, however, 
if A terminates, and it presents an awkward programming model. 

Delegation-by-mediation does not necessarily allow transpa-
rent mediation. Because it seems risky to allow the delegate to 
perform operations without constraint, even if the delegate is 
named in the resulting principal, we follow the Taos delegation 
model [33] and require that all delegations be explicitly enabled 
by the delegator. However, the presence of the delegate name in 
the resulting principal reduces the risk to the point that we antic-
ipate clients routinely and safely enabling delegation in a large 
class of scenarios where the service is both trusted to handle dele-
gated access checks correctly, and a potential candidate for trans-
parent mediation.  (The file system would be a natural example of 
such a service.) After all, if the service were simply redesigned to 
require process invocation, the same form of delegation would 
occur automatically, by default. 

Roles and delegation can be combined to good effect. Much 
like it is possible to adopt a role before invoking a program it can 
be useful to alter the rights of the delegator before transferring 
authority, thus making the principal: delegator@role + delegate. 
This identity is easily expressed in our grammar for principals. 

4. IMPLEMENTATION 
The Singularity authorization subsystem is implemented by two 
distinct system components. Figure 6 depicts the overall Singular-
ity software architecture. The microkernel contains a security 
service that keeps track of the principal names associated with 
processes and delegations. In-process libraries contain an access 
control component that contains the pattern matching logic neces-
sary to make access decisions. 
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Figure 5: Delegation-by-mediation 
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Figure 4: Delegation-by-reference 



4.1 Principals and endpoints 
The primary datatype linking the library and kernel notions of 

principal identity is as follows. 

struct Principal { 
       readonly ulong id; 
       static Principal Self(); 
     string GetName(); 
      static Principal EndpointPeer(Endpoint ep); 
} 

A principal is represented across the Singularity kernel ABI as 
a principal identifier, an unsigned long integer. Static methods are 
provided to get the Principal of the currently executing process 
and to read the Principal associated with the peer partner of a local 
channel endpoint. Finally, there is a method that corresponds to a 
Singularity ABI call to resolve a Principal into a textual name.. 

The API for delegation is built into the Singularity channel 
runtime. Channel endpoints contain principal identifiers that spe-
cify the current owner. When endpoints move across a channel, 
the owning principal is normally set to the principal identifier for 
the destination process. If a delegated endpoint crosses a channel, 
the owning principal is instead set to a principal identifier that 
corresponds to the compound identity previousOwner + newOwn-
er. Thus, the client API is simple. 

 ep->EnableDelegation(allowMediation); 

During endpoint marshalling, the owning principal for ep is set 
to the new principal, and further delegation of ep is disabled (al-
though the new owner can subsequently re-enable it). The channel 
emanating from ep now speaks for the new principal. In delega-
tion-by-reference allowMediation is false, and the delegate has no 
authority to create further endpoints with the delegated authority. 
However, if allowMediation is true, the new owner can create 
new channel pairs using ep for which the owning principal iden-
tifiers are set to that of ep. The standard Sing#-generated primi-
tive for creating contract-specific channels takes an optional end-
point argument for this purpose.  

New principal identifiers are created during process creation 
and delegated-endpoint marshalling. The kernel Security Service 
provides two static methods for this purpose.  

static Principal  NewInvocation( 
   Principal parent, 
   Manifest  manifest, string role); 
 
static Principal  NewDelegation( 
   Principal delegator, Principal delegate); 

In the former case, new process Principals are stored by the 
Process Manager for the extent of the associated process lifetime. 
In the latter case, the delegate Principal must be that of a process 
and not itself a delegate. Delegation principals are garbage col-
lected when the target process terminates. Our delegation imple-
mentation does not currently support role adoption, although this 
would be a straightforward addition. 

4.2 AclCore 
Applications that control resources are responsible for using the 
Singularity access control library to restrict access to these re-
sources as appropriate.  So, for example, a file system application 

is responsible for implementing access control restrictions on the 
files it supports. 

An application seeking to make an access control check typi-
cally calls EndpointPeer on an in-bound channel at the point 
where a resource request is extracted from that channel, and the 
resulting Principal is carried along as part of per-request state 
until an access check is required.  At that time, the application 
determines the ACL appropriate for the target object and calls 
into the access control library. 

 bool CheckAccess(string acl, string mode, Principal p);  

Objects of the AclCore class implement the pattern matching 
described earlier. The bulk of this work is performed within the 
context of client processes; the only external dependencies are the 
ABI call needed to map principals into textual names and the 
kernel ABI or directory service calls used for resolving subex-
pressions. The CheckAccess method performs the following steps. 

• The input ACL is run through a lexer and a parser that 
performs a minimal translation between the grammar de-
scribed in Section 3.4 and the Perl-like syntax expected 
by the .NET regular expression library. In particular, the 
translation must interpret wildcard tokens (‘!’), quote cha-
racters that have special meanings in regular expression 
syntax, and resolve subexpressions. 

• Subexpressions are resolved recursively, with the lex-
er/parser applied to each resolution. Infinite recursions 
are detected here. Subexpression resolution is application-
dependent, but the two mechanisms described in Section 
3.4.2 are provided by default: an expansion based on SDS 
file contents and a kernel ABI call to resolve system-
maintained subexpressions. 

• A completely translated ACL is fed into the C# regular 
expression library. The library produces a compiled regu-
lar expression (e.g. one that has been optimized for fast 
evaluation). 
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• Principal.GetName is invoked on the argument principal to 
produce a textual name. 

• If non-null, the access mode argument is appended as a 
role to the principal’s textual name. 

• The principal-plus-access-mode string is matched against 
the compiled regular expression. 

Of course, performing all of these steps for each access deci-
sion would be prohibitively slow. Thus, the AclCore implementa-
tion includes several levels of caching. At the top level, there is a 
cache of all previously seen ACL for which CheckAccess re-
turned true. For each such ACL, there is a record of which argu-
ment principals and access mode have been successfully eva-
luated. The compiled regular expression for this ACL is cached as 
well, so principal-mode combinations that have not been tested 
can easily be evaluated. 

If no successful evaluations of a given ACL have been encoun-
tered previously, then full evaluation as described above must be 
performed. However, to optimize the steps above, we also cache 
resolved subexpressions – the results of expanding subexpressions 
from component parts. When evaluating an expression that refers 
(recursively) to other expressions, the full resolved value is 
cached at every level. Thus, it is usually not necessary to resolve 
an expression that has been recently visited. 

If a successful evaluation is impossible using cached material, 
the algorithm is re-run from scratch with no caching.  Thus, we do 
not cache negative results: a caller will never be denied access if 
the ACL allows it. Any access control caching, postitive or nega-
tive, involves a tradeoff between the speed of ACL propagation 
and the cost of cache misses. We assume that successful access 
control requests far outnumber failures, and optimize the most 
common case by caching positive results even if doing so doesn’t 
always reflect the most recent ACL state. A consequence of posi-
tive-only caching is that the failure case is slow. We are aware 
that this choice might lead to denial-of-service attacks, but on a 
single machine we can control the scheduling of processes that 
produce large numbers of cache misses. Moreover, we can cache 
frequent misses selectively in order to cut down the rate at which 
full ACL evaluations occur.  

All caches are subject to timeouts and this is the ultimate me-
chanism for revoking rights granted by previous versions of ACLs 
and ACL subexpressions. It is worth remembering that several 
widely-used “push” systems such as UNIX and Windows “cache” 
group membership for the life of a process, often producing sub-
stantial discrepancies between effective and actual access control 
rights. For example, such systems can sometimes require a user to 
log off and log on again in order to realize rights. Because we 
don’t cache negative results, we eliminate this specific behavior 
and expect that timeouts will produce timely enforcement of 
access control denials. 

Credentials that grant privileges to a principal can also become 
invalid over time because of certificate revocation and timeout. 
Credentials that become invalid can result in the removal of privi-
leges from a principal’s data structures or in the invalidation of a 
principal name (causing Principal.GetName to raise an exception).  
Mechanisms for detecting and propagating certificate revocation 
are beyond the scope of this work. 

4.3 Code annotations 
We use code annotation to let code authors and publishers specify 
security properties such as application names, publisher names, 
and asserted privileges in manifests.  Sing# (like C#) enables 
programmers to specify custom attributes that lend themselves to 
such annotations. These annotations appear directly in the inter-
mediate language (MSIL) output by the Sing# compiler. The Sin-
gularity tool set includes a custom tool for creating and populat-
ing manifests from MSIL objects. Manifests are XML objects and 
therefore are simple to manipulate with standard tools. 

4.4 Limitations 
There are a few remaining areas where our design is not fully 
implemented. For instance, channel permission subtyping remains 
a paper design. Other items are more mundane, and require only 
straightforward coding. In particular, we have not yet ported an 
X.509 certification mechanism to vouch for publishers, so pub-
lishers can be named but not certified.  In addition, we have yet to 
implement manifest signatures and to integrate the code signature 
support that .NET provides in other contexts. 

5. USAGE EXAMPLES 
In this section, we describe some examples of how the Singularity 
security system has been used and how it could be used in the 
future. 

5.1 History truncation 
As explained in Section 3.3, certain applications can appear as the 
first component of a principal name by truncating the execution 
history. In order to implement this facility, we define a special 
privilege $truncate-history-privilege that, if granted to an invoked 
application, instructs the process startup mechanism to discard 
prior invocation history. For example in Singularity the console 
driver process tty is always parent to the login process.  However, 
when it is granted $truncate-history-privilege, login appears at the 
head of any principal chain it spawns. Specifically, the kernel 
security service takes special note of this privilege at application 
invocation time and truncates the principal name accordingly. 
Thus it is easy to identify the primary (leftmost) component of an 
invocation chain stemming from login, or another application 
with $truncate-history-privilege.  

As mentioned in Section 3.4.2, the publisher of an application 
must have authority to grant named privileges. Authority is 
checked at application invocation time by treating the candidate 
publisher name as a principal to be matched against the kernel-
maintained ACL that determines acceptable grantors. The deci-
sion to assert a specific privilege is up to the author or publisher 
of the application, as those parties best understand. Alternatively, 
such assertions could in some cases be added by programming 
tools in an automated fashion. 

5.2 Directory service 
Like most operating systems, Singularity supports a naming hie-
rarchy. Our hierarchy is implemented by a service called the Sin-
gularity Directory Service (SDS), an early version of which is 
described in the Singularity Technical Overview [19]. A Singular-
ity node can support a hierarchy of SDS providers, with each such 
provider in a separate process. The Singularity kernel implements 



the local root provider. (The hierarchy is not currently distributed, 
although it could be made so.) The namespace contains files and 
directories, but also allows channel exporters to register entries 
through which they can accept new channel bindings from client 
processes. Thus, clients typically identify exporters by name. 

Using the AclCore library described in Section 4.2, we inserted 
access control checks into the code paths of all security-relevant 
operations in the kernel instance of SDS. One problem in doing so 
is to determine what ACLs should apply at each point in the nam-
ing hierarchy. We solve this problem in a fashion that should be 
applicable to any SDS instance, not just the kernel instance. Ra-
ther than storing the access control information for all nodes in 
the SDS tree itself, we create a parallel data structure that maps 
path prefixes to ACLs. A lookup of a path name returns the entry 
for the maximal matching path prefix, creating a natural inherit-
ance structure. We assume that the number of distinct ACLs in 
most file systems is small; otherwise, access control policy would 
become unmanageable. Hence, we expect our parallel data struc-
ture to fit easily into memory. 

The Singularity kernel SDS instance is not persistent. Howev-
er, we are currently retrofitting persistent access control into our 
Fat32 SDS provider. Persistence for the in-memory structure can 
be accomplished with an ACL update log. We must be careful to 
maintain consistency between the ACL log and the file system 
itself. There are three actions that are relevant to consistency. 
When a file or directory is created, no log action is required be-
cause it suffices for the new entry to inherit access control state 
from its parent. Changing an ACL requires an update to the ACL 
log, but doesn’t change the state of the file system.  However, 
deletion from the file system must be correctly reflected in the 
ACL log lest an incorrect ACL be assigned if the directory entry 
is recreated. Our implementation uses persistent “intent to delete” 
and “deletion complete” log entries to ensure that consistent state 
is recovered if a crash occurs when a deletion is in progress. The 
Fat32 file system is rather simplistic in that it doesn’t support 
atomic rename. File systems that offer this feature require addi-
tional intent logging to guarantee consistency between file system 
and access control persistent state. 

In our SDS implementation, the entries on the right-hand-side 
of our prefix table are {nodePolicy, inheritedPolicy} pairs, where 
both elements are ACL strings. The nodePolicy applies to path-
names that match exactly while the optional inheritedPolicy ap-
plies to path children. nodePolicy is inherited if no inheritedPoli-
cy is specified. Lookups on the access control structure return 
handles that can be cached by callers to avoid subsequent loo-
kups. A handle is invalidated if a subsequent ACL modification 
alters the corresponding cached result. 

We implement a utility that is similar in function to UNIX 
chmod. It sets either or both ACL strings for an SDS path and 
uses a distinguished SetACL message in the SDS channel contract 
for this purpose. The code that handles this message checks that 
the sender has setAcl permissions for the named path. This kind of 
utility can be used to enforce system policy on ACL structure and 
hide the full complexity of regular expressions from users. Note 
that we can ensure that all ACL updates pass through such a utili-
ty by setting an appropriate default on setAcl permissions. 

Because SDS supports the ability to register channel exporters, 
it naturally supports registration of application-space sub-
instances of itself. One of the first difficulties we encountered 

with our security model revolved around handling requests to 
non-kernel SDS instances. In particular, if all calls to an SDS 
instance are relayed through the kernel instance and perhaps 
through intermediary instances, then the identity of the calling 
channel is lost. Instead, we follow the lead of systems like the 
Domain Name Service (in non-recursive mode), Echo [8], and 
GNS [21] and re-direct clients to the correct SDS instances, so  
clients talk directly to the service that holds the target objects. 

Because the binding of names to exporters has serious security 
consequences in this architecture, we control the ability of appli-
cations to register names in the namespace.  We write default 
ACL rules that require that applications be granted $rg-privilege 
in order to register service names in SDS.  

5.3 Application private data 
The fact that user identity and application identity are conflated is 
problematical for many systems. It is not easy for an application 
to manage data that is private to the application and not specific to 
any given user. In UNIX-like systems, the application can be 
assigned a UID and operate under that authority, but this is rare, 
probably because it is subsequently difficult or risky (or both) to 
allow such applications to adopt a user identity. 

In Singularity, user and application identity cannot be con-
fused. Operations to be accessible only to an application app 
should be protected with an ACL such as: 

((! | !@!)+)* app 

In other words, access is granted to app as invoked by any other 
application or role of an application. As suggested in Section 
3.3.1 granting such specific access can be useful for applications 
that need to manage protected state such as installers or system 
administration utilities. A computer game that needs to manage a 
high-score list presents a similar scenario, as does a service that 
wishes to restrict usage to calls made through a specific front-end 
utility.  Moreover, restricting access on a per-application basis 
allows the same principal to match both user-specific and applica-
tion-specific controls when appropriate, so there is no need to 
switch principals in mid-execution. 

We speculate that current practice for protecting executable 
binaries and system files suffers from the lack of application iden-
tity. Since it is not suitable in most cases to allow users full access 
to such files and application-only principals are awkward for the 
reasons suggested above, most systems use some sort of adminis-
trator authority for this purpose and often this authority is over-
used. Overuse of administrator authority, in turn, makes it diffi-
cult to enforce any notion of least privilege when managing appli-
cation state and resources across multiple applications.  

Thus, Singularity compound principals offer the possibility of 
self-management, where installation and manipulation of pro-
tected application state is performed by the application itself or 
through utility software written by the software publisher explicit-
ly for that purpose. Update access to all application-relevant files 
can be restricted to this software. Such restrictions would not 
prevent an attacker from misusing management software, but they 
would confine the attacker to actions possible through the man-
agement software. At the very least, self-management of applica-
tion resources constitutes a step back from a world in which a 
single principal has unlimited authority to modify executables and 
other security-relevant state. 



5.4 Web service 
Applications that run in the context of web servers can present 
difficult authorization tradeoffs.  If, as in Windows IIS, a web 
server can authenticate an inbound connection, the web server can 
then choose to impersonate an authenticated user. However, this 
impersonation gives the ensuing computation the full authority of 
the authenticated user and doing so might not be desirable. Alter-
natively, the web server can act as a separate reference monitor 
and perform operations under its own authority or perhaps that of 
a child application. Doing so risks incurring the cost and com-
plexity of re-implementing authorization infrastructure. For ex-
ample, a web application might maintain files for different users 
but store them under its own identity. If so, the application would 
need to implement its own access control mechanism to differen-
tiate rights of different users. 

In Singularity, a web server can authenticate users, in other 
words it can spawn a principal identity such as 

webserver@dan + webapp 

where webapp is a script or other application meant to run in the 
specific authorization context of webserver@dan. As in this ex-
ample, any application can authenticate its users and adopt a user-
specific role. To reflect this, resource ACLs must differentiate the 
rights of, say, webserver@dan versus those of login@dan. It 
might be that the form 

webserver@dan (+!)* 

appears on ACLs for resources controlled by webserver. Here, 
webserver is acting as a reference monitor, but because both web-
server and dan appear explicitly in the ACL, and there is no need 
for webserver to maintain a separate authorization mechanism. 
webserver@dan might also appear on ACLs of files owned by 
dan. In this way, the web server and its applications can be 
granted limited rights, rather than all of dan’s authority. 

5.5 Layered services 
It is often convenient to deploy long-running, intermediary 
processes that manage state across multiple users. Many three-tier 
web applications that use a back-end database or file store fit the 
model. The encrypting file system example of Section 3.5.2 does 
as well.  We now present another example that can arise in the 
deployment of service management software. 

Figure 7 depicts dispatcher, a hypothetical service that man-
ages service instances and mediates requests for those services. 
inetd is an example of such as service in the UNIX world, al-
though it does not permit reconnection to existing service in-
stances. Suppose that we employ dispatcher to field requests, start 
up end-services on demand, and re-issue the original requests on 
behalf of clients. dispatcher might also ensure that requests are re-
issued in the event of end-service failure. (For the sake of argu-
ment, we assume that it would be impractical to spawn a new 
dispatcher instance per request.)  

 Singularity delegation provides some options for handling au-
thorization in this scenario. As in the private reference monitor 
example of the previous section, dispatcher can forego delegation 
and operate as its own reference monitor and issue requests under 
the principal: 

dispatcher@user 

However, end-services might prefer to see direct evidence of the 
user’s participation as in: 

login@user + front-end + dispatcher 

Here an ACL maintained at the end-service can distinguish the 
front-end application, the user, and dispatcher. For example, such 
an ACL might allow equivalent access rights to different front-
end applications with different intermediary managers, or the 
ACL might deny access to intermediaries altogether. Note that 
dispatcher can use its default process principal to manage persis-
tent state relevant to its own operation.  

6. PERFORMANCE 
In this section we present performance measurements for our 
authorization implementation. All experiments were run on an 
AMD Athlon 64 3000+ (2.0 GHz) CPU with an NVIDIA nForce4 
Ultra chipset, and 1GB RAM. 

In our test, we matched the principal associated with the test 
tool with a series of ACLs.  For each ACL, we obtained average 
timings for four different ACL cache configurations. These confi-
gurations were: full caching; forced re-evaluation of cached regu-
lar expressions; forced recompilation of regular expressions (with 
subexpression cache); and no caching. The timings are averaged 
over three runs of 1000 access checks. Results are in thousands of 
machine cycles; divide by 2 for real time in microseconds. 

Figure 8 details the subexpressions referenced by the ACLs in 
our timing test. $test-privilege is a privilege associated with the 
test tool itself. $auth-privilege is granted to all applications 
trusted to authenticate users. $rg-privilege, as above, is granted to 
applications that can register channel listeners in the SDS. 
$dsanyr and $dsanyrw give read and read-write access respective-
ly to any principal. Thus, {$dsanyrw}|{$dsregister} gives read-
write access to all, but register access only to holders of $rg-
privilege. The last four tests approximate the conventional file 
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access pattern where read access is granted to all, but write access 
is granted only to one user or a group of users (in this case possi-
bly running applications published by microsoft.com). $login is 
shorthand for $auth-privilege.  $grp5, $grp10, and $grp20 are 
disjunctions of names (e.g., user groups). In some of the example 
ACLs, the leading {$dsanyr} term is elided.  

The name of the test tool is SecBVT and it is run by the shell, 
so the principal associated with the test tool is: 

login@ted + shell + SecBVT 

For this test, singularity.microsoft.com has authority for all privi-
leges and is the publisher of all applications. Note that domain 
name qualifications are omitted from the principal name above for 
brevity, but are present in the execution environment. 

Table 1 shows access control check timings for various ACLs. 
Authority to exercise write access is checked for each. Timings 
are expressed in processor cycles. The “Size” column shows the 
size in characters of the regular expression just prior to compila-
tion by the regular expression package. The number of subexpres-
sion visited to evaluate each ACL is also indicated. 

The first thing to note in Table 1 is that ACL checks with 
cached results are very fast, usually in the sub-microsecond range, 
and their costs vary with the textual length of the ACL. This re-
sult is to be expected since there are only two hash table lookups 
involved. Note that we use a general purpose hash table imple-
mentation, so these fast-path numbers are probably larger than 
they need to be. 

The cost of evaluating a cached regular expression (“Eval Re-
gex” column) is in the tens to hundreds of microseconds. This 
time doesn’t vary strictly according to the size of the regular ex-
pression. As one might expect, it is a function of both the size and 
complexity of the regular expression, and the candidate text being 
matched. Not surprisingly, the time required to compile a regular 
expression varies with the size of the expression, but the com-
plexity of the expression is clearly also a factor. Both of these 
costs seem hard to predict without a full understanding of the 
regular expression compiler. 

The difference between no caching and regular expression re-
compilation is highly dependent on the number of subexpressions 
to be parsed. This difference is the cost of the translation between 

our ACL grammar and regular expression syntax. We note that 
our very simple lexer performs too many allocations for the task 
at hand, and that there is considerable room from improvement. 
Even so, this relatively rare event (evaluating an entirely new 
ACL) still executes in the sub-millisecond range. We expect that 
ACLs will be widely shared across resources, and that therefore 
we expect relatively few distinct ACLs and high ACL-cache hit 
ratios. 

7. RELATED WORK 
The issues of identifying principals, and of authorizing or reject-
ing access requests purportedly made on their behalf, have been 
explored continually since the very first uses of shared computer 
system; the bibliography is extensive, and we cannot come close 
to representing it all here. Most of our opinions on the comparison 
of our proposals with the most relevant earlier proposals have 
been included point-by-point throughout the paper. In this section 
we add some final thoughts on how the present work compares to 
the most closely related prior work. 

Many authors, including some of the present ones, have pro-
posed authentication schemes that try to support a more complex 
notion of principal than merely “the logged-in user” [6,16,29,33]. 
Most commonly, such schemes allow a principal to adopt a “role” 
or “restricted context” with the intention of reducing or enhancing 

Table 1: Access control check timings (in 1000s of machine cycles) 

ACL Exprs Size Full 
Cache 

Eval 
Regex 

Compile 
Regex 

No caching 

{$anyuserall} 4 152 1.3  35   299  498  

{$any}+{$test-privilege}@write 5 205 1.6  210  723  876  

{$any}(+!.microsoft.com)*@! 5 201 1.6 144 704 853 

{$dsanyrw} 5 174 1.4  194  524  784  

{$dsanyrw}|{$dsregister} 11 563 1.4  119  1022  1738  

{$dsanyr}|{$login}@ted(+!.microsoft.com)*@write 7 266 1.9  320 759 1382 

...|{$login}@{$grp5}(+!.microsoft.com)*@write 8 289 2.0  319 1124 1469 

...|{$login}@{$grp10}(+!.microsoft.com)*@write 10 322 1.9 311 1212 1568 

...|{$login}@{$grp20}(+!.microsoft.com)*@write 12 385 2.0  386 1220 1789 

 

$app  !|{$user} 
$login {$auth-privilege} 
$user {$auth-privilege}@! 
$any {$app}(+!)* 
$anyuser {$user}(+!)* 
$anyuserall {$anyuser}@! 
$dsregister (({$any}+)*{$rg-privilege})@register  
$dsanyr {$any}@(read) 
$dsanyrw {$any}@(read|write|notify) 
$grpN <a disjunction of N names> 

Figure 8: Subexpressions used in benchmark 



the principal’s privileges. Some designs for expressive principals 
are quite elaborate, including in the resulting compound principals 
such details as the principal that signed the certificate proving the 
identity of an executing application. Such designs provide great 
power, but with a lot of complexity. The complexity takes two 
forms. First is the nature of the compound principal itself, and of 
the certification mechanisms used by the system to construct the 
principal. Second is the issue of how to decide whether to grant 
access to that principal for a particular operation. We believe that 
the current design provides an attractive compromise in both re-
spects. First, the components of our compound principals are 
derived directly from the causal chain of process invocations that 
preceded the access request. Second, our use of a pattern-
matching language for access decisions allows an administrator to 
represent the intention of the corresponding policy. 

Our definition of “role”, e.g., a simple modifier on principal 
names, differs considerably from the definition used in role-based 
access control systems (RBAC) [14]. In such systems, a role is 
akin to a job function in an organization. Roles (and only roles) 
are authorized to perform transactions, and system policy controls 
which roles a user can adopt. It might be possible to use a variant 
of our scheme to authorize role adoption in the context of RBAC. 

Several recent systems and proposals have included security 
mechanisms that take account of execution history. These include 
Java [17] and Microsoft’s .NET environment [9]. However, these 
systems take a quite different approach to ours. They achieve 
their security by inspecting the dynamic state of the computation 
at the access decision points (in particular through stack inspec-
tion [32]). They are complex, partly because of the goal of model-
ing fine-grained object-oriented interactions. We focus, in con-
trast, on coarser-grain processes and channel-based communica-
tion. We record the state of computations and we specify ACLs in 
compact strings. We believe that the resulting simplicity is attrac-
tive. 

One of the novel aspects of the current design is that is easily 
expresses distinctions about how a user was authenticated. While 
many systems, including Windows and most current UNIX-based 
systems, support extensibility in their authentication mechanisms, 
this extensibility does not get reflected in the resulting principal 
name in any systematic way. Consequently, in Windows and 
UNIX, all of the authentication mechanism becomes part of the 
overall trusted computing base. In contrast, in our design there is 
a single, simple way to reflect authentication mechanisms in prin-
cipal names, and the decision about whether to trust a particular 
authentication mechanism is made by the reference monitor, not 
as part of the overall trusted computing base. 

Other designs that involve compound principals have also re-
sulted in revisions to the design of access control lists, though in 
somewhat different ways than the present design. Abadi et al. [2] 
present a theoretical access control calculus for compound prin-
cipals. The subsequent Taos work focuses on practical mechan-
isms for distributed authentication, but doesn’t fully address au-
thorization with the resultant compound principals [33]. Moreo-
ver, neither design offers a scheme for practical authorization 
where applications, or chains of applications, are the active prin-
cipal elements. 

8. CONCLUSION 
In this paper we describe a security model for the Singularity 
operating system and its implementation. In this model, principals 
are represented by expressions in a grammar whose elements are 
applications and roles, and access control is done by pattern 
matching. As a result, in Singularity, applications are first-class 
entities. Impersonation is not required; so many access decisions 
made by intermediaries in traditional systems are visible, in Sin-
gularity, to the parties that ultimately decide access to resources.  
Furthermore, application writers and publishers can contribute to 
the definition of security policies, both by asserting application 
privileges and by defining access control expressions. 

Our design makes it feasible to express complex access control 
decisions precisely. Complexity is often the enemy of security. 
We believe that our underlying access control design will allow 
us to create many, if not most, ACLs mechanically from higher-
level access control policies. The end goal would be a system 
where the administrator can express global policies, instead of 
tweaking individual ACLs, thus removing many opportunities for 
inconsistency, neglect, and other forms of error. We have made 
some small steps in this direction with our access control inherit-
ance model for the Singularity Directory Service, however this is 
a clearly a fruitful avenue for future work. 

As programming tools evolve, attacks that exploit low-level 
memory corruption should become less common.  Unfortunately, 
these attacks will probably be replaced by others. In particular, 
memory safety will not protect applications from being invoked in 
unintended or malicious ways. Some attacks of this form (e.g., on 
scripting engines) have already been demonstrated. Our principles 
and system constitute a step towards thwarting such attacks. 
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