What's Decidable about Weak Memory Models?
(Extended Version)

M. F. Atig!, A. Bouajjan?, S. Burckhardt, and M. Musuvathi

1 Uppsala University, Swedenphamed_f aouzi . ati g@t . uu. se
2 | IAFA, Paris Diderot Univ. & CNRS, Francdati g, abou}@i af a. j ussieu. fr
8 Microsoft Research Redmond, USfsbur ckha, madanm@ri crosof t. com

Abstract. We investigate the decidability of the state reachabilitgbtem in
finite-state programs running under weak memory models3]imfe have shown
that this problem is decidable for TSO and its extension thighwrite-to-write or-
der relaxation, but beyond these models nothing is knowre deidable. More-
over, we have shown that relaxing the program order by atigw&ads or writes
to overtake reads leads to undecidability.

In this paper, we refine these results by sharpening the €aigability frontiers
on both sides. On the positive side, we introduce a new memodel NSW (for
non-speculative writes) that extends TSO with the writgvtte relaxation, the
read-to-read relaxation, and support for partial fences.pésent a backtrack-
free operational model for NSW, and prove that it does nawvattausal cycles
(thus barring pathological out-of-thin-air effects). O thegative side, we show
that adding the read-to-write relaxation to TSO causes ciddbility, and that
adding non-atomic writes to NSW also causes undecidability

Our results establish that NSW is the first known hardwargrememory model
that is relaxed enough to permit both delayed execution @ésand early exe-
cution of reads for which the reachability problem is debida

1 Introduction

The memory consistency model (or simply, the memory moded) shared-memory
multiprocessor is a low-level programming abstraction tledines when and in what or-
der writes performed by one processor become visible ta ptioeessors. The simplest
memory model, sequential consistency [16], requires th@bperations performed by
the processors should appear as if these operations aedved in a consistent global
order. Despite its simplicity and appeal, most contempdrardware platforms support
Weak (relaxed) Memory Models for performance reasons [, 13

The effects of weal memory models can be counterintuitidifficult to under-
stand even for very small programs. Not surprisingly, rethmmemory models are an
active research area today. Much progress has been madt ioogrammers, in the
form of verification or model-checking algorithms [8, 15, 28, 4], testing tools [11,
19], analyses that check whether programs are exposeddifispelaxations [7, 9, 21],
fence insertion tools [14, 15, 18], verified compilation [26, 25], and formal models
that closely approximate commercial multiprocessors22227].

Nevertheless, many foundational questions about weak memadels remain. For
instance, given a finite-state concurrent program undekweamory model, what is

the complexity of deciding if a particular erroneous staa be reached? What is the
most relaxed model for which the safety or liveness verificeproblem is decidable?
Understanding the answers to these questions is necesbarydesigning automated
analysis tools for low-level system software exposed tokweamory models.

w — r (Write-to-read order). The effect of a write may be delayadt@a subsequent read.
This relaxation enables the use of per-processaite buffers Specifically, when ex-
ecuting a write, a processor may buffer the value to be writteits local buffer and
continue executing before the buffered value becomes fiyoliaible.

w — w (Write-to-write order). A processor may swap the order af twites. For instance;
if using a write buffer as described above, writes may extttbffer in a different orde
than they entered.

r — r/w (Read-to-read/write order). A processor may change therasfla read and a
subsequent read or write. This enables out-of-order ei@ttdchniques that help tp
hide latency of memory accesses. We further distinguisivdetr — r (read-to-read)
andr — w (read-to-write) relaxations.

RLWE (Read local writes early). A processor may read its owites even if they are not
globally visible yet (i.e. before the exit the buffer). Fomenple, if a processor executes
a read from a location for which there are pending writes m Itical buffer, it can
immediately forward the value of the last such write from lbéfer to the read.

RRWE (Read remote writes early). A processor may read otfoeepsors’ writes even if
they are not globally visible yet. For example, a write in edidbuffer may be directly
forwarded to some remote processors before it exits thebuff

RWF (read-read and write-write fences). A processor mayeissread-read (write-write))
fence to prevent reordering of reads (writes) that preckddeance with reads (writeg
that succeed it.

~

Fig. 1. Definition Acronyms that represent relaxations/featui@towing the terminology in [2].

In prior work [3], we have presented some early decidabiigults for relaxed
memory models. We have shown that the reachability probterfirfite state machines
is decidable for two simple relaxations to SC: (1) the TSQa(tstore order) model
that allows write-to-read relaxation, and (2) a memory nhdldat extends TSO with
the write-to-write relaxation. In addition, the prior woalso shows that the reachabil-
ity problem is undecidable for a memory model that allowsf@lir combinations of
read and write relaxations. In this paper, we refine thesdtsawith a precise study of
relaxations that lead to the undecidability of memory medElg. 1 describes the re-
laxations studied in this paper and Fig. 2 summarizes owlteeand comparison with
prior work.

Our results show (perhaps surprisingly) that relaxatibas are commonly consid-
ered as counter-intuitive by programmers coincide witlséhat lead to undecidability.
For instance, we show that adding the read-to-write relamd@b TSO (total store or-
der) results in an undecidable memory model. In such a riétaxa processor eagerly
makes a write visible to other processors before a prior h@accompleted. Such spec-
ulative writes can result in causal cycles, a well known mgmmaodel hazard [12, 20].
On the other hand, a memory model that avoids this relax&tidmtherwise remains

Memory Model NameReach. Problem
{w —=r, RLWE} TSO |decidable [3]
TSOU{w — w} - decidable [3]
TSOU {w — w, RWF}|PSO |decidable fiew]
PSOU{r—r} NSW |decidable fiew]
TSOU{r —r/w} - undecidable [3]
TSOU{r —w} - undecidablerew]
NSWU {RRWE} - undecidablerew]

Fig. 2. Summary of previously known and unknown results about tléddéility of the reacha-
bility problem on weak memory models. The acronyms are defimé&ig. 1.

general by allowing read-to-read, write-to-read, andewtit-write relaxations together
with read-read and write-write fences is actually decidaWle call this memory model
NSW (non speculative writes) and study its properties. Iginae show that adding
non-atomic writes to NSW results in an undecidable memorgleh&uch non-atomic
writes can lead to counter-intuitive IRIW (independentdeaf independent writes)
effects [6].

Memory designers have to reconcile the conflicting goalsearfigpweak enough to
allow performance optimizations while simple enough fagmammers to understand.
We hope that characterizing decidability of memory modelkhelp designers to make
the right performance/programmability tradeoff. As anrapée, the Power memory
model specification [24] allows the read-to-write rela@atiHowever, extensive exper-
imentation performed on real hardware implementation® et found evidence of
this relaxation [24]. This suggests that while this optiatian is currently not imple-
mented and not crucial for performance, hardware designeutd still like to keep the
specification flexible for future needs. Our results quagtifhe cost of this flexibility.

Along the same vein, we show that NSW, which is the most relamedel known
to be decidable, exhibits the following desirable promerti

— NSW enables significant optimizations; specifically, (1pérmits a write to be
moved down (later) in the program execution past any othest oz write (by de-
laying it in a buffer), and (2) it permits reads to be movedegrijer) in the program
execution, before any other read or write (even before aseaghose value it de-
pends).

— The performance impact of prohibiting the read-to-writexation (which is the
only ordering relaxation remaining in NSW) can be ameliedaby write buffers:
even if we disallow writes to become visible to other prooeséi.e. exit the write
buffer) before all preceding reads have completed, we nilagliiw writes to enter
into the buffer while older reads are still pending.

— Since NSW does not permit writes to become visible to othecgssors before all
older loads by the same processor have completed, caused ey out-of-thin-air
behaviors are impossible. We formalize and prove this fa8tdction 3.7.

— In operational memory models, reordering of dependent mgisccesses is usu-
ally modeled by nondeterministically guessing the readevaind validating it later.

In some sense, such models are not very constructive as #nesemuire backtrack-
ing if a guess can not be validated later on. We discoveredyatovaliminate all
such guesses from our operational model for NSW, obtainingjt@rnative opera-
tional model that is backtrack-free (Section 5).

— The relaxations in NSW do not depend on any notion of dat&Wobdependencies.
Not only does this greatly simplify the formalism, but it @lavoids subtle sound-
ness problems with compiler optimizations that may bregleddencies [5].

To establish that the state reachability problem for NSWeisidable, we proceed
in two steps. First, we define an operational model for NSWre/neads do not need to
be stored, but still allowing the precise simulation of kit possible reorderings due
to the read-to-read relaxation (section 5). The key idedafckling this issue consists,
roughly speaking, in using a buffer storing the history dftlhé past memory states,
in addition to informations about the most recent value t@a@ach process on each
variable. The whole model has actually three levels of baffeach of them related
to one of the considered relaxations (write-to-write, eativ-read, and finally read-to-
read). We think that this step has its own interest from thatpaf view of modeling
and of understanding the effects of each of the considetarations, regardless from
the decidability issue. Then, in a second step (section 6)pwmve that the defined
operational model can be transformed, while preservirtg stamchability, into a system
that is monotonic w.r.t. a well quasi-ordering on the setoonfigurations. This allows
to deduce that the model has a decidable state reachalitibtgm, using [1]. Both
steps are nontrivial and are based on new and quite subtikreations.

2 Preliminary definitions and notations

Letk € N such thak > 1. Then, we denote bik| the set{1,...,k}. Let Z be a finite
alphabet. We denote Iy the set of alwordsoverZ, and bye the empty word. The
length of a wordw € Z* is denoted byengthiw). (We assume thaéngthe) = 0.) For
everyi € [lengthw)], letw(i) denote the symbol at positidom w. Forae ~ andw € Z*.
We writea € wif aappears iw, i.e.,3i € [lengthiw)] such that = w(i).

Given a sub-alphab@ C X and a wordu € Z*, we denote byl the projectionof
uoverQ, i.e., the word obtained fromby erasing all the symbols that are no@n

Letk > 1 be an integer anl be a set. Lee= (ey,...,&) € EX be ak-dim vector
overE. For everyi € [K], we useg]i] to denote thé-th component o€ (i.e., €]i] = &).
For everyj € [k] and€ € E, we denote by[j + €] thek-dim vectore’ overE defined
as follows:€[j] = € and€|[l] = ¢[l] forall | # j.

Let E andF be two sets. We denote)i — F| the set of all mappings frorf to
F. Assume thaE is finite and thaE = {ey,... &} for some integek > 1. Then, we
sometimes identify a mappirge [E — F] with ak-dim vector ovefF (i.e., we consider
thatg € FX with g[i] = g for all i € [K]).

3 Weak Memory Models

3.1 Shared memory concurrent systems

Let D be a finite data domain, antl= {xi, ..., Xn} a finite set of variables valued .
Let M denote the sdd™, i.e., the set of all possible valuations of the variableX.in

For a given finite set of process identitiedet Q(I, X, D) be the set of operations
of the form: (1)“no operation”: nop, (2) read r(i, j,d), (3)write: w(i, j,d), (4) atomic
read-write arw(i, j,d,d"), (5) readfence rfence(i), and (6)write_fence wfence(i),
wherei €|, j € [m], andd,d’ € D.

A concurrent systernverD andX is a tuplean’ = (#1,...,%n) such that for every
i € [n], 2 = (R,4) is a finite-state process where @&)is a finite set of control states,
and (2)A; C R x Q({i}, X,D) x R is a finite set of labeled transitions.

LetP =Py x ... x P,. For convenience, we write—"s; p’ instead of p,op, ') € &,
for any p,p’ € B andop € Q({i},X,D). We denote byQ(a() C Q(|n], X, D) the set
of operations used in(. Given an operatio = op(i, j,d) with op € {r,w}, i € [n],

i € [m], andd € D, let proc(w) =i, var(w) = j, anddata(w) = d.

3.2 Memory models

The executions of a concurrent system are obtained by éatarlg the executions of
operations issued by its different processes. In the Seigl@onsistency (SC) model,
the program order between operations of a same processsisrped. Relaxations of
this program order lead to the definition of various weak mgnmodels. However,
fences (called also barriers) can be used in order to impg@sedrialization of some
operations at some points of the execution. An operatiaii, j,d,d’) is equivalent to
the atomic execution of the sequen<k j,d);w(i, j,d’), with the additional assump-
tion that this operation is never reordered with any oth@ration of the same process.
Therefore, this operation can emulate a fence w.r.t all kihdperations, i.e., two op-
erations by the same process occurring before and afterdgram order) the fence
cannot be swapped. The operatiefence(i) (resp.rfence(i)) is a fence for write (resp.
read) operations only, i.e., writes (resp. reads) thatiolgefore and after a writéence
(resp. readence) cannot be swapped.

3.3 A Semantics based on Rewrite Rules

We consider memory models corresponding to a set of prognater aelaxations
defined by permutation rules between the operations. Giead/write operations
op;,0p, € {w,r}, relaxing theop; to op, order consists in allowing that operations
of the clasp, are allowed to overtake operations of the clapgin a computation,
provided that these operations are issued by the same praceksthat they are acting
ondifferentvariables. This corresponds to defining a set of rewritestule

opy (i, j,d)op, (i, k,d") — opy(i, k,d")op i, . d) 1)

for anyi € [n], j,k € [m], andd,d’ € D.

In addition to permutations between reads and writes, waidenthat reads and
write_fences issued by the same process can always be swappetigasatrie holds
concerning writes and red@nces. Then, we consider the following set of rewrite rules
RWF defining the semantics of read/write fences: Foriaayn|, j € [m], d € D,

)

wfence(i)r(i, j r(i, j,d)wfence(i

,d) =)
r(i, J, d)wfence(l) — wfence(i)r(i, j,d)
rfence(i)w(i, j,d) < w(i, |, d)rfence(l)
w(i, |, d)rfence(l) — rfence(i)w(i, j,d)

We also consider the following sRtWE (Read Local Write Early) of rewrite rules:
w(i,j,d)r(i, j,d) = w(i,j,d) ®3)

foranyi € [n], j € [m], d € D. These rules say that a read that occurs after a write of the
same value on the same variable by the same process candeelimmediately.

Then, we consider that a memory molttek defined by the choice of a set of rewrite
rules defining the allowed relaxations of the program oréerinstance, we give in the
table on the right the definition in this framework of well kimo memory models.

Clearly, SC can b_e simulated under bo’l’l\"/lodel Rewrnite Rules
TSO and PSO by inserting a fence afterges 0

each operation. Itis also possible to simulatersy RWFURLWE U {w — r}
TSO under PSO by insertingvéfence before 556 [RWFURIWEU{w — 1, w — w}
each write operation. Notice that the use of
readfences in TSO and PSO is not relevant since reads cannot lmpedian these
models. Similarly, the use of writfences in TSO is not relevant. But the possibility
of using writefences in PSO is important. Without this operation, it is passible to

simulate TSO under PSO.

Given a process; of the systemn(, and two control state, p’ € B, a computation
trace of?; from p to p' is a finite sequence= wy---wy_; € Q({i},X,D)* such that
there is a sequence of control stames-- p, € P* such thatp = po, p' = pr, and for
everyj € {0,...,¢ -1}, (pj,w, pj+1) € Ai. The set of computations traces®mffrom
p to p’ is denoted byr (#;, p, p').

Let R be a set of rewrite rules over traces defining a memory mudébiven a
rewrite rulep = a — B, wherea,p € Q(A))*, and a computation tracee Q(A()*,
we define a rewriting relatior+, between traces as follows:—, U if T = 11012
andt’ = 1112 for somety, 12 € Q(A))*. As usual;—>; denotes the reflexive-transitive
closure of—,. These definitions are generalized in the obvious way tocetsles
and sets of computation traces. Given a set of rewrite ijeke closure of a set of
tracesT, denoted by[T]|g, is the smallest set containifigand which is closed under
the application of the rules iR, i.e.,[Tlr={T € Q(\)* : TETAT—=KT}.

Given two traceg; and Ty, the shuffle of the two traces is the set of traces ob-
tained by interleaving the elements of and 1, while preserving the original order
between elements of each trace. Formally, the opefatodefined inductively as fol-
lows: (1) gt = 1/[e = T, and (2)wn Ty [|wpT2 = w(T1[|wpT2) Uwn(wiTy|[T2) for every

w1, € Q(A), and for everyr, 11,12 € Q(A()*. The definition can be extended in a
straightforward manner to a finite number of traces.

Given two vector of control statgsp’ € P, the set of computation tracesanfrom
p to p’ in the memory modell (defined byR), denoted byrw (4., p,p’), is defined by

[7 (21, p[L, P [ADIR | - [[Z (20, P[], P [])]R

We define a relatiof) between memory states corresponding to the execution of
operations i((). Givend,d’ € M, we have, for everye [n] and for everyj € [m:

— diw(i, j,d))d" if d' =d[j + d],

— d[r(i,j,d))d" if d[j] =d andd = d’,
dlarw(i, j,d,d’))d’ if d[j] =d andd’ = d[j + d'],
djop)d’ with op € {nop,wfence(i),rfence(i)}, if d =d'.

We extend this definition to sequences of operations, anefitre to computation
traces. Astateof a(is a pair(p,d) wherep € P andd € M. For a given memory
modelM, we define a reachability reIaticReac@Q between states af as follows. Let
s= (p,d) ands = (p’,d’) be two states of. We consider thalReacI’jG(s,) holds if
there exists a tracec 7w (A, p,p’) such thad[t)d'.

3.4 The State Reachability Problem

The state reachability problem for a memory mobkfetonsists in, given a concurrent
systemw(and two states ands' of 4, checking whethelReac}x(s,s’) holds. We have:

Theorem 1 ([3]). The state reachability problem f@1SO is decidable.

We have also proved in [3] the decidability of the state raehdity problem for a
model with bothw — w andw — r relaxations, but without considering wrifences.
Therefore, the so-called PSO model in [3] is incomparabllh WSO, and is strictly
less expressive than the PSO model as defined in this papehdvealso in [3] that
the state reachability problem is undecidable for the madedre all four read/write
relaxations are considered. We prove here the followirangter result:

Theorem 2. The state reachability problem f@iSO U{r — w} is undecidable.

The proof is by a reduction of Post's Correspondence Proltbeaur problem. It
follows a similar schema as the one we used in [3]F60 U {r — r/w}, although the
encoding is quite different. The proof can be found in Apprrid

3.5 NSW: A Model with Non Speculative Writes

We have seen in Section 3.4 that including the> w relaxation to TSO results in
a memory model with an undecidable state reachability prabMotivated by this,

we introduce a memory model callétsw (for Non Speculative Writes) obtained by
discarding this relaxation, i.e., by considering the failog set of rules:

NSW = RIWEURWFU{w —r, w — w, r — r}

Clearly, theNSW model subsumes TSO and PSO, and since it allows out-of-order
reads, it is actually a strictly more relaxed model than PS@tice that PSO can be
simulated under NSW by insertingf&nce after each read operation.

We show later that the state reachability problem problenNf8\WV is decidable. In
the next section, we discuss another desirable properhediEW memory model.

3.6 Expressive Power oNSW

Clearly, theNsw model subsumes TSO and PSO, and since it allows out-of-tedds,
it is actually a strictly more relaxed model than PSO. We sheveafter examples of
behaviors that are allowed under this model.

SB (Store Buffering)This example is an abstract version of Dekker’s exclusiotualu
protocol. Proces®; writes a 1 tox, and then checks thatis still equal 0 is order to
proceed (to the critical section). Symmetrically, processwrites a 1 toy and then
checks thak is 0. Under the SC model, it is not possible to execute thesretioth
processes in a same execution.

x=y=0
P1 P2
(1) w(x,1)|(3) w(y,1)
(2) r(%,.0) |(4) r(x.0)
x=y=1

In NSW this behavior is allowed since reads can overtake writes. iBds
possible to swap (1) and (2) for instance, and get the foligwcomputation:
r(y,0)w(y, 1)r(x,0)w(x,1). Symmetrically, it is possible to swap (3) and (4) and ob-
tain: r(x,0)w(x,1)r(y,0)w(y, 1). Notice that these computations are already allowed in
TSO.

MP (Message Passing)Processp; assigns the value 2 tq and signals this fact to,
by writing 1 ony. However, even ifr, reads this 1, this does not guarantee that it will
read the value 2 orn

x=y=0
P P2
(1) w(x,2)|(3) r(y;1)
(2) w(y,1)|(4) r(x,0)
x=y=1

First, this behavior is possible because the write operat{tt) and (2) can be per-
muted, and this leads to the computation(y, 1)r(y,1)r(x,0)wrel(x,1). Notice that
this behavior is already possible in PSO. To forbid this péation, a writefence

must be inserted between (1) and (2). Even in this caseftstilbehavior is possible
since two read operations (3) and (4) can be permuted, lgddithe computation:
r(x,0)wrel(x,1)w(y,1)r(y,1). To forbid this latter computation a redence between
(3) and (4) is needed.

WRC (Write to Read CausalityProcessr; writes 1 onx, and thenp, reads this value
and writes 1 ory. Then, whenps reads 1 ory it not guaranteed that it can read 1xn

x=y=0
P1 P2 P3
(1) w(x,1){(2) r(x,1) |(4) r(y,1)
3) w(¥,1)[(5) r(x0)
x=y=1

Similarly to the previous case, this behavior is allowed NSW by per-
muting the two reads (4) and (5), which leads to the followicgmputation:
r(x,0)w(x, 1)r(x, 1)w(y, 1)r(y,1). Again, to forbid this computation, it is possible to in-
sert a readence between (4) and (5).

IRIW (Independent Reads of Independent Writdocesse®s writes 1 tox and 24
writes 1 toy. In parallel,»; observes thax has been modified befosge whereasp,
observes that is modified beforex.

x=y=0
P1 P2 P3 Py
(1) r(x,1){(3) r(y,1)|(5) w(x,1)|(6) w(y,1)
(2) r(y,0)|[(4) r(x,0)
x=y=1

This behavior is possible iNSW either by permuting (1) and (2), or by permut-
ing (3) and (4). For instance, in the latter case this leadbédollowing execution:
r(x,0)w(x, 1)r(x, 1)r(y,0)w(y,)r(y, 1).

Forbidding this behavior is of course possible by insertgadfences between (1)
and (2)andbetween (3) and (4).

3.7 Absence of Causality Cycles ilNnSw

Let po denote thegorogram orderrelation corresponding the order in which operations
of each thread are issued by the program. Now, one can defiapemdency relation
between the operations of a same process that reflects thauctcontrol dependen-
cies. For instance, if a value read by a read operation is tesetlaluate the branch
condition, then all instructions subsequent to the brametcantrol dependent on the
read operation. Similarly, if a value read in a read openatioused to compute the
address of the memory location read in a subsequent readtmperor to compute the
value written in a subsequent write, these two subsequenatipns are data dependent
on the first read operation.

10

While the exact definition of the dependency relation is Hasethe semantics of
the programming language, we define a conservative defirtiyoconsidering that all
operations occurring after, in the program order, a readatios is considered depen-
dent on this read. Formally, this corresponds to the folhmadependency relation.

dep =pon({r} x {r,w,arw}) 4

Second, we considerraad-fromrelation, denoted, that associates with each read
event of the computation a write event such thétk,d) — r(j,k,d) if the r(j, k. d)
operation issued by procesg takes the valud that has been written by the operation
w(i,k,d) issued by process on the variable.

Then, the causality relation corresponding to the con idl—
e e b seenl e ()

r — w}, there are programs havmg(z) wiy, 1)|(4) w(x 1)
computations with a cyclic causality relation. An example x7: y=1 .
such a program is given on the right.

It is clear that under the SC model, the four operations of ffiogram can-
not belong to a same computation leading to the configuratieny = 1 starting
from x = y = 0. However, when the — w relaxation is admitted, it is possible
for instance, by permuting (1) and (2), to execute the fowgrafions in the follow-
ing orderw(y,1)w(x,1)r(x,1)r(y,1). This computation contains the causality cycle:
r(X,1) —dep WY, 1) = r(¥, 1) —aep W(X, 1) = r(x,1). Intuitively, by executing the
operationw(y, 1) beforer(x,1), processp; speculates on the success of the read op-
erationr(x,1) in the future. But process, can read the 1 ogthat was speculatively
written, and then write the value 1 xpallowing this way the validation of the specula-
tion of »1. We prove that by avoiding the— w relaxation NSW avoids causal cycles.

x=y=0
P2

Theorem 3. Every computation of any concurrent system undemtB&/ model has
an acyclic causality relation.

The proof of Theorem 3 can be found in Appendix B. Notice tiatesthis theorem
relies on the conservative definition of dependency retatiefined above (4), it also
holds for any refinement of the dependency relation.

4 An Operational Model for NSW

We provide an operational model fisw where configurations are formed by a vector
of control states, one per process, a memory state givingahmtion of the shared
variables, and aavent structurevhere pending operations, issued by the different pro-
cesses but not yet executed, are stored. This event seeutfines a partial order be-
tween these operations reflecting the constraints impogéiatebmemory model on the
order of their execution.

We start by defining formally the notion of event structurbem, we define a first
operational model where the stored operations can be reaiiss, or writefences.
(Nop’s, atomic read-writes, and redéehces do not need to be stored.)

11

4.1 Event structures

Let £ be an enumerable set of of events. évent structurever an alphabeX is a
tuples = (E,~,\) whereE is a finite subset ot , ~»C E x E is a partial order over
E, andA : E — X is a mapping associating with each event a symbal in

Given an even¢ € £\ E and a symboh € %, we denote by < [e < a] the structure
(EU{e},~,N) such that\'(e) = aandM'(¢) = A(€) for all € € E. Given an event
e € E, we denote bys > e the structurg E' = E \ {e},~ |g/,A|g). Moreover, given
e € € E, we denote bys @ e~ € the event structurég, (~ U{(e,€)})*,A). These
notations can be generalized to sets (of events and tamsjtin the obwous way.

Given a concurrent systemd = (21,...,%n), anevent structure overa(is an event
structure oveQ((). Giveni € [n] and j € [m], letE; ;) = {ecE : 3de D.Jope
{w,r}.A(e) = op(i, j,d)}. An event structure ove®(N) is well-formedif, for everyi
and j, the relation~ |E<i,j) is a total order. We assume in the rest of the paper that all
event structures ovex. are well-formed. This condition corresponds to the fact tha
read/write operations on the same variable should not reeead.

Let E(I i) = EijyU{e € E : \(e) = wfence(i)}. For everyi € [n] and j € [m,
let RE(i,)_{eeE Jd € D. A(e) = r(i,],d)}, and letWE(i,j) = {ec E : 3d €
D.A(e) =w(i, j,d)}. For everye € E, we usedata(e) to denotedata(A(e)).

4.2 An Operational Model with Stored Reads

We associate with the concurrent systegna transition systeniConf,,,=-,,) where
Conf, is a set of configurations, ang-, .C Conf, x Conf,, is a transition relation
between configurations.
A configurationof 4((an element ofConf,) is any triple(p,d,s) wherep € P,
d € M, ands is an event structure ove(. The transition relatios, is the smallest
relation such that for eveny,p’ € P, for everyd,d’ € M, and for everys = (E,~»,\),
= (E',~',\") two event structures ovey, we have(p,d,s) =, (p,d’,s’) if there
is ani € [n], and there ar@, p’ € B, such thap[i] = p, p’ = p[i «+ p'], and one of the
following cases hold:
1. Nop: p—2;p/,d=d', ands = s'.

2. Write: p(—>.p d=d’, andJec £ \ E such thats’= ((s<[e+ w(i, j,d)]) ®

{€~e: efema>(E,J)}

3. RWE: p W9y d=d, _5 WE(, j) # 0 with em = maxWE(, j)), Ze

RE(, j). em«»e anddatalen) =

4. Read: p—> p,d=d, e|therWE(| j) = 0 or datalmaxWE(, j))) # d, and
Je f € £ \ E such thats’= ((s < {[e <+ r(i,},d)],[f + wfence(i)]}) @& ({€ ~e:
e e maxEg j))}u{e~ f})).

5. Atomic Read-write: pMn P, UL Ein=0,d[j]=d,d =d[j « d], and

s="
6. Read fence: prfen—ce()hp M RE(,j)=0,d=d, ands ="

12

wfence(

7. Write fence: p—'>>i p, d=d, and3e e £\ E such thats’'= ((s< e+
wfence(i)]) @ {€ ~ e: 3k. 1 < k< mande’ € maxE)}).

8. Memory update: p = p’, and there is an evemtsuch thate is a minimal of~,
A(e) = w(i, j,d) forsomed € D,d' =d[j + d], ands’'=s>e.

9. Read validation: p = p/, d’ = d, and there is an evestsuch thak is a minimal of
~, M©) =r(i,,d), d[j] =d, ands'= s> e.

10. Write fence elimination: p = p’, d’ = d, and there is an evem such thate is a

minimal of~, A(e) = wfence(i), ands’= s> e.

Let us explain each case. A write operatiof, j,d) is simply added to the structure
by introducing a new everd labelled with this operation, which is inserted after all
write_fences issued by; as well as all the write/read operationsmfonx;.

A read operation(i, j,d) can be validated immediately (point 3)sfstill contain a
write of #; onx; (and there is no read @f onx; after this write), and the last of such
an operation writes precisely the valdenx;. Otherwise, (in point 4) a read operation
r(i, j,d) is simply added to the structuseafter all reads/writes af; onx;. Notice, that
the event associated with this read operation is not ordenetd write_fences that are
maximal ins (i.e., the read is allowed to overtake such wifé@ces). Moreover, a new
write_fence is inserted after the read. This ensures that, as kthgsaread has not been
validated, it cannot be overtaken by any write.

An atomic read-write operation, which acts as a fence onpatations of the pro-
cessgp;, can be executed only when all events before it have beentd® readfence
issued byp; is executed immediately (it is not storeddnif there is no reads ig issued
by ;. A write_fence is inserted i@ after all the events issued ly.

Writes are removed frorms and used to update the main memory when these op-
erations correspond to minimal events ofSimilarly, reads are validated w.r.t. the
main memory and removed fromif they correspond to minimal events. Finally, a
write_fence can simply be removed frafwhen it becomes minimal.

Let sp denote the empty event structure. Then, we have:

Theorem 4. For every states s and,sve have Rea@ﬁv"(s,s’) iff (s,50) = (s, 50).

5 From Event Structures to FIFO Buffers

We provide in this section a model fasW using FIFO buffers where reads and fences
are never stored. We proceed in two steps. First, we showttlsapossible to define
an alternative operational model fNISW where reads can be immediately validated
using informations about the sequence of states that theonyemad in the past. The
history of the memory states is stored in an additional FlE€eb. Then, we show that

it is also possible to get rid of writéences by converting event structures into two-level
structures of write buffers.

5.1 Eliminating reads from event structures

We present hereafter a new operational model where readsbdated using an ad-
ditional buffer storing memory states, callbitory buffer The idea is the following.

13

Consider a read operatiofi, j,d) issued by process; that can be validated during a
computation by reading from a write operatiofk, j,d) issued by porcess,. Then, if

at the moment(i, j,d) is issuedw(k, j,d) has not yet been issued, it is actually possi-
ble for 2; to wait until 2, producesv(k, j,d). The reason is that issuingk, j,d) by 2y
cannot depend from the actionsmfafterr(i, j,d), because otherwise, this would mean
that there is a read bk beforew(k, j,d) which needs (i.e., is causally dependent from)
a write of ; occurring after(i, j,d). But this would imply the existence of a causality
cycle, which contradicts the fact that such cycle do nottérisiSW computations due
to the fact that writes cannot overtake reads (see Thm. 3).

Therefore, it is always possible to consider computationsre reads are validated
w.r.t. writes that have been issued in the past. Howeveressome actions must exit
the event structure of the system configuration (due to f§neee need to maintain the
history of all past memory states in a buffer.

Then, we use a buffer such that the last element represents x; =x =0
actually the current state of the memory, and where the otlrer P2
elements represent the precedent states of the memory in(fhev(x,1)|(4) r(xz,1)
order they have been produced. Notice that a history bugfef() wfence |(5) nop
never empty since it must contain at least one element rej -w(x2,1)|(6) r(x1,0)
senting the current state of the memory. For instance, dens =X =1
the program on the right.

Clearly the six operations of this program are executabteetNSW because the
operatiorr(x;,0) can overtake the operatio(xz,1). Now, let see how we can simulate
this behavior without storing reads, starting from the mgnstate(x; = 0,x2 = 0). To
validate the operationx,1), we need thai; executes its third operatiomw(xz,1)).
Then, this process should perform its first write operatidrclv is stored in the event
structure, but the writéence forces the executionwfxs, 1), and the new memory state
is (x1 = 1,x = 0). After the execution ofv(x,1) it is possible to validate(xz, 1), but
the validation of the operatiorix;, 0) of 2, needs the old memory stapg = 0,x, = 0).
Putting this state in a history buffer allows to retrievanibirder to validate the last read
and finish our simulation. Notice that in general the seqa&ficnemory states that are
needed to validate reads is not bounded. For instance dmortbie case where(xz, 1)
of 24 is replaced by any longer sequence of different writegion

Now, since reads can be swapped, their validation can ugesattiat might be
issued in a different order. However, reads by the same psoge a same variable
must be done in a coherent way, i.e., they should read fromsstecurring in the same
order. To ensure that, we introduce pointefis j) on the history buffer defining for each
processp; and each variablg; the oldest memory state that can be observed. Then, to
validate a read om; by #;, we should find a memory state that occurs aft@rj) in
the buffer where; has the right value. Actually, to simplify the constructiore allow
that a pointer can move in a nondeterministic way towardadlief the buffer (i.e., the
most recent element). Then, to validate an operatfar),d), we simply require that
the value oi; in the element pointed biy(i, j) is preciselyd. Also, when a write event
w(i, j,d) exits the event structure and is used to update the memerpdimterr(i, j)
is moved to the last element of the history buffer (i.e., therent state of the memory)
since this is the only value of that is visible toz;.

14

For instance, in the example above, the history buffer #fieexecution ofv(xy, 1)
is (1,1)(1,0)(0,0), where the head (i.e., oldest element) is the right-mostet, and
the pointers are the followingt(2,1) = (0,0) andm(2,2) = (1,1). Then, itis possible to
validater(xz, 1) since the element pointed Ioy2, 2) gives the right value, and similarly,
pointerm(2,1) allows to validater(x1,0). Actually, it is clear that at any moment, the
relevant part of the history buffer is formed by the elemérgtveen the last element
and the oldest element that is pointedrb¥eyond the first pointer, the elements can be
considered as garbage and can be eliminated (but we do rebta}e®Vhen the history
buffer is reduced to one element (i.e., all the pointers fpimirthe last element), this
means that the buffer contains only the current state of d@ony.

To give the formal description of our model, we need to introelsome definitions
concerning buffers and their manipulation. An event stitetE,~», A) is totally or-
deredwhen~- is a total order. We use such structures to encode FIFO Buftéven a
buffer s = (E,~,\) over an alphabe, and a symboh € Z, letadd(3,a) be the buffer
(E',~',N) suchthat (1’ = EU{e} for someee £\ E, (2) if E = 0then~'= {(e)},
otherwise~'= (~ U{(maxE),)}) and (3N =AU[e— a]. Then, ifA(min(B)) = a,
let removés, a) be the buffeE’,~',A’) such that (1’ = E\ {min(E)}, (2) ~'=~»
|7, and (3)A' = A|gr. We also deflne the predicainptywhich is true when the buffer
has an empty set of events. When the buffés not empty, we denote kgil(3) (resp.
head 3)) the elemenh(maxE)) (respA(min(E))).

Given a concurrent systeng, ahistory bufferof memory states is a tuple = (E,~»
,A,) where(E,~»,A) is a buffer oveM (the set of all memory states) such tEag 0,
andrt: [n] x [m] — E is a mapping associating with each process and each vasaable
event inE. We say that a history buffer ignitary if # is reduced to a singleton (i.e.,
(i, j) = maxE) foralli € [n] andj € [m)]).

Then, we are ready to define the transition system of the neslemA configuration
is a tuple(p,s,#) where, as in the previous modek P is a vector of control states
of each of the processes amds an event structure, and where is a history buffer
overM. The new transition relatios; , is the smallest relation s.t. for evepyp’ € P,
$s=(E,~,\A),s'= (E',~',N) two event structures ovey, and# = (8,1 and#’ =
(8, 1) two history buffers oveM, wheres = (H,~,An) ands’' = (H' .~/ A\y/) are
two buffers ovemM, we have(p,s,#) =, (p',s',#) if there is ani € [n], and there
arep, p’ € B, such thapli] = p, p’ = p[i + p'|, and one of the following cases holds:

nop

1. Nop: p—>.p Ss=S' andy = #'.

2. Write: p—>. P, # =2, andJec £ \ E suchthats'= ((s<[e< w(i, j,d)])) @&
{¢~e: efema>(EIJ)}

wfence(i)

3. Write fence: p———=ip/, # = #’, andJe € £\ E such thats’= ((s<[e«+
wfence(i)])) {e/«» e:Jk.1<k<mand€ e ma>(E (i)}

4. RLWE: p—>I p,s=S5,# =" WEi,j)#0, anddatamaxWE(, j))) = d.
5. Move pointer: p=p’, s =5, 3= 4, and3j € [m|. e H. 7(i, j) ~n eandn =
(i, j) < €.

6. Read: p& P, s=5, # =2, WEij) =0, and 3d € M such that

Aw (i,)) = d andd]j] = d.

15

rfence(

7. Read fence: p—i)>i p,s=5,# =" andn(i, j) = maxH) for everyj € [m|.

8. Atomic Read-write: pwn p,s=5,U"r, E\(iﬁg) =0, (i,£) = maxH) for

every/ € [m], there is a = tail(8) such thad[j] = d and3’ = add(3,d[j + d']),
andrt = 1q(i, £) < maxH’)] ey
9. Memory update: p = p’, 3e € min(E) such that\(e) = w(i, j,d) for somej € [m]
andd € D, s'= s>, 8 = add(3,d) whered = tail(H)[j « d], and’ = (i, j)
max(H")].
10. Write fence elimination: p=p’, # = %', d’ = d, andJe € min(E) such thaf(e) =
wfence(i), ands’= s> e.

Theorem 5. Let s= (p,d) and $ = (p’,d’) be two states of\, and let# and #’
be two unitary history buffers over M such that {ail) = d and tail(#’) = d’. Then,
(s,50) = (8, 30) if and only if (p, so, #) =7 (P, S0, 7(").

5.2 Eliminating write fences from event structures

We show in this section that it is possible to avoid storing X=y=0
write_fences and to convert event structures into write buff I 7

The idea is the following. We observe that the projection D wxD[6) wiy.1)
the event structure on the events of a same process is, JOUGHY wfence|(6) wfence
speaking, a sequence of partial orders, each of theselgartia(3) rfence |(7) rfence
ders corresponding to the set of write events occurring &etw|(4) r(y,0) |(8) r(x,0)
two successive writéences. These partial order have also the X=y=1
property that they are unions oftotal orders, each of them corresponding to the set of
writes to a same variable. These total orders can naturaltydmipulated using FIFO
buffersWB; 1), ..., WB; m). Then, to simulate the whole sequence of partial orders cor-
responding the the events of a process, we need to reusentteelsdfers after each
write_fence, while ensuring that all writes occurring before thidgeafence are executed
before all those occurring after it. The solution for thatcisntroduce for each process
7 an additional buffeW B; 1) used to flush the buffeW B; 1), ..., W B m after each
write_fence without imposing that their content is directly waittin the main memory.
To see the necessity of this, consider the example on thewigich corresponds to the
SB behavior that is also possible in TSO: The actions of thigymm are executable
underNSW since reads and reddnces can overtake writes and wifences. Then, if
the execution of writdences forces the commitment of the writes to the main memory
and since readences require that the next reads can only see the currenbryetate,
then reads (4) and (8) in the program above cannot not beatatid However, if the
writes (1) and (5) are flushed to intermediary buffers indt@being committed to the
main memory, it is possible to validate the reads (4) andi@esthe main memory will
remain unchanged.

To summarize, the architecture of our model is as followshga&aoces®; has two
levels of buffers, a first level witim write buffers storing the writes for each variable,
and a second level with one buffer used to serialize the sviéfore committing them to
the main memory. Then, we have the history buffer, the l@sheht of which represents
the current state of the memory, and the rest of its elemeptgsent the history of all

16

past memory states. Pointers on this buffer allows to eastgss to know what is the
oldest value it can read on each variable.

We give hereafter the formal definition of our model. A confafion in this model
is a tuple of the form(p, (W B j)) Je m“] #) wherep € P, for everyi € [n] and ev-

ery j € [m+1], WB) is a wrlte buffer, andx is a history buffer oveM. Then,

we define the transition relatiors,, between configurations as the smallest relation

such that for everyp,p’ € P, for every two vectors of store buffe(8V§; j) JE[TH}

and(WB; |)JE ™ whereW By j) = (Byi.j),~(i.j)Ad.j)) andWB; j, = (B)~
)\’) for aII [andj, and for every two history buffers = (8, 1) and#’' = (8, 11),
wherea; = (H,~n,Aq) and 8’ = (H',~y/,Ay/) are two buffers oveM, we have
(p, (WB j)); JemH] JH) = (P (WB |)Jemﬂ] ') if there arei € [n], andp, p’ € B,

such thatp[] = p, p'=pli « p, WB(k,J =WB j) for everyk € [n]\ {i} and every
j € [m+1], and one of the following cases holds:

1. Nop: p—% p/, WB) =WB, ; foreveryj € [m+1], ands = 7'.

2. Write: pAn P, H = ', WBj WBEi,k) for everyk € (Im+1]\ {j}, and

WB, |, = addWBy; j),w(i, j,d)).

3. Write fence: pfenel),, oy EmptyW B ;) forall j € [m], WB; 5 =WH; ¢ forall

se m+1],andx = .

4. Transfer write: p = p, # = #’, 3] € [m]. WB; WB’(i’k) for everyk € (]]\
{i}), and 3w = headWB; j, .WB’H removéW B j),w) and WB
add(WB(i,mH),(o).

5. RLWE from WB; j), j € [m]: pi> P, #H = H', WBj WBEi’k) for every
k € [m+ 1], anddatatail(W B j))) = d.

6. RLWE from WBj m.1): p% P, #H = ', WBjj = WB(i)k) for everyk €

[m-+1], EmptyW By j)), the seM; m1) = {€€ Bjimy1) @ 3" €D. Ajmpa)(€) =
w(i, j,d)} is not empty andata(maxWi m1)) = d.

7. Read: pLdnp H = H', WBip = WBEi’k) for every k € [m+ 1],

EmptyWB; j)), the setW; m.1) defined above is empty, anttl € M such that
A (i, j))=d andd[j] =d.

8. Move pointer: p = p’, 8= 8, WBj) = WB’ for everyk € [m+ 1], and3j €
M. Jee H. 7(i, j) ~p eand = (i, j) e]

9. Atomic Read-write: p 0149y EmptyW B j)) andEmptyW B} ;) for every

j € [m+1], i(i,¢) = maxH) for every/{ € [m], there is ad = tail(3) such that
d[j] =d ands' = add(3,d[j + d']), andrt = 1q(i,) < maxH’)]sc[m-
10. Read fence: prfe"—ce()n p', WB k) WB’(Lk) for everyk € [m+ 1], # = %/, and
T(i,£) = maxH) for every? € [m.

(i,m+1)

A

17

11. Memory update: p = p’, WB) = WBELk) for everyk € [m], headW B ;1)) =
w(i, j,d) for somej € [m andd € D, WB(LmH) = removeéW B m1),w(i, j,d)),
% = add(8,d) whered = tail(H)[j + d], andr’ = 1{(i, j) + maxH’)].

Theorem 6. Let s= (p,d) and $= (p’,d’) be two states of(, and letsr and #’ be two
unitary history buffers over M such that tait) = d and tail(#') = d’. Then,(s, Sp) =7

(8,$0) if and only if (p, So, #) —7, (p', S0, '), wheresp denotes arin] x [m+ 1]-dim
vector of empty write buffers.

It is worth noting that for PSO, i.e., when refehces are systematically inserted
after reads, the operational model we define has alwaysa@isuffer of size 1 (i.e.,
reduced to the memory state). Notice that still we need twel$eof write buffers for
PSO due to the use of writences. For TSO, write buffers for each variablég; ;
for j € [m]) are not needed since writes are immediately followed byedences. This
coincides with the operational model defined, e.g., in [3].

6 The state reachability problem ofNSW

We show hereafter that the state reachability problemi®4v is decidable. For that,
we use the framework defined in [1] which allows to establislt state reachability
can be solved using backward reachability analysis in theviing case: Given a well
quasi-ordering (WQOX on configuratiorf§ if the system is monotonic w.r.x, i.e.,
larger configurations w.r.t< can always simulate smaller configurations, then back-
ward reachability in this system is guaranteed to termiifatestarts from <-upward
closed sets, i.e., sets that whenever they contain a coafigac, they also contain all
=<-larger configurations than

To define such ordering, we observe that a value in the memdtiew by some
process might be overwritten by other write operations leyséime process before any
other process has had time to read it. Therefore, the effectwite operation sent by
a process to its store buffer may never be used, and this veoigigest that we should
define< to reflect the subword relation between the buffer contétsvever, this in-
tuition cannot be exploited directly. As we will see beldwgW’s are not monotonic
in general w.r.t. such as subword-based relation. To civeuntthis problem, we intro-
duce another model calletsw obtained from th&lsw, where, roughly, serialization
buffersW; my-1) contain memory states (corresponding to cumulated efféetsite op-
erations) instead of write operations and we associateisteybuffer per process, and
we show that (1) the state reachability problem in a giM&hv is reducible to the one
in its correspondingiSw*, and (2) ever\NSW™ is monotonic w.r.t. a subword-based
relation on buffers. Notice that the translation frol8W to NSW* preserves reacha-
bility but the resulting model from this translation is nasimilar to the original one
(and therefore monotonicity can not be transferred).

4 Recall that a well quasi-ordering over a sefE is an ordering such that for every infinite
sequencey, ey, ... of elements oE, there exist two integelis< j such thatg =< e;.

18

Informal introduction to NSW*: We explain hereafter how HSW™ model is de-
fined starting from a giveNSW. Let us first see whNSW’s are not monotonic w.r.t.
the subword relation, i.e., considering that the buffersi8w arelossyis not sound.
More precisely, while it can be shown that it is possible togider safely that the write
buffersW B, ;) for alli € [n] andj € [m] as well as the history buffer are lossy, the serial-
ization buffersi B 1) for i € [n] cannot be simply turned to lossy buffers. Consider
first a sequence of write operatiowsi, j,d’)w(i, j,d) in the write bufferW B; j, for
somej € [m], wherew(i, j,d) is the oldest operation. Since both operations are on the
same variable;, loosing the operation (i, j,d), i.e., replacing this sequence by just
w(i, j,d’), yields a valid computation corresponding to compactiotheftwo opera-
tions. Indeed, it is possible to overwrite the vatliey d’ before that any process is able
toreadd. Therefore, it is possible to loose any operation in a wiitiéédy corresponding

to a variable, except the last operation. This is espedialportant for the read-local-
write-early operation. Then, by considering the last syhitbeach write buffeiW B

as a strong symbol (can not be lost), and turiiig; ;) to a lossy channel does not
introduce computations that are not possible in the orlginagram. Observe that the
number of possible such strong symbols is finite (one peevatferW B ;).

Consider now a sequence of memory stata¥ in the history buffers, whered' is
the oldest state. Then, loosing the memory stite a7; is similar to considering that
this state has not been observedayThis is perfectly valid since processes observe
the states of the memory in an asynchronous way, and thertfey may miss some
states. However, memory statesirthat are pointed by some pointe(i, j) should not
be lost, and they must be considered as strong symbol. Indegdut these pointed
states, reads cannot be validated. In addition, we alsoldmmt loose the tail ofy
(which corresponds to the current memory state) since isésluo compute the next
memory state. Then, pointed elements as well as the lastaleof the history buffer
must be considered as strong symbols (again the numberlosyutbols is finite).

It remains to consider the case of the serialization writéebdV B n,,1). Consider
a sequence of operationgi, j,d")w(i,k,d) in WB;j 1) Since these two operations
are on different variables, loosing(i,k,d) does not correspond to the compaction of
the two operations. To encode the compaction (or the sumnoérsuch a sequence
of operations, we need to use a vector of values defining gteMatten value to each
variable by the operations in the sequence. Then, an idearéptace the content of
WB my1) = wy -y by the sequence of summaries - - 01 whereg; is the summary
of the sequencey - - - ;. For instance, in our example, the sequence of summaries is
(xj = d',x« = d)(x« = d). Then, loosingx = d) does not correspond to loosing the
effect of the operationv(i,k,d) since this effect is still visible inx; = d’,x = d).
Assume now thafxx = d) has not been lost and has been updated to the main memory.
This value ofx, in the main memory can be over-written by a write operatian=
d”) (d” # d) of a different process froms;. Then, when the system decides to update
(xj = d’,x = d) to the main memory, we should not reset the valugab d (since
the write operatiorix, = d) has already taken effect). This shows W& 1, .1) (under
NSW™) must contain aalid sequence of memory states (that will be used to update the
memory in the future). Then, we can formulate a similar argotas in the case of the
history buffer to allow some of the memory stateS\i; ,, 1) to be lost.

19

However, in order to have a valid sequence of memory stdtesdrialization buffer
WB my1) undemSW should simulate the contributions of the other procesdestér
fore, it has to insert iV B; ,, 1) the memory states resulting from writes performed by
other processes. This implies that the system should guestvance in which order the
write operations will be updated to the main memory. Thisagf@rmed undeNSW™
as follows: (1) a write is removed from some write buf#®®B ;) (chosen nondeter-
ministically), (2) a new memory state is then computed from fast state added to
W By m1), and (3) this new state is addectib the serialization buffers. Observe that a
memory state i By; 1) resulting from a write operation of a procegs(with k # j)
should not be detected lwy (since it has not been yet committed to the main memory).

Observe that the execution of each thread is totally detexdhby the sequence of
memory states and its local configuration (i.e., its corgtale, its store buffer contents,
and its serialization buffer content). Therefore, und8W™, each process; has its
own private copy of the history buffer; (without any need of synchronization with
the other threads) since it has already the sequence of rpestades in its serialization
buffer. Now, if a memory state is at the head of the seriabrabufferWB;; i, 1) of
the proces;, then this state will be removed from all this buffer and ongycis
transferred to its history buffex;.

Formal definition of NSW': A configuration ofNSW+ is a tuple of the form
(P, (WB j)) '6 m“] , (#1)ien) Wherep and(WB; ;) M are defined as in the previous

section,(WB(|,m+1))ie[n] are write buffers oveF = {w(,d) 1 j emAadeM}, and
i are history buffers ovevl. Then, we define the transition relatien, as the smallest

relation such that for every,p’ € P, for every two vectors of buffer@VBg; j) ‘E TH}

and(WB; |)Je M whereW B j) = (B jys~ i) A) andWB; = (B).~)
)\2,)) for aII i€ [| andj € [m+ 1], and for every two vectors of h|story buﬁe(rs(i =
(z;i,rq))ie[n] and(#] = (3, -))ie[n],whereq;i = (Hi,~H,, A1) and@’ = (H{,~n, Awy)
are two buffers oveM for all i € [n], we have(p, WB(,] 1] S(Hi)ien) —a
{p’ (WB’)JE m+1) ;(#})iepn) if there arei € [n], and p,p’ € P., such thatpli] = p,
p’ =pli <— p] }[k = #Hy forall k € [n]\ {i}, and one of the following cases holds:

1. Nop: p—%+i p/, W B) =WB, ; forallk e [n] andj € [m+ 1], ands; = 7.

2. Write: p—>.p Hi = i’,WB(k’g):Wsz’Z) forevery(k,¢) € ([n] x [m+1])\
{(i,))}, andWB;; ;) = addWB; j),w(i,],d)).

ernce(

3. Write fence: p———=i p/, Empn(WB(,,) for all j € [m], WBy) WB’(M for
allk € [n] and? € [m+ 1], and#; =

4. Transfer Writef !3: o, #i = i, Elj € [m]. WBy) = WBEK-Z) for all (k,¢) €
([n] < M\ {(i,j)}), and 3w = headWB; j)). WB(LJ.) = removéW By ;),w) and
for everyk € [n], WB’(k,ml) = addW B m1),w(i,],d’)) whered[w)d" and if

20

EmptyW B m.1)) thend = tail(3;) elsew(t,¢,d) = tail (W Bj n..1)) With t € [n]
and/ € [m].

5. RLWE fromWB; j), j € [m: pMﬂ p’, Hi = H{, W By :WB’(M forallk e [n]
and/ € [m+ 1], anddata(tail(W B j))) = d.

6. RLWE from WBy 1) p%.p sy = o], WBy, = WB,, for all

(k€) € [n] x [m+ 1], EmptyW B j)), the setWim1) = {€ € Biimyy) © 3d' €

M. A me1)(€) = w(i, j,d")} is not empty, ana\; my 1) (MaxWi; my 1)) = w(i, j,d)
such thad[j] =d.

7. Read: pth P, #i = Hi, WBy :WB’(M) for every (k,¢) € [n] x [m—+ 1],

EmptyWB; j)), the setW; m,.1) defined above is empty, anttl € M such that
Aw (T5(i, J)) = d andd(j] = d.

8. Move pointer: p = p’, B; = B/, W By :WB’W) for every(k,¢) € [n] x [m+1], and
3j € [m]. Jee Hi. (i, j) ~n, eandry = 15[(K, j) < €lxen-

9. Atomic Read-write: pMn P, WBy) = WB(M) for all (k,¢) € [n]

[m], EmptyWB; ;) and Empt)(WBl)J) for every j € [m+ 1], m(i,{) =
max(H;) for every ¢ € [m], there is ad = tail(8;) such thatWB’(k,’mH) =
addW B m.1),w(i, j,d’)) forall K € ([n]\{i}), d[j] = d, 8] = add(3;,d’), and
T = 15[(K, £) <= maxH/)]ken) ccm Whered’ = d[j « d'].

X

rfence(i)

10. Read fence: p———=i p, WBW WB’W) for every(k,¢) € [n] x [m+1], #; =
#{{, andti(i,¢) = max(H;) for every/ € [m|.
11. Memory update: p = p’, WBy) —WB’M for every (k,£) € ([n] x [m]\ {(i,m+
1)}), there exist € [n], j € [m andd € M such thaheadWB(, mi1)) = w(t j.d),
WB’Im+1 removeéWB(, m+1),W(t, j,d)), B/ = add(3i,d) andnl’: k,j) <
maxH/)]kepn if t =1, otherwiserg = 5.

Let us explain each case. A write operatiefi, j,d) is simply added to the write
bufferWB; ;) (as inNSW). A write fence operatiomfence(i) can be executed only if

all the store buffefWB;; j)) ie[n]]-

A transfer write operation is performed by the procegsunderNSW* as follows:
(1) a write operatiorw is removed from a write buffeW B ;) with j € [m], a new
memory statel’ is then computed from the last stateadded to the history buffet;
(i.e.,d = tail(3;)) if the serialization buffeW B n,.1) is empty (i.e EmptyW By; m;.1))
holds) otherwise from the last event labelledvak, £, d) added tdV B 1), and (3) a
new event labelled by(i, j,d) is then added to all the serialization buff&vB . 1)
forall k € [n].

A read operation(i, j,d) can be validated immediately (point 5) if the write buffer
WB; ;) is not empty and the last operation added\t&; ;) precisely writes the value
d onx; (i.e., datatail(WBy j))) = d). Now, if the write bufferWB; ;) is empty and
the set of events iWB;; 1) associated with the process and the variable; is
not empty (i.e., the set m.1 defined above is not empty) (point 6), then the last

21

event inWB; ;) associated withr; andx; precisely writes the value on x; (i.e.,
data(A; my1)(WB j))) = w(i, j,d) andd[j] = d). Otherwise, (in point 7), we simply
require that the value ofj in the event pointed by (i, j) (in the history buffers;
associated witkp) is d (i.e.,An, (T5(i, j)) = d andd[j] = d).

A Move pointer operation of the procesg can move, in nondeterministic way, the
position of the pointerg (i, j) associated to the variatkg toward the tail of its history
buffer 7 (i.e., most recent element it;). Observe that we simultaneously move all the
pointerstg (K, j) (for all k € [n]) to the same element. This is only done for the purpose
of having a history buffers; at the end of the computation reduced to one element.
Observe also that the pointargk, j) (for all k € [n]\ {i} andj € [m]) do play any role
under theNSW since they will never be tested.

An atomic read-write operatioarw(i, j,d,d’), which acts as a fence on all opera-
tions of the process;, can be executed only wheft) all buffers of?; are empty (i.e.
EmptyW By ¢)) holds for all¢ € [m]), and(2) the value of the variablg; in the event
pointed by (i, j) (which should correspond to the tail of the history buffg) is pre-
ciselyd. If it is the case that a new event is added to the history buffdabelled by
the memory statd’ obtained from the last memory state addeddoy modifying the
value of the variable; from d to d’. Moreover, all the pointers of the history buftef
are updated to this newly added event. Now, in order that tier gprocesses take into
account this new memory state, an event labelled fyj,d’) is then added to all other
serialization buffer8V By (for all k # i).

A Read fence rfence(i) can be executed by the proces®nly when all the pointer
of the history buffer; are pointing to the last event of;.

A Memory update of the processp; corresponds to remove the head element
w(t,j,d) of WB;m,1), add a new event labelled iy to the history buffers;, and
update the position of the set of pointargk, j) (with k € [n]) to this newly added
element if the element(t, j,d) is performed by the procegs (i.e.,t =).

In the following, we show that the state reachability probfer a concurrent system
¢ underNSW can be reduced to its corresponding onefounderNSw.

Theorem 7. Let s= (p,d) and ¢ = (p/,d’) be two states of\, and let# and #’
be two unitary history buffers over M such that tail) = d and tail(#’) = d’. Then,
p, S0, H) — p', S0, #") iff (p,S0,9,...,) = p',8,#",...,#") wheresy and

S’p denotes arin] x [m+ 1]-dim vector of empty buffers.

A proof of Theorem 7 can be found in Appendix C. The proof cstssin showing
that each computation in one of the models it is possible $o@ate a computation
in the other model such that along these two computationsave:H1) the same se-
quence of memory states, and (2) the same sequence of opsrptirformed by each
of the processes, i.e., for each process, the two projextibthese computations on the
operations of that process are the same.

However, it is not obvious how to translate the ordering onANSconfigurations
into one oNMNSW-configurations. In particular the standard proofs thatwsreductions
between different semantics (models), where each configaria one model is shown
to be in (bi-)simulation with a configuration in the other nebdannot be used here.

22

The state reachability problem for NSW': We show in the following that the state
reachability problem is decidable for thsW™ model. As mentioned earlier, we es-
tablish this fact by proving thatSw*’s are monotonic w.r.t. a particular WQ®.

Let a¢ be anNSwWt, and let us define the relatior. on the configurations

of a.. Consider two configurations = <p,(WB(i,j))ij§[[r:?+l],(ﬂk)ke[np and ¢ =

je[m+1] _ _
(P (WB jic (7 k), WhereW B j) = (B j).~(ij)-Aqj) and W, ;) =
(B/(i’j),«»éi,j),)\’(i,j)) for all i and j, and 7 = (Bk,Tk) and #, = (B, T) with B, =
(Hi,~H, - AH,) and 8, = (Hé,«»Hé,)\Hé) for all k € [n]. Then, we consider that< ¢/
holds if

1. candc’ have the same vector of control states, pes p’,

2. the content ofV B j) is a subword of the conte|WB<i i) while the sequences
of operations inWB;; ;) andW B’(i 0 corresponding the last operations performed
every process on each of the variables are the same, i.eevéoyi € [n] and
j € [m+1], there is an injectiony;; j, from By; j) to Bzm such thati(a) for every
€1,€2 € Byi j), A jy (94i.) (1)) = Agij(€1) @ande i j) €2 implies g j (1) ~
dii.j)(€2), and(b) for everyk € [n] and/ € [m], if Eq) = {€€ By j) : A¢ij)(€) €
{w(k,¢,d"),w(k,¢,d")|d" € M,d" € D}} and Efk,g) ={ee Bzi,j) :)\’(i’j)(e) €
{W(kaévd/)aw(kaévd/) | d'e Mad/ € D}}v theng(l])(ma)(E(kf))) = ma‘)(E(/k"f))v

3. the content of#y is a subword of the conterr', while the last memory states
added taik and#/ |k are the same, and the memory states pointeufyj) and by
(i, j) are equal for everyandj, i.e., for everyk € [n] there is an injectio from
Hi to H; such that{a) for everye;, e € Hy,)\Hé(gk(el)) = An, (e1) ande; ~p, €

impliesgy(€1) ~; gk(ez), (b) for everyi € [n] and] € [m], ge(Tk(i, J)) = T (i,)),
and(c) g«(maxHyk)) = maxHy).

By Higman’s lemma (the subword relation is a well quasi-oirtg) and standard
composition properties of well quasi-orderings, it is etmsgrove the following fact.

Lemma 1 (WQOQO). The relation= is a WQO on the set ®fSW-configurations ofy.

Given a se€ of NSW-configurations, we defir@t={c' : ce CAc=<c'},i.e.C?
is the set of configurations generated by thoge uia <. A setC is upward closedv.r.t.
=< if Ct=C. Since= is a well-quasi ordering, we can show that every upward dose
set of configurations has finite set of minimal elements. Weegloit this property
to derive an algorithm for the state reachability problemNew™ (by applying the
methodology proposed in [1]. The first property we need to/@iie that the transition
relationNSW is compatible with<. Then, we can prove the following important fact:

Lemma 2 (Monotonicity). For every configurations;ccp, ¢} of aa(such that g —
cz and g =< ¢y, there exists a configuratio such that ¢ — ¢, and ¢ < ¢;.

The proof of Lemma 2 can be found in Appendix D.

23

From [1] we know that monotonicity ensures that if a set offpmrationsC is <-
upward closed, then the set of its predecespag(C) = {c: ¢ €C A cr—, C}is
also=<-upward closed, and since upward closed sets w.r.t. WQOratel¥i defined by
their minimals, this fact allows to deduce that the itemttemputation of the set of all
predecessors @ (i.e., prej[(C)) eventually terminates. We only need to show that:

Lemma 3 (Effectiveness)Given a finite set M o&k-minimals of a<-upward closed
set C, the (finite) set of-minimals of pre,(C) is effectively computable from M.

Showing that we can effectively compute thkeminimals of pre(C) can be per-
formed in a similar way as for lossy channel machines [1].

Then, from the three lemmas above and [1], we deduce thenioitpfact:
Theorem 8. The state reachability problem fo\SW™ is decidable.
As a corollary of Theorem 7 and Theorem 8, we obtain the mainltef this paper:

Corollary 1. The state reachability problem forSw is decidable.

7 Nonatomic Writes Cause Undecidability

So far, we have considered only models that do not contaiiRRRW/E (read remote
writes early) relaxation. In this section, we show that agdRRWE to NSW makes
the reachability problem undecidable. The RRWE relaxaditows a processor to read
other processors’ writes even if they are not globally Vesipet. This makes writes
non-atomic and can be detected by the IRIW litmus test (BigR3W is not possible
in NSW as defined earlier. However, if we change the model to alloeaa operation
of # on a variable; to be validated by the last write operation issuedpywith k # i)
onx;j, although this last write operation has not been yet updétbdcomes possible.

x=y=0
P1 P2 P3 Py
(1) r(x1)[(4) r(y, 1[(7) w(x1)((8) w(y,1)
(2) rfence|(5) rfence
@) r(y.0)|(6) r(x,0)
x=y=1

Fig. 3. The IRIW (Independent Reads of Independent Writes) Litmest.?3 writes 1 tox and
P4 writes 1 toy. In parallel,?; observes that has been modified befose whereasp, observes
thaty is modified beforex.

24

An operational model An operational model for NSW with the RRWE relaxation can
be defined as an extension of the one defined in Sec. 4. Thesideadd to the event
structures = (E,~,A) amapping : [n] x [m — EU{ L}, with L ¢ E, that associates
with each process and variable, either a pointer on some efehe structure, orl
when it is not defined. The pointexi, j) defines an ever@such that every future read
operation of#; on the variablexj should not take its value from a write event that is
~+-smaller thare. The intuition is that the validation of successive read$h®ysame
process on a same variable should be done in a coherentevathé writes from which
they read their values should occur in the same ordextilfj) points to some evers
in the event structure, themcorresponds to the write event from which the last read
performed by the procegs on the variable; took its value. The fact thai(i, j) = L
means that eithep; has never read a value froxp, or the last write operation oxj
(issued by some other process) that has validated a readas already been updated.

Then, to validate a read operation ®fon x; using the RRWE, an evemstmust
be found such thafl) e does not occur before the evehit= (i, j) or any read/write
event ofP onxj, and(2) eis the last write operation ox of 2 different from;. If
this is the case, then(i, j) is updated te and constraints are added to ensure that
e should be executed after the evehaand any read/write event &f onx;, and(ii) e
should be executed before all writes/readsrbyn x; coming after the validated read
operation. When a write event is executed and exits the estanttures, if this write
eventis pointed bw(i, j), thena(i, j) is set toL. #; can perform a RLWE or; only if
the event associated to the last write operatioR @fn x; does not occur before(i, j).

An atomic read-write operatiafrw(i, j,d,d’) can be executed only when no pend-
ing reads on the same variable still exist in the structyie.,o(i, j) = L. The reason
is that operations on the same variable cannot be reordérelly, all the other opera-
tions are defined as in Sec. 4 while keeping the pointers ungeth

As an example, consider the IRIW litmus test (Fig. 3). Starfrom the memory
state(x = 0,y = 0) and an empty event structusethe execution of the writes (7) and
(8) by 23 and 24 adds two eventg; ande; to $ labeled byw(3,x,1) andw(4,y,1),
respectively. Thenp; and P, can execute their read operations (1) and (4) that are
validated using the RRWE relaxation, and set the poirgétsx) ando(2,y) to e; and
€. At this point, readfences (2) and (5) can be executed, and then, the read aperati
(3) and (6) can be executed since they can be validated the.tontent of the main
memory. Finally, the write operations corresponding toghentse; ande, stored ins
are committed to the main memory, and this yields the mematg &= 1,y =1).

We can prove that the addition of the RRWE to NSW models leadiset undecid-
ability of the state reachability problem. The proof is byeduction of PCP.

Theorem 9. The state reachability problem f&tSW U {RRWE} is undecidable.

8 Conclusion and Future Work

We have sharpened the decidability boundary of the realityapioblem for weak
memory models by (1) introducing a model NSW which supporéynimportant

25

relaxations (delay writes, perform reads early, allow iphfences) yet has a decid-
able reachability problem, and (2) showing that the reaitlewelaxation and the non-
atomic-stores-relaxation are problematic (cause noiddbiity) if added to TSO or
NSW, respectively.

Besides decidability, our work contributes in clarifyirteteffects and the power
of common relaxations existing in weak memory models. Ivjates an insight on the
formal models needed to reason about these relaxationshwhi be useful for other
formal algorithmic verification approaches, including epppmate analyses. Notice that
the models we introduce in Sections 4 and 5 can be also coadiidethe case of an
infinite data domain, and the relationship between theinhstitls in the same manner.
It is only when we address the decidability issue that we needstrict ourselves to a
finite data domain.

Future work may address the question of whether the bourcdarype sharpened
further by considering finer distinctions of the- w relaxation, say by making it con-
ditional on the absence of control- or data-dependenciese®er, we would like to
explore the effect of non-atomic stores in more detail, saskhether it causes unde-
cidability in weaker forms (e.g. if caused by static memaigrérchies) or if added to
TSO rather than NSW.

References

1. Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, aheKtien Tsay. General decidabil-
ity theorems for infinite-state systems. WICS, pages 313-321, 1996.

2. S. Adve and K. Gharachorloo. Shared memory consistendelsioa tutorial. Computer
29(12):66-76, 1996.

3. M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvatin the verification problem for
weak memory models. IROPL, pages 7-18. ACM, 2010.

4. M. F. Atig, A. Bouajjani, and G. Parlato. Getting rid of mebuffers in TSO analysis. In
CAV, 2011.

5. H. Boehm. WG21/N2176 memory model rationales. httpeifop
std.org/jtcl/sc22/wg21/docs/papers/2007/n2176.dep#ndencies, March 2007.

6. H. Boehm and S. Adve. Foundations of the C++ concurrenanaomg model. InPLDI,
pages 68-78, 2008.

7. A.Bouajjani, R. Meyer, and E. Mohlmann. Deciding rolmests against total store ordering.
In ICALP, 2011.

8. S. Burckhardt, R. Alur, and M. Martin. CheckFence: Chagktonsistency of concurrent
data types on relaxed memory modelsPIDI, pages 12-21, 2007.

9. S. Burckhardt and M. Musuvathi. Effective program vesifion for relaxed memory mod-
els. InComputer-Aided Verification (CAWages 107-120, 2008. Extended Version as Tech
Report MSR-TR-2008-12, Microsoft Research.

10. S. Burckhardt, M. Musuvathi, and V. Singh. Verifying &dransformations on relaxed
memory models. I€C’10, pages 104-123, 2010.

11. J. Burnim, K. Sen, and C. Stergiou. Testing concurrengiams on relaxed memory mod-
els. Technical Report UCB/EECS-2010-32, EECS Departmigniversity of California,
Berkeley, Mar 2010.

12. C. Chen, W. Chen, V. Sreedhar, R. Barik, V. Sarkar, and&. Gstablishing causality as a
desideratum for memory models and transformations of lgh@bgrams. Technical report,
University of Delaware, 2010.

26

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

K. Gharachorloo, A. Gupta, and J. Hennessy. Performarateation of memory consistency
models for shared-memory multiprocessorsABPLOS’'91pages 245-257, 1991.

M. Kuperstein, M. Vechev, and E. Yahav. Automatic infaxe of memory fences. IBM-
CAD, pages 111-119, October 2010.

M. Kuperstein, M. Vechev, and E. Yahav. Partial-coheeaabstractions for relaxed memory
models. InPLDI, San Jose, CA, Jun 2011.

L. Lamport. How to make a multiprocessor computer thatemtly executes multiprocess
programs.|[EEE Trans. Comp.C-28(9):690-691, 1979.

A. Linden and P. Wolper. An automata-based symbolicagagr for verifying programs on
relaxed memory models. IBPIN 2010.

A. Linden and P. Wolper. A verification-based approaahemory fence insertion in relaxed
memory systems. IBPIN 2011.

S. Mador-Haim, R. Alur, and M. Martin. Generating litmiests for contrasting memory
consistency models. IBomputer Aided Verificatigmpages 273—-287, 2010.

J. Manson, W. Pugh, and S.V. Adve. The java memory modePQPL, pages pages =
378-391, 378-391, 2005.

S. Owens. Reasoning about the implementation of cagroeyrabstractions on x86-tso. In
ECOOR volume 6183 of. NCS pages 478-503. Springer, 2010.

S. Owens, S. Sarkar, and P. Sewell. A better x86 memoremr86-TSO. InTPHOL,
20009.

E. L. Post. A variant of a recursively unsolvable prohl@&ull. of the American Mathemati-
cal Society52:264—-268, 1946.

S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. igils. Understanding POWER
multiprocessors. IPLDI, San Jose, CA, Jun 2011.

J. Sevcik. Safe optimisations for shared-memory coaotiprograms. [rPLDI, pages
306-316, 2011.

J. Sevcik, V. Vafeiadis, F. Z. Nardelli, S. Jagannatheng P. Sewell. Relaxed-memory
concurrency and verified compilation. ROPL, pages 43-54, 2011.

P. Sewell, S. Sarkar, S. Owens, F. Nardelli, and M. Myra86-TSO: A rigorous and usable
programmer’s model for x86 multiprocesso@ommun. ACM53, 2010.

Y. Yang, G. Gopalakrishnan, and G. Lindstrom. UMM: anragienal memory model spec-
ification framework with integrated model checking cap@pilConcurrency and Computa-
tion: Practice and Experiencel 7(5-6):465-487, 2005.

27
A Proof of Theorem 2

The proofis done by a reduction of PCP (Post's Corresporalenablem), well-known
to be undecidable [23], to our problem. It follows a similahema as the one used in
[3] for TSOU{r — r/w}, although the encoding is quite different.

We recall that PCP consists in, given two finite liéts, ...,un} and{vi,..., vy} of
nonempty words over some alphaBethecking whether there is a sequence of indices
i1,...,ik € [n] such that, - -- U, = Vi, -V,

Then, let{uy,...,un} and{vi,...,vn} be an instance of PCP. We construct a system
A’ with four processeﬁl, -+, 4 sharing a set of six variablés= {x1, X2, X3, X1, X5, X }
such that, two specific statesdgunderM = TSOU {r — r/w} are related by the reach-
ability relationReacty’ if and only if PCP has a solution for the considered instance.

The idea of the reduction is as follows:

— Processr; has a special staig. 21 guesses the solution of PCP as a sequence of
indicesiy,...,ix and performs iteratively a sequence of operations from téte s
p1: It writes successively t@; the indexij, and reads fromx, for j ranging from
1 to k. Moreover, each write (resp. read) operation of any proteésesp. from)
a variable is followed by a write (resp. read) operation efttmarkerf. Hence, the
processp; has the following computation tracgfrom p; to ps:

w(1,1,i1)w(1,1,#)r(1,2,i1)r(1,2,8)w(1,1,i2)w(1,1,4)
r(1,2,i2)r(1,2,8)---w(1,Lix)w(1,1,8) r(1,2,ik)r(1,2,1)

— Processr; has a special staig. P, guesses the solution of PCP as a sequence of
indicesiy,...,ix and performs iteratively a sequence of operations from thie s
po: It writes successively t@z the indexij, and reads fromx for j ranging from
1 to k. Moreover, each write (resp. read) operation of any protegsesp. from)
a variable is followed by a write (resp. read) operation eftmarkerf. Hence, the
processp, has the following computation trace from p, to py:

w(2,3,i1)w(2,3,#)r(2,4,i1)r(2,4,1)w(2,3,i2)w(2,3,1)
r(2,4,i7)r(2,4,8)---w(2,3,ik)w(2,3,1) r(2,4,ix)r(2,4,1)

— Processps has a special statps. P3 guesses the solution of PCP as a sequence
of indicesiy,...,ix and performs iteratively a sequence of operations famit
(1) writes successively s the sequence of symbols of, (2) reads fronxs the
sequence of symbols af;, (3) writes tox, the indexj, and (4) reads from x, for
j ranging from 1 tdk. Moreover, each write (resp. read) operation of any prowess
(resp. from) a variable is followed by a write (resp. read@mion of the markey.
Hence, the processs has the following computation trace from ps to ps:

1W(3,2,i1)W(3,2,ﬁ)l’(3,37i1) (,3,ﬁ)(,02W(3 2, IZ)W(?’a aﬁ)
r(3,3,i2)r(3,3,1) - - axw(3,2,ik)w(3,2,1)r(3,3,ik)r(3,3,1)

where for allj € [K], the sequence of operations is defined as follows:

28

wj = w(3,5,a})w(3,5,£)r(3,6,a))r(3,6,1)w(3,5,ab)w(3,5,t)
r(3,6,83)r(3,6,) - w(3,5,84)w(3,5,1) r(3,6,8)r(3,6,1)

with uj; = ajay - ay .
— Processp, has a special statpy. P4 guesses the solution of PCP as a sequence
of indicesiy,...,ix and performs iteratively a sequence of operations framit
(1) reads successively frorg the sequence of symbols af, (2) writes toxs the
sequence of symbols gf;, (3) writes toxs the index j, and (4) reads fromx, for
j ranging from 1 tdk. Moreover, each write (resp. read) operation of any prowess
(resp. from) a variable is followed by a write (resp. readdmpion of the markey.
Hence, the process, has the following computation tracg from p4 to pa:

oW)w(4,4,i1)w(4,4,8)r(4,1,i1)r(4,1,8)cpw(4,4,i2)w(4,4,1)
r(4,1,i2)r(4,1,4) - -view(4,4, i)w(4,4,8)r(4, 1,)r(4,1,1)

where for allj € [k], the sequence of operationsis defined as follows:

W = r(4,5,b})r(4,5,£)w(4,6,b})w(4,6,1)r(4,5,b5)r(4,5,1)
w(4,6,b})w(4,6,)--r(4,5,b])r(4,5,4) w(4,6,b])w(4,6,£)

with vi; = bib}---b}..

Observe that the insertion of the markers allows to enswaedtwritten value to
a variable by one of the processes can be read at most once lmfhtér processes.
Observe that the concurrent system can be defined formdliiwfiag a similar schema
as the one used in Sec. 7.

Then, we prove that PCP has a solution if and only if it is mﬂesReaclx(s, S)
holds withs = (p,d) such thatp[i] = p; for all i € [n] andd[j] =4 for all j € [m]. In
other words, there is a computation traceagfif and only if all the processes have
guessed the same sequence of indices and that the sequgncas, andv;, - - - Vi,,
guessed respectively by the procesegand®,, are the same.

The “only if direction” can be shown by constructing a tragg from the shuffle
of 13 and 14 such that:(1) any write of the procesgs to the variablexs should be
immediately followed by its corresponding read operatibthe proces®; to the same
variable, and2) any write of the process, to the variables should be immediately
followed by its corresponding read operation of the proeags the variable.

Let 15, be the projection ofz4 on the write operations of the processto the
variablex, and the read operations of the procesgo the variablex;. Then, we can
construct fromr’&4 the tracer] of the proces®; by: (1) replacing any write operation
in 13, of the formw(3,2,d) by a read operation of the forni1,2,d), and(2) replac-
ing any read operation it , of the formr(4,1,d) by a write operation of the form
w(1,1,d). It can be seen that, is in [{t1}]r Where R is the set of rewrite rules over
traces defining the memory modd. In fact, this is based on the fact that write op-
erations of proces®; can overtake its read operations and vice-versa. Thus, we ca
construct the computation tracgs 4 from the shuffle oftj andts 4 such that(1) any

29

write of the process to the variable; should be immediately followed by its corre-
sponding read operation of the procesgo the same variable, arf@l) any write of the
processgp; to the variableg should be immediately followed by its corresponding read
operation of the process, to the variablex;.

Let 1’1,3’4 be the projection of1 3 4 on the write operations of the proceasto the
variablexq and the read operations of the procesgo the variablez. Then, we can
construct front 5 , the tracer,of the proces®, by: (1) replacing any write operation
in T} 54 of the formw(4,4,d) by a read operation of the forni2,4,d), and(2) replac-
ing any read operation it 5, of the formr(3,3,d) by a write operation of the form
w(2,3,d). It can be seen that, is in [{T2}]r. Thus, we can construct the computation
tracet from the shuffle oft}, andty 34 such that(1) any write of the process, to the
variablexs should be immediately followed by its corresponding readrapon of the
processp, to the same variable, ar{@) any write of the process; to the variablexs
should be immediately followed by its corresponding readrafion of the procesgs
to the variables.

Finally, it is easy to see thd{t)d and hence thaReacI‘jG(s, s) holds withs= (p, d)
such thapli] = p; for all i € [n] andd[j] = £ forall j € [m].

The argument for the reverse direction is the following:hiéite is a computation
tracet such that[t)d’, then it can be seen that, due to the fact that a read can telida
at most one write, the following facts hold:

— The sequence of read symbols by the proaadsom the variablec, is a subword
of the sequence of written symbols by the procesthe same variable.

— The sequence of read symbols by the proaedsom the variabley is a subword
of the sequence of written symbols by the procesthe same variable.

— The sequence of read symbols by the proagdsom the variable is a subword
of the sequence of written symbols by the procesthe same variable.

— The sequence of read symbols by the proagdsom the variableq is a subword
of the sequence of written symbols by the procesthe same variable.

From the above facts, we can conclude that all the processegjuessed that same
sequence of indicds, . .., ik since the sequence of read symbols by each process from
some variable is the same as the its sequence of written dgtabihe same variable.

Furthermore, the sequence of read symbols by proegéom the variablexg is
a subword of the sequence of written symbols#yto the same variable, and the se-
quence of read symbols by processrom the variables is a subword of the sequence
of written symbols byrs to the same variable. Hence, we hayg - - uj, = Vvi; -V,

These facts imply that the processes have indeed guesssdrtte(right) solution
to the given instance of PCP.

B Proof of Theorem 3

Assume that there is a computation having a causality oglatontaining a cycl€.
Then, for everyi € [n], let Ej(C) be the projection o€ on the events of procegs.
By definition of the program order, for each procesthe setE;(C) is totally ordered

30

w.r.t. the relationpo. If E;(C) is nonempty, lefy denote itspo-maximal element. It
can be seen that corresponds necessarily to a write event. Indeed, by defindf
the causality relation, a read event can only be the soureedep-transition (which
is subset of theo relation), and therefore if we assume tpais a read, this would
contradict its maximality ir; (C). Again by definition of the causality relation, a write
event can only be the source offaransition. Therefore, whenever(C) is nonempty,
its maximal elemeng; has arf-transition to some read eventof some procesg;.
Suppose thaj = i. Since,|; is maximal inE;(C), we have necessarily—, 1. But
the fact thaty; — ¢ r (by definition ofr), means that the readhas been executed
after the writey. This contradicts the fact that writes cannot overtake séadiSWw.
Consequently, we must haye# i, which means thag; is an exit point frorg;(C) by
the cycleC. Moreover, a write event can only be the target dka-transition. Sincey

is in a cycle, there is necessarily an entry poinE{(C), and this entry point must be a
read event.

Similarly, it is possible to show that th-minimal element oE; (C) is necessarily
aread event since a write can only be the targetdefatransition, and the existence of
such a transition would contradict minimality & (C).

Therefore, the elements of eaf{C), for anyi, can be partitioned into entry points
(that are all read events), and exit points (that are allemeients), with the prop-
erty that after each entry point there is at least an exittp@ind before each exit
point there is at least an entry point. (We use “before” anfteta w.r.t. po.) Then,

C can be seen as a sequence of entry and exit points to theediffeetsE;(C). Let
rowpriwi - - - rp_1,Wp_1ro be this sequence, where this are (entry) read events, and the
w;'s are (exit) write events. Notice that for everg {0,...,¢— 1}, we have; —4ep Wi,
andw;i —f I'(i41) mode-

Now, let us assume that the relaxatior> w has never been applied in the con-
sidered computation, and consider the ewgniVe know that its execution has been
preceded by the execution wf_1 (due to the read-from relation). Then, since by our
assumption writes have never overtaken reads, must have been executed before
w,_1, and therefore befong. By extending this reasoning to the whole sequence, we
deduce thatvg must have been executed befogewhich contradicts the assumption
thatr — w was not used to relax program order.

C Proof of Theorem 7

The if direction: Let us introduce some notations that will be used below.eGiv
a NSwW' configurationc of the form <|0,(WB(i,j))iJEE[[,Tl],Hl,---,Hn>. we define
statgc) = p, buffer; ;) (c) =WB; j for alli € [n] andj € [m+ 1], andhistory(c) = #k
forall k € [n].

Given a history buffery = (8,1), we useEvent#) to denote the event structuse
andPointer(#) to denote the pointar

Given a content of the serialization bufftB; m. 1) = (B m+1),~ (,m+1), A i,m+1)
underNsSw™ for somei € [n], we define the serialization buff@ef(W Bjm.1))
(B;)7»#(N)) underNSw as follows:(1) B/(i‘erl> ={e€B(im|3]

(i,m1 im1) N ml
m,de M. Aj meny(€) =w(i, j,d)}, (2) for everye, € € B , we havee~/;
(i,m+1) () (i,m+1)

~—

@ m |l

im+1

31

if and only |fe«/>(I mi1) €, and(3) for everye e B/(i,m+1)' if Aims1)(€) = w(i, j,d) for
somej € [m andd € M, thenA; n;1)(€) = w(i, j,d[j]). Intuitively, the serialization
bufferw ISI(i,erl) is built fromW By; 1) by keeping only the events associated with the
processgp; and labeling these events by their corresponding writeadjuars.

Letcy,...,cn be ann-tuple of NSWT-configurations, we say thai, ..., c, are syn-
chronized over their history buffers (&ynchronizegts,...,c,) holds) if and only if
for everyi,k € [n], we haveEventhistory(ci)) = Eventhistory(cy)) (i.e., the event
structure associated to the history buffer of the proagss the configuratiorg; is the
same as the event structure associated to the history fftle procesy in the
configurationcy).

We define also the mappind,s.i2nsw from n-tuple of NSW* configura-
tions to NSw-configurations as follows: Given a-tuple ci,...,c, of NSW-
configurations such thaSynchronize(;tm ,Ci,) holds, we define theNSw-

configurationfas2nsw(Ct, - .- ,n) = (P, (W8 j)) ‘E mH],y{ = (8,m)) as follows:

— Foreveryi € [n], we havep|i] = state(ci)[i]. This means that the state of the process
2i in foswt2nsw(C1,- -, Cn) IS the same as the state®fin the configuratior;.

— For everyi € [n] and j € [m], we haveW B j) = buffer; ;(ci). This means that
the content of the write buffeW B ;) of the processp; in the configuration
fasw+2nsw(C1, - - ,Cn) iS the same as the content of the write buiféB; ;) of #;
in the configuratiort;.

— For everyi € [n], we haveW B ;1) = Sef(buffer; m;1)(ci)). This means that
the content of the write buffeW B 1) of the process; in the configuration
fasw+2nsw(C1, - - - ,Cn) iS the same as the content of the write butéB; i, 1) of 7,
in the configuratiorr; modulo the functiorSer defined above.

— The event structure is equal toEventhistory (ci)) for all i € [n] (which is well-
defined sincecy,...,c, are synchronized over their history buffers). This means
that the event structurs; is the same as the event structure of the history buffer
associated to the processin the configuratiorc;.

— For everyi € [n] and j € [m], we havert(i, j) = Pointer(history(ci))(i, j). This
means that the process is pointing to the sam events in the configurations
fasw+2nsw(C1, - - - ,Cn) @Ndc;.

*

Now, let us assume that there is a computagiar the form(p, s, #, ..., #) =

(0,8, #,...,#"). This means that there is a sequenge. ., cx of NSW' such that
= (p,80,,....,5), c = (P, %0, 9",...,9"), andci_1 —, ¢ for all i € [K]. Let
Lmax € N be the number of events in the history buffef and Ly, be the number
of events in the initial history buffer/. For every? € {Lmin,...,Lmax}, We associate

two n-tuple of NSW*-configurations/1" andvi'® such that:

— VN = (g, Ci,, -, Ci,) Such that for every € [n], it € {0,...,k} is the minimal
|ndex such that, in the configuratian, the event structure of the history buffer
history (ci,) of the proces®; contains exactly events
— V"= (cy ,Cir.) such that for every € [n], if € {0,...,k} is the maximal
|ndex suc]h tﬁat in the configuratiap), the event structure of the history buffer
history (c;;) of the process contains exactl;i events

32

Observe that, by definition, the-tuples vi" and v"™® are synchronized (i.e.,
Synchronize@/"") andSynchronizet/;}"®) hold). Let us prove our first lemma:
Lemma 4. For everyl € {Lmin,...,Lmax}: frsw+2nsw (V™) —>;{ frsw-r2nsw (V]'2).
Proof. Let us assume thaf"" = (ci,,Ci,, ..., Ci,) andv{'&= (cill,ci/z,...,ci;]). From the
definition ofvI"" andv"® we havei; < i{ for all t € [n]. _

Observe that the event structures of the history buffersfif,znsw (V)™
and fosw2nsw (V)'™) are the same. This means that along the computatios
frsw-2nsw (V)™) —>;£ frsw-2nsw (V') NO memory update operations have been per-
formed. This implies that the order between the sequencep@fations performed
by each process along is not relevant. Hence, what we need to prove is that
for everyt € [n], we have a computatioo; under NSW from the configuration
fsw+2nsw(Cig s Cip, - - -, Cigs - - -, Giy) 1O the configuratiorfnsw+2nsw(ql,q27...,ci{,...,cin)
where only the procesg is active. Then, using the computations ...,o,, we can
construct the computatioo as follows: First, we start by executing the sequence of
operations of the procegs performed alongpi, then a sequence of of operations of
the procese, performed along,, and soon....

Now, for every t € [n], we know that there is a computatiop; =

G, ~F o under NSW*. Then, we can construct a computatian of

by
under NSW from the configuration fnsonsw(Ci;,Ciy,---,Ci,---,Ci,) to the con-
figuration fnsw+2nsw(cil,q27...,ci{7...7cin) such that the sequence of operations

performed by the procesw; along o; is the same as the sequence of
operations performed byr; along p;. (Recall that the processe; is the
only active process alongsy.) First, let us assume thak = i{, then we

have faswi2nsw(CiysCigs- -+ Cigs--3Cin) = Fasw+answ(Ciys Cigs -+, Cifs--+,Ciy), and so
fnsw+2nsw(cilaci27 o5 Gigy e e aCin) _>;£ fnsw+2nsw(cilaci27 ce aci{a cee 7Cin)- NOW, if It < |{,
we can use the following Lemma 5 to prove thaty+2nsw(Ciy ; Cis - - -, Cig, - - - , Ciny) —>;‘\£
fnsw+2nsw(cilaci27 “ee aci{w . aCin)'
Lemma 5. For every je {i,...,i{ — 1}, one of the following cases hold:

- fnsw+2nsw(cilvci23 <Gy, 7Cin) — fnsw+2nsw(cilvci23 RPN VRS PR 7Cin)1 or

- fnsw+2nsw(cilvci23 <Gy, 7Cin) = fnsw+2nsw(cilvci27 PN VRS PR 7Cin)-
Proof. First observe that theSw-configurations/ = fisw-+2nsw(CiysCigs- - -, Cj - - - Cin)

andy = foowi2nsw(Cip;Ciy, - - -,Cj+1,- - -, Gi,) are well-defined. In fact, by definition, we
have that the event structure of the history buffer assediatith the process; in the
configuratiorcj andcj, is the same the event structure of the history buffer astatia
with the proces in the configurations;, andci{.

Observe that the procegs has in the configurationgandc; (resp.y andcj1):

(1) the same control state, (2) the same content of the wuiters (W B(i,i))ijee[m’ 3)
the same pointed elements in the history buffer, and (4) togegtion of WB;j i, 1)
underNSW* over the write operations performed by is exactly the same as the
content oW B;; ;1) underNSW. Hence, if?; can perform an operation (other than an
update operation) from; to cj, 1, then®; can perform the same operation frqrto y'.

33

Otherwise, the local configuration of the proces#n c; andcj1 remains unchanged,
and hencg =Y.

Other than the event structure of the history bufferrpfemains the same along
the computation frong; to cj;1, we exclude update operations of the procassnder
NSW™ since this can corresponds to a write operation performedthgr processes
(recall that the serialization buff8v By ,, 1) contain sequence of memory states due to
write operations of all the processes). a

Using the arguments above and Lemma 5, we conclude that fery éve
{Lmim sy Lmin - 1}1 we havefnsw+2nsw (Vznm) _);[fnsw+2nsw (V;nax> O

Our second lemma to prove is the following:
Lemma 6. For everyl € {Lmin,.-.,Lmax— 1}, fasw-+2nsw (V™) =5 frow-r2nsw(VII1T).

Proof. Let us assume thaif,?li”1 = (Giy,Ciys---,Cip) @andv)'® = (ci/l,ci/z,...,ci/n). From
the definition ofv]™} andv{™* we havei < i; for all t € [n] (since the size of the
history buffer associated t& in the configuratiort;, is stricly greater than the size of
the history buffer associated # in the configuratiore;,).

For everyt € [n], we can show (by contradiction) that we have the followingheo
putationcy ~, Ci, which is due to an update (or an atomic read-write) operatam
formed by the procesg. This is an immediate consequence of the definitiog,aind
Ci,- Let us assume tha’[{ ~, G, is due to an update operation. The case of an atomic
read-write operation is treated in a similar way.

Then, we have, for everye [n], all these update operations correspond to a write
operationw issued by the same process (sgywith t’ € [n]) since all processes under
NSW* have guessed the same order in which write operations willgzate to the
main memory (see the semantics undew™ of a Transfer write operation).

Now, we can show that the write operati@is in the head of the serialization buffer
associated to the procesg in the configurationfnsy2nsw (V") and an update oper-
ation can be performed from this configuration und&r to reach the configuration
frsw2nsw (v?‘l”l). Observe that for everye [n]\ {t'}, the process; has, in the config-
urationsfosy 4 2nsw (Vi) and frsw 1 2nsw (v?‘l”l), the same control state, the same content
of write buffers(W By j)) jeim+1, @nd the same pointed events in the history buffer.

Now from Lemma 4 and Lemma 6, we obtain that there is a comiputainder
NSW from the configurationfnsw+2nsw(v[“n'q?n) to the configurationfnswﬁnsw(VET?;‘X).

sincev[”niq’i‘n = (Co;---,Co) @NdV("™™ = (cx, ..., Ck), this implies thatfuswansw (VT) =

Lmax

(P, S0,) @nd frsw-+2nsw (V) = (P's S, #). Hence(p, So,) —+ (P, S0, 7).

The Only if direction: Assume that there is a computatiprof 4/ underNSW. This
computation provides an order in which the write operations are updated to the main
memory (i.e., to the history buffer). This order will deten®the moment at which the

write operations undeMSW™ will be transferred from the write bufferV B(i’j))ijg[m

to the serialization one®V B 1))icn- Now, we can construct a computatiphof A(

34

undemiSW such that the following invariant is preserved: After eactican performed
by a proces®; under NSW and NSW, #; will have: (1) the same control state, (2) the

same content o(I\NB(i,D)ijEE[E:]”}, (3) the same pointed elements in the history buffer, and

(4) the projection oW Byj 1) underNSW over the write operations performed foy

is exactly the same as the contenMé8; 1) underNSW. Then, if #; can perform
an operation undeXSw, then®; can perform the same operation undi@w™ while
preserving the above invariant. The transfer of a write af@n from a store buffer
WB; j to serialization buffers undesSw* can be only performed if it respects the
order imposed by. Moving a pointer undeNSW can be simulated by moving this
pointer undeNSW.

D Proof of Lemma 2

First, we can show that any operatiba A; performed by a procesg from c; can be
performed by?; from ¢} and we reach a configuratiay larger or equal (wrt. to<)
thanc,. This is an immediate consequence of the definitior @ince®; has the same
control state irc; andcy, the same last pending write operations per process (dieye t
are encoded as strong symbols), the last event in the hibtdfgrs, and the pointed
events in the history buffers.

Let us assume that the systegperforms arransfer writeoperation of a write op-
erationw(i, j,d) (labeling an event elemesj from c; and reaches. Now, from the
configuratiorc), the systenn can also perform severatansfer writeoperations (from
the write buffelW B;; j)) until a write operatiorw(i, j,d) labeling an event elemest
matchinge (wrt. to one of the injection functions defining the ordeliigtransferred.
Then, we can easily prove that the reached configuraliafter this sequence dfans-
fer write operations is larger or equal ¢g (wrt. to <).

Finally, the case of Memory updat®r Move pointeroperation is similar tdrans-
fer write operation. AMemory updatdresp.Move pointeJ operation fromc; can be
simulated by a sequence emory updatéresp.Move pointe) operations front;.

E Proof of Theorem 9

The proof is by a reduction of PCP (Post’'s Correspondencll&rg to our problem.
Let{us,...,un} and{va,...,vs} be an instance of PCP. We construct a systémvith
two processes; and P, sharing a set of four variableé = {x1,%2,X3,x4} such that,
two specific states in(are related by a run iff PCP has a solution for the considered
instance. The idea of the reduction is as follows:

Processp; guesses the solution of PCP as a sequence of indices, ik and per-
forms iteratively a sequence of operations: It (1) writescassively toc; the symbols
of uj;, (2) reads fronxs the symbols oty (3) writes tox, the indexj, and (4) reads
fromxy, for j ranging backward frorkto 1. Moreover, each write (resp. read) operation
to (resp. from) a variable is followed by a write (resp. reaggration of the market.
The insertion of the markers allows to ensure that a writednesto a variable by one
of the processes can be read at most once by the other predessarallel, process,

35

also guesses the solution of PCP and performs the same iopsras®;, except that
it writes (resp. reads) symbols of the worgsand the indices; to X3 andxs (from x;
andxy), respectively.

Then, we prove that PCP has a solution if and only if it is guledo reach a state of
the systenw where the event structure is empty. In other words, a full gotation of
Al checks that the two processes have guessed the same segjfiindiz®s and that this
sequence is indeed a solution for the considered PCP irest@ihe “only if direction”
can be shown using the fact that the read operations of thieeisig to xo andxs of
processe®; and P, can be immediately validated using the RRWE. This means that
when®; writes Uj; toXg followed by a read Oﬂij from x3, P writesvij to x3 followed
by a read ofvij from x;. Then, whenpywritesi; to x, followed by a read of; from
X4, P2 Writesij to x4 followed by a read 0\‘/ij from x2. Now, the read operations of the
indicesij to xo andx4 of processe®; and®» can be immediately validated using the
RRWE. Thus, the event structure &f will only contain only event associated {t)
write operations of the procegs to the variablex; andx,, and of the process; to
the variablesz andxy, and(2) read operations of the processto the variables, and
of the proces®, to the variable; . (Notice that the write operations on the variablgs
andxq do not play any role in the remaining part of the computationesthey can be
overtaken by any write/read operations on the variaklesdxs.) Then, it is possible
to construct a run of th& where the execution of each write done by one of the process
P, (resp.?,) on the variable (resp.xs) is immediately followed by its corresponding
read operation done g, (resp.?1) onxz (resp.xi).

The argument for the reverse direction is the following:Héite is a run which
empties the event structure, then it can be seen that, ddeettactt that a read can
validate at most one write, the sequence of read symbols dgepsr, is a subword
of the sequence of written symbols lpy, and vice versa. The same holds also for the
sequences of indices guessed by both processes. Thesarfalstdhat the processes
have indeed guessed the same (right) solution to the gigtarioe of PCP.

Let us define more formally the reduction. IRt U {#, — } U[n] be the set of data
manipulated by processes and?,.

To simplify the presentation, we need to introduce sometimots. Leti € [2],

j € [4], se D*, op € {w,r}, m=length(s) and such thain > 2. We use the macro tran-

sition p-2"12,. i 10 denote the sequence of consecutive transitips@ . b,

p -2y forall | € [m—2], andpm1 -4 o wherep, .., pm are

extra intermediary control states of that are not used anywhere else (and that we
may omit from the set of control states @f). We use alsmp(i, j,s) to denote the
fact that the event structure contains the following segeeof ordered operations
Op(i7 j,S(m)) N Op(ia va(l))

Let v be a mapping fronk* to D* such that for every wordi = a; ---an € Z*,
V(U) :ﬁ.al...ﬁ.am_

Then, a computation of the process(resp.r,) is a sequence of phases where each
phase consists in the following operations:

1. Choose a numbére [n]:

P—21p) (resp.g—%,0q)

36

2. Write the sequence of datéu|) (resp V(v)) toxg (resp.xs):

w(1,1,v(u) 2,3v(v))
p v, P (resp.g 2320, g D)

3. Read the sequence of datay) (resp. v(v|)) from x3 (resp.xy):

pll& pl (requ & 2)

4. Write the sequence of daial to xo (resp.Xq):

w(1,2, (2,4.81)
p2 225, 03 (resp.gp 2, By

5. Read the sequence of datd from x4 (resp X2):
r(L4,t) r(2,2,41)

pP 4 p (resp.of 22E0s5q)
Next, we establish the link between the state reachabifityplem for the NSWJ
{RRWE} memory systen, and the existence of a solution for the PCP.

Lemma 7. There is i,...,ik € [n] such that g ---uj, = Vi, ---Vv; if and only if the
configuration((p,q), (4,4,4,%),50) is reachable ina. from the initial configuration
<(p7q)7(_1_7_ _) 5@)

Proof. (The if direction:) Assume tha{(p,q), (4,t,,4),50) is reachable i from
(p,q),(—,—,—,—),S0). This means that all the read operationsrefand », have
been validated.

Then, assume tha,...,i1 is the sequence of indices chosen By and that
in,---,]1 is the sequence of indices chosendyy We use the facts that (1) write and
read operations by a same process to a same variable cannedridered, and that
(2) each write operation af; can only validate a unique read operationzfand
vice-versa (but of course some written values can be miseed processes are asyn-
chronous), to show that the following relations hold:

= Uiy Uip - Ui = Vjy Vi o Vjp.
= Vj1Vjp - Vj, = u|1u|2 -« Uiy
—iaz--ik = jij2- - jhe
— J1i2--jp Zii2 ik

This implies thau;, Ui, - - - Ui, = Vj,Vj, - --Vj, andigiz---ix = jij2-- - jh.
(The only-if direction:) Assume that there is a sequenceditiesis, . . ., ik € [n] such
thatu;, - - -uj, = Vvi; - --vi,. Then, we can construct the following rungffrom the initial

configuration{(p,q), (-, —,—,—),Se) to the configuratiori(p,q), (8.4, .£), e):
For everyl fromkto 1, we have

1. First, 7, chooses the indeix and stores in its event the sequence of operations
W(la 2,'i|)r(1,3,V(Ui|))W(1, 1,V(Ui|)).

2. Then,?, chooses the indexand stores in its event structure the sequence of oper-

ationsw(2,4,-i1)r(2,1,v(v;,))w(2,3,v(vj,)).

3. 21 can use the RRWE to validate the following read operat{dn4,i;) with the
last write operation of the process on x4.

4. P, can use the RRWE to validate the following read operati@?2,i;) with the
last write operation of the process on x,.

5. 21 stores in its event structure the write operatigi, 2,).

37

(o2}

. P, stores in its event structure the write operatia(i2,4,).

7. 21 can use the RRWE to validate the following read operati@m, f) with the last
write operation of the procegs onx.

8. p can use the RRWE to validate the following read operat{@r2,) with the last

write operation of the procegg onxs.

Finally, 2, adopts the following run where the execution of each writeedioy one
of the proces®; (resp.?,) on the variable; (resp.x3) is immediately followed by its
corresponding read operation done by the progggsesp.?1) on the variable: (resp.
Xl).

