
What’s Decidable about Weak Memory Models?
(Extended Version)

M. F. Atig1, A. Bouajjani2, S. Burckhardt3, and M. Musuvathi3

1 Uppsala University, Sweden,mohamed faouzi.atig@it.uu.se
2 LIAFA, Paris Diderot Univ. & CNRS, France,{atig,abou}@liafa.jussieu.fr

3 Microsoft Research Redmond, USA,{sburckha,madanm}@microsoft.com

Abstract. We investigate the decidability of the state reachability problem in
finite-state programs running under weak memory models. In [3], we have shown
that this problem is decidable for TSO and its extension withthe write-to-write or-
der relaxation, but beyond these models nothing is known to be decidable. More-
over, we have shown that relaxing the program order by allowing reads or writes
to overtake reads leads to undecidability.
In this paper, we refine these results by sharpening the (un)decidability frontiers
on both sides. On the positive side, we introduce a new memorymodel NSW (for
non-speculative writes) that extends TSO with the write-to-write relaxation, the
read-to-read relaxation, and support for partial fences. We present a backtrack-
free operational model for NSW, and prove that it does not allow causal cycles
(thus barring pathological out-of-thin-air effects). On the negative side, we show
that adding the read-to-write relaxation to TSO causes undecidability, and that
adding non-atomic writes to NSW also causes undecidability.
Our results establish that NSW is the first known hardware-centric memory model
that is relaxed enough to permit both delayed execution of writes and early exe-
cution of reads for which the reachability problem is decidable.

1 Introduction

The memory consistency model (or simply, the memory model) of a shared-memory
multiprocessor is a low-level programming abstraction that defines when and in what or-
der writes performed by one processor become visible to other processors. The simplest
memory model, sequential consistency [16], requires that the operations performed by
the processors should appear as if these operations are interleaved in a consistent global
order. Despite its simplicity and appeal, most contemporary hardware platforms support
Weak (relaxed) Memory Models for performance reasons [2, 13].

The effects of weal memory models can be counterintuitive and difficult to under-
stand even for very small programs. Not surprisingly, relaxed memory models are an
active research area today. Much progress has been made to aid programmers, in the
form of verification or model-checking algorithms [8, 15, 28, 17, 4], testing tools [11,
19], analyses that check whether programs are exposed to specific relaxations [7, 9, 21],
fence insertion tools [14, 15, 18], verified compilation [10, 26, 25], and formal models
that closely approximate commercial multiprocessors [22,24, 27].

Nevertheless, many foundational questions about weak memory models remain. For
instance, given a finite-state concurrent program under weak memory model, what is

2

the complexity of deciding if a particular erroneous state can be reached? What is the
most relaxed model for which the safety or liveness verification problem is decidable?
Understanding the answers to these questions is necessary when designing automated
analysis tools for low-level system software exposed to weak memory models.

w→ r (Write-to-read order). The effect of a write may be delayed past a subsequent read.
This relaxation enables the use of per-processorwrite buffers. Specifically, when ex-
ecuting a write, a processor may buffer the value to be written in its local buffer and
continue executing before the buffered value becomes globally visible.

w→w (Write-to-write order). A processor may swap the order of two writes. For instance,
if using a write buffer as described above, writes may exit the buffer in a different order
than they entered.

r → r/w (Read-to-read/write order). A processor may change the order of a read and a
subsequent read or write. This enables out-of-order execution techniques that help to
hide latency of memory accesses. We further distinguish betweenr→ r (read-to-read)
andr→ w (read-to-write) relaxations.

RLWE (Read local writes early). A processor may read its own writes even if they are not
globally visible yet (i.e. before the exit the buffer). For example, if a processor executes
a read from a location for which there are pending writes in the local buffer, it can
immediately forward the value of the last such write from thebuffer to the read.

RRWE (Read remote writes early). A processor may read other processors’ writes even if
they are not globally visible yet. For example, a write in a local buffer may be directly
forwarded to some remote processors before it exits the buffer.

RWF (read-read and write-write fences). A processor may issue a read-read (write-write)
fence to prevent reordering of reads (writes) that precede the fence with reads (writes)
that succeed it.

Fig. 1.Definition Acronyms that represent relaxations/features,following the terminology in [2].

In prior work [3], we have presented some early decidabilityresults for relaxed
memory models. We have shown that the reachability problem for finite state machines
is decidable for two simple relaxations to SC: (1) the TSO (total store order) model
that allows write-to-read relaxation, and (2) a memory model that extends TSO with
the write-to-write relaxation. In addition, the prior workalso shows that the reachabil-
ity problem is undecidable for a memory model that allows allfour combinations of
read and write relaxations. In this paper, we refine these results with a precise study of
relaxations that lead to the undecidability of memory models. Fig. 1 describes the re-
laxations studied in this paper and Fig. 2 summarizes our results and comparison with
prior work.

Our results show (perhaps surprisingly) that relaxations that are commonly consid-
ered as counter-intuitive by programmers coincide with those that lead to undecidability.
For instance, we show that adding the read-to-write relaxation to TSO (total store or-
der) results in an undecidable memory model. In such a relaxation, a processor eagerly
makes a write visible to other processors before a prior readhas completed. Such spec-
ulative writes can result in causal cycles, a well known memory model hazard [12, 20].
On the other hand, a memory model that avoids this relaxationbut otherwise remains

3

Memory Model NameReach. Problem
{w→ r, RLWE} TSO decidable [3]
TSO∪{w→ w} - decidable [3]
TSO∪{w→ w, RWF} PSO decidable [new]
PSO∪{r→ r} NSW decidable [new]
TSO∪{r→ r/w} - undecidable [3]
TSO∪{r→ w} - undecidable [new]
NSW∪{RRWE} - undecidable [new]

Fig. 2. Summary of previously known and unknown results about the decidability of the reacha-
bility problem on weak memory models. The acronyms are defined in Fig. 1.

general by allowing read-to-read, write-to-read, and write-to-write relaxations together
with read-read and write-write fences is actually decidable. We call this memory model
NSW (non speculative writes) and study its properties. Finally, we show that adding
non-atomic writes to NSW results in an undecidable memory model. Such non-atomic
writes can lead to counter-intuitive IRIW (independent reads of independent writes)
effects [6].

Memory designers have to reconcile the conflicting goals of being weak enough to
allow performance optimizations while simple enough for programmers to understand.
We hope that characterizing decidability of memory models will help designers to make
the right performance/programmability tradeoff. As an example, the Power memory
model specification [24] allows the read-to-write relaxation. However, extensive exper-
imentation performed on real hardware implementations have not found evidence of
this relaxation [24]. This suggests that while this optimization is currently not imple-
mented and not crucial for performance, hardware designerswould still like to keep the
specification flexible for future needs. Our results quantifies the cost of this flexibility.

Along the same vein, we show that NSW, which is the most relaxed model known
to be decidable, exhibits the following desirable properties:

– NSW enables significant optimizations; specifically, (1) itpermits a write to be
moved down (later) in the program execution past any other read or write (by de-
laying it in a buffer), and (2) it permits reads to be moved up (earlier) in the program
execution, before any other read or write (even before a readon whose value it de-
pends).

– The performance impact of prohibiting the read-to-write relaxation (which is the
only ordering relaxation remaining in NSW) can be ameliorated by write buffers:
even if we disallow writes to become visible to other processors (i.e. exit the write
buffer) before all preceding reads have completed, we may still allow writes to enter
into the buffer while older reads are still pending.

– Since NSW does not permit writes to become visible to other processors before all
older loads by the same processor have completed, causal cycles and out-of-thin-air
behaviors are impossible. We formalize and prove this fact in Section 3.7.

– In operational memory models, reordering of dependent memory accesses is usu-
ally modeled by nondeterministically guessing the read value and validating it later.

4

In some sense, such models are not very constructive as they may require backtrack-
ing if a guess can not be validated later on. We discovered a way to eliminate all
such guesses from our operational model for NSW, obtaining an alternative opera-
tional model that is backtrack-free (Section 5).

– The relaxations in NSW do not depend on any notion of data/control-dependencies.
Not only does this greatly simplify the formalism, but it also avoids subtle sound-
ness problems with compiler optimizations that may break dependencies [5].

To establish that the state reachability problem for NSW is decidable, we proceed
in two steps. First, we define an operational model for NSW where reads do not need to
be stored, but still allowing the precise simulation of all their possible reorderings due
to the read-to-read relaxation (section 5). The key idea fortackling this issue consists,
roughly speaking, in using a buffer storing the history of all the past memory states,
in addition to informations about the most recent value readby each process on each
variable. The whole model has actually three levels of buffers, each of them related
to one of the considered relaxations (write-to-write, write-to-read, and finally read-to-
read). We think that this step has its own interest from the point of view of modeling
and of understanding the effects of each of the considered relaxations, regardless from
the decidability issue. Then, in a second step (section 6), we prove that the defined
operational model can be transformed, while preserving state reachability, into a system
that is monotonic w.r.t. a well quasi-ordering on the set of its configurations. This allows
to deduce that the model has a decidable state reachability problem, using [1]. Both
steps are nontrivial and are based on new and quite subtile constructions.

2 Preliminary definitions and notations

Let k ∈ N such thatk≥ 1. Then, we denote by[k] the set{1, . . . ,k}. Let Σ be a finite
alphabet. We denote byΣ∗ the set of allwordsoverΣ, and byε the empty word. The
length of a wordw∈ Σ∗ is denoted bylength(w). (We assume thatlength(ε) = 0.) For
everyi ∈ [length(w)], letw(i) denote the symbol at positioni in w. Fora∈ Σ andw∈Σ∗.
We writea∈w if a appears inw, i.e.,∃i ∈ [length(w)] such thata= w(i).

Given a sub-alphabetΘ⊆ Σ and a wordu∈ Σ∗, we denote byu|Θ theprojectionof
u overΘ, i.e., the word obtained fromu by erasing all the symbols that are not inΘ.

Let k≥ 1 be an integer andE be a set. Lete= (e1, . . . ,ek) ∈ Ek be ak-dim vector
overE. For everyi ∈ [k], we usee[i] to denote thei-th component ofe (i.e., e[i] = ei).
For everyj ∈ [k] ande′ ∈ E, we denote bye[j ← e′] thek-dim vectore′ overE defined
as follows:e′[j] = e′ ande′[l] = e[l] for all l 6= j.

Let E andF be two sets. We denote by[E→ F] the set of all mappings fromE to
F . Assume thatE is finite and thatE = {e1, . . . ,ek} for some integerk≥ 1. Then, we
sometimes identify a mappingg∈ [E→F] with ak-dim vector overF (i.e., we consider
thatg∈ Fk with g[i] = ei for all i ∈ [k]).

5

3 Weak Memory Models

3.1 Shared memory concurrent systems

Let D be a finite data domain, andX = {x1, . . . ,xm} a finite set of variables valued inD.
Let M denote the setDm, i.e., the set of all possible valuations of the variables inX.

For a given finite set of process identitiesI , let Ω(I ,X,D) be the set of operations
of the form: (1)“no operation”: nop, (2) read: r(i, j,d), (3)write: w(i, j,d), (4) atomic
read-write: arw(i, j,d,d′), (5) read fence: rfence(i), and (6)write fence: wfence(i),
wherei ∈ I , j ∈ [m], andd,d′ ∈D.

A concurrent systemoverD andX is a tupleN = (P1, . . . ,Pn) such that for every
i ∈ [n], P i = (Pi ,∆i) is a finite-state process where (1)Pi is a finite set of control states,
and (2)∆i ⊆ Pi×Ω({i},X,D)×Pi is a finite set of labeled transitions.

LetP=P1× . . .×Pn. For convenience, we writep
op
−−→i p′ instead of(p,op, p′)∈∆i ,

for any p, p′ ∈ Pi andop∈ Ω({i},X,D). We denote byΩ(N) ⊆ Ω([n],X,D) the set
of operations used inN . Given an operationω = op(i, j,d) with op∈ {r,w}, i ∈ [n],
j ∈ [m], andd ∈ D, let proc(ω) = i, var(ω) = j, anddata(ω) = d.

3.2 Memory models

The executions of a concurrent system are obtained by interleaving the executions of
operations issued by its different processes. In the Sequential Consistency (SC) model,
the program order between operations of a same process is preserved. Relaxations of
this program order lead to the definition of various weak memory models. However,
fences (called also barriers) can be used in order to impose the serialization of some
operations at some points of the execution. An operationarw(i, j,d,d′) is equivalent to
the atomic execution of the sequencer(i, j,d);w(i, j,d′), with the additional assump-
tion that this operation is never reordered with any other operation of the same process.
Therefore, this operation can emulate a fence w.r.t all kindof operations, i.e., two op-
erations by the same process occurring before and after (in program order) the fence
cannot be swapped. The operationwfence(i) (resp.rfence(i)) is a fence for write (resp.
read) operations only, i.e., writes (resp. reads) that occur before and after a writefence
(resp. readfence) cannot be swapped.

3.3 A Semantics based on Rewrite Rules

We consider memory models corresponding to a set of program order relaxations
defined by permutation rules between the operations. Given read/write operations
op1,op2 ∈ {w, r}, relaxing theop1 to op2 order consists in allowing that operations
of the classop2 are allowed to overtake operations of the classop1 in a computation,
provided that these operations are issued by the same process, and that they are acting
ondifferentvariables. This corresponds to defining a set of rewrite rules:

op1(i, j,d)op2(i,k,d
′) →֒ op2(i,k,d

′)op1(i, j,d) (1)

for anyi ∈ [n], j,k∈ [m], andd,d′ ∈ D.

6

In addition to permutations between reads and writes, we consider that reads and
write fences issued by the same process can always be swapped, and the same holds
concerning writes and readfences. Then, we consider the following set of rewrite rules
RWF defining the semantics of read/write fences: For anyi ∈ [n], j ∈ [m], d ∈ D,

wfence(i)r(i, j,d) →֒ r(i, j,d)wfence(i) (2)

r(i, j,d)wfence(i) →֒ wfence(i)r(i, j,d)

rfence(i)w(i, j,d) →֒ w(i, j,d)rfence(i)

w(i, j,d)rfence(i) →֒ rfence(i)w(i, j,d)

We also consider the following setRLWE (Read Local Write Early) of rewrite rules:

w(i, j,d)r(i, j,d) →֒ w(i, j,d) (3)

for anyi ∈ [n], j ∈ [m], d ∈D. These rules say that a read that occurs after a write of the
same value on the same variable by the same process can be validated immediately.

Then, we consider that a memory modelM is defined by the choice of a set of rewrite
rules defining the allowed relaxations of the program order.For instance, we give in the
table on the right the definition in this framework of well known memory models.

Model Rewrite Rules
SC /0

TSO RWF∪RLWE∪{w→ r}

PSO RWF∪RLWE∪{w→ r, w→ w}

Clearly, SC can be simulated under both
TSO and PSO by inserting a fence after
each operation. It is also possible to simulate
TSO under PSO by inserting awfence before
each write operation. Notice that the use of
readfences in TSO and PSO is not relevant since reads cannot be swapped in these
models. Similarly, the use of writefences in TSO is not relevant. But the possibility
of using writefences in PSO is important. Without this operation, it is notpossible to
simulate TSO under PSO.

Given a processP i of the systemN , and two control statep, p′ ∈ Pi , a computation
trace ofP i from p to p′ is a finite sequenceτ = ω0 · · ·ωℓ−1 ∈ Ω({i},X,D)∗ such that
there is a sequence of control statesp0 · · · pℓ ∈ P∗i such thatp = p0, p′ = pℓ, and for
every j ∈ {0, . . . , ℓ−1}, (p j ,ωi , p j+1) ∈ ∆i . The set of computations traces ofP i from
p to p′ is denoted byT (P i , p, p′).

Let R be a set of rewrite rules over traces defining a memory modelM. Given a
rewrite ruleρ = α →֒ β, whereα,β ∈ Ω(N)∗, and a computation traceτ ∈ Ω(N)∗,
we define a rewriting relation֒→ρ between traces as follows:τ →֒ρ τ′ if τ = τ1ατ2

andτ′ = τ1βτ2 for someτ1,τ2 ∈Ω(N)∗. As usual,֒→∗ρ denotes the reflexive-transitive
closure of→֒ρ. These definitions are generalized in the obvious way to setsof rules
and sets of computation traces. Given a set of rewrite rulesR, the closure of a set of
tracesT, denoted by[T]R, is the smallest set containingT and which is closed under
the application of the rules inR, i.e.,[T]R = {τ′ ∈Ω(N)∗ : τ ∈ T ∧ τ →֒∗R τ′}.

Given two tracesτ1 and τ2, the shuffle of the two traces is the set of traces ob-
tained by interleaving the elements ofτ1 and τ2 while preserving the original order
between elements of each trace. Formally, the operator‖ is defined inductively as fol-
lows: (1) ε‖τ = τ‖ε = τ, and (2)ω1τ1‖ω2τ2 = ω1(τ1‖ω2τ2)∪ω2(ω1τ1‖τ2) for every

7

ω1,ω2 ∈ Ω(N), and for everyτ,τ1,τ2 ∈ Ω(N)∗. The definition can be extended in a
straightforward manner to a finite number of traces.

Given two vector of control statesp,p′ ∈P, the set of computation traces inN from
p to p′ in the memory modelM (defined byR), denoted byT M(N ,p,p′), is defined by

[T (P1,p[1],p′[1])]R ‖ . . . ‖ [T (Pn,p[n],p′[n])]R

We define a relation[〉 between memory states corresponding to the execution of
operations inΩ(N). Givend,d′ ∈M, we have, for everyi ∈ [n] and for everyj ∈ [m]:

– d[w(i, j,d)〉d′ if d′ = d[j ← d],
– d[r(i, j,d)〉d′ if d[j] = d andd = d′,
– d[arw(i, j,d,d′)〉d′ if d[j] = d andd′ = d[j ← d′],
– d[op〉d′ with op∈ {nop,wfence(i), rfence(i)}, if d = d′.

We extend this definition to sequences of operations, and therefore to computation
traces. Astateof N is a pair〈p,d〉 wherep ∈ P and d ∈ M. For a given memory
modelM, we define a reachability relationReachM

N
between states ofN as follows. Let

s= 〈p,d〉 ands′ = 〈p′,d′〉 be two states ofN . We consider thatReachM
N
(s,s′) holds if

there exists a traceτ ∈ T M(N ,p,p′) such thatd[τ〉d′.

3.4 The State Reachability Problem

The state reachability problem for a memory modelM consists in, given a concurrent
systemN and two statesands′ of N , checking whetherReachM

N
(s,s′) holds. We have:

Theorem 1 ([3]).The state reachability problem forTSO is decidable.

We have also proved in [3] the decidability of the state reachability problem for a
model with bothw→ w andw→ r relaxations, but without considering writefences.
Therefore, the so-called PSO model in [3] is incomparable with TSO, and is strictly
less expressive than the PSO model as defined in this paper. Weshow also in [3] that
the state reachability problem is undecidable for the modelwhere all four read/write
relaxations are considered. We prove here the following stronger result:

Theorem 2. The state reachability problem forTSO ∪{r→ w} is undecidable.

The proof is by a reduction of Post’s Correspondence Problemto our problem. It
follows a similar schema as the one we used in [3] forTSO∪{r→ r/w}, although the
encoding is quite different. The proof can be found in Appendix A.

3.5 NSW: A Model with Non Speculative Writes

We have seen in Section 3.4 that including ther → w relaxation to TSO results in
a memory model with an undecidable state reachability problem. Motivated by this,

8

we introduce a memory model calledNSW (for Non Speculative Writes) obtained by
discarding this relaxation, i.e., by considering the following set of rules:

NSW = RLWE∪RWF∪{w→ r, w→ w, r→ r}

Clearly, theNSW model subsumes TSO and PSO, and since it allows out-of-order
reads, it is actually a strictly more relaxed model than PSO.Notice that PSO can be
simulated under NSW by inserting arfence after each read operation.

We show later that the state reachability problem problem for NSW is decidable. In
the next section, we discuss another desirable property of the NSW memory model.

3.6 Expressive Power ofNSW

Clearly, theNSW model subsumes TSO and PSO, and since it allows out-of-orderreads,
it is actually a strictly more relaxed model than PSO. We showhereafter examples of
behaviors that are allowed under this model.

SB (Store Buffering):This example is an abstract version of Dekker’s exclusion mutual
protocol. ProcessP1 writes a 1 tox, and then checks thaty is still equal 0 is order to
proceed (to the critical section). Symmetrically, processP2 writes a 1 toy and then
checks thatx is 0. Under the SC model, it is not possible to execute the reads of both
processes in a same execution.

x= y= 0
P1 P2

(1) w(x,1) (3) w(y,1)
(2) r(y,0) (4) r(x,0)

x= y= 1

In NSW this behavior is allowed since reads can overtake writes. So, it is
possible to swap (1) and (2) for instance, and get the following computation:
r(y,0)w(y,1)r(x,0)w(x,1). Symmetrically, it is possible to swap (3) and (4) and ob-
tain: r(x,0)w(x,1)r(y,0)w(y,1). Notice that these computations are already allowed in
TSO.

MP (Message Passing):ProcessP1 assigns the value 2 tox, and signals this fact toP2
by writing 1 ony. However, even ifP2 reads this 1, this does not guarantee that it will
read the value 2 onx.

x= y= 0
P1 P2

(1) w(x,2) (3) r(y,1)
(2) w(y,1) (4) r(x,0)

x= y= 1

First, this behavior is possible because the write operations (1) and (2) can be per-
muted, and this leads to the computation:w(y,1)r(y,1)r(x,0)wrel(x,1). Notice that
this behavior is already possible in PSO. To forbid this permutation, a writefence

9

must be inserted between (1) and (2). Even in this case, stillthe behavior is possible
since two read operations (3) and (4) can be permuted, leading to the computation:
r(x,0)wrel(x,1)w(y,1)r(y,1). To forbid this latter computation a readfence between
(3) and (4) is needed.

WRC (Write to Read Causality):ProcessP1 writes 1 onx, and thenP2 reads this value
and writes 1 ony. Then, whenP3 reads 1 ony it not guaranteed that it can read 1 onx.

x= y= 0
P1 P2 P3

(1) w(x,1) (2) r(x,1) (4) r(y,1)
(3) w(y,1) (5) r(x,0)
x= y= 1

Similarly to the previous case, this behavior is allowed inNSW by per-
muting the two reads (4) and (5), which leads to the followingcomputation:
r(x,0)w(x,1)r(x,1)w(y,1)r(y,1). Again, to forbid this computation, it is possible to in-
sert a readfence between (4) and (5).

IRIW (Independent Reads of Independent Writes):ProcessesP3 writes 1 tox andP4
writes 1 toy. In parallel,P1 observes thatx has been modified beforey, whereasP2
observes thaty is modified beforex.

x= y= 0
P1 P2 P3 P4

(1) r(x,1) (3) r(y,1) (5) w(x,1) (6) w(y,1)
(2) r(y,0) (4) r(x,0)

x= y= 1

This behavior is possible inNSW either by permuting (1) and (2), or by permut-
ing (3) and (4). For instance, in the latter case this leads tothe following execution:
r(x,0)w(x,1)r(x,1)r(y,0)w(y,1)r(y,1).

Forbidding this behavior is of course possible by insertingreadfences between (1)
and (2)andbetween (3) and (4).

3.7 Absence of Causality Cycles inNSW

Let po denote theprogram orderrelation corresponding the order in which operations
of each thread are issued by the program. Now, one can define a dependency relation
between the operations of a same process that reflects the data and control dependen-
cies. For instance, if a value read by a read operation is usedto evaluate the branch
condition, then all instructions subsequent to the branch are control dependent on the
read operation. Similarly, if a value read in a read operation is used to compute the
address of the memory location read in a subsequent read operation, or to compute the
value written in a subsequent write, these two subsequent operations are data dependent
on the first read operation.

10

While the exact definition of the dependency relation is based on the semantics of
the programming language, we define a conservative definition by considering that all
operations occurring after, in the program order, a read operation is considered depen-
dent on this read. Formally, this corresponds to the following dependency relation.

dep= po∩ ({r}×{r,w,arw}) (4)

Second, we consider aread-fromrelation, denotedrf, that associates with each read
event of the computation a write event such thatw(i,k,d)→rf r(j,k,d) if the r(j,k,d)
operation issued by processP j takes the valued that has been written by the operation
w(i,k,d) issued by processP i on the variablexk.

x= y= 0
P1 P2
(1) r(x,1) (3) r(y,1)
(2) w(y,1) (4) w(x,1)

x= y= 1

Then, the causality relation corresponding to the consid-
ered computation is defined byc = dep ∪ rf. It can be seen
that under the model SC∪{r→w}, there are programs having
computations with a cyclic causality relation. An example of
such a program is given on the right.

It is clear that under the SC model, the four operations of this program can-
not belong to a same computation leading to the configurationx = y = 1 starting
from x = y = 0. However, when ther → w relaxation is admitted, it is possible
for instance, by permuting (1) and (2), to execute the four operations in the follow-
ing orderw(y,1)w(x,1)r(x,1)r(y,1). This computation contains the causality cycle:
r(x,1)→dep w(y,1)→rf r(y,1)→dep w(x,1)→rf r(x,1). Intuitively, by executing the
operationw(y,1) beforer(x,1), processP1 speculates on the success of the read op-
erationr(x,1) in the future. But processP2 can read the 1 ony that was speculatively
written, and then write the value 1 tox, allowing this way the validation of the specula-
tion of P1. We prove that by avoiding ther→ w relaxation,NSW avoids causal cycles.

Theorem 3. Every computation of any concurrent system under theNSW model has
an acyclic causality relation.

The proof of Theorem 3 can be found in Appendix B. Notice that since this theorem
relies on the conservative definition of dependency relation defined above (4), it also
holds for any refinement of the dependency relation.

4 An Operational Model for NSW

We provide an operational model forNSW where configurations are formed by a vector
of control states, one per process, a memory state giving thevaluation of the shared
variables, and anevent structurewhere pending operations, issued by the different pro-
cesses but not yet executed, are stored. This event structure defines a partial order be-
tween these operations reflecting the constraints imposed by the memory model on the
order of their execution.

We start by defining formally the notion of event structure. Then, we define a first
operational model where the stored operations can be reads,writes, or writefences.
(Nop’s, atomic read-writes, and readfences do not need to be stored.)

11

4.1 Event structures

Let E be an enumerable set of of events. Anevent structureover an alphabetΣ is a
tupleS = (E,;,λ) whereE is a finite subset ofE , ;⊆ E×E is a partial order over
E, andλ : E→ Σ is a mapping associating with each event a symbol inΣ.

Given an evente∈ E \E and a symbola∈ Σ, we denote byS� [e← a] the structure
(E∪{e},;,λ′) such thatλ′(e) = a andλ′(e′) = λ(e′) for all e′ ∈ E. Given an event
e∈ E, we denote byS� e the structure(E′ = E \ {e},; |E′ ,λ|E′). Moreover, given
e,e′ ∈ E, we denote byS⊕ e; e′ the event structure(E,(; ∪{(e,e′)})∗,λ). These
notations can be generalized to sets (of events and transitions) in the obvious way.

Given a concurrent systemN =(P1, . . . ,Pn), anevent structureS overN is an event
structure overΩ(N). Given i ∈ [n] and j ∈ [m], let E(i, j) = {e∈ E : ∃d ∈ D. ∃op∈
{w, r}. λ(e) = op(i, j,d)}. An event structure overΩ(N) is well-formedif, for every i
and j, the relation; |E(i, j)

is a total order. We assume in the rest of the paper that all

event structures overN are well-formed. This condition corresponds to the fact that
read/write operations on the same variable should not be reordered.

Let Ê(i, j) = E(i, j) ∪ {e ∈ E : λ(e) = wfence(i)}. For everyi ∈ [n] and j ∈ [m],
let RE(i, j) = {e∈ E : ∃d ∈ D. λ(e) = r(i, j,d)}, and letWE(i, j) = {e∈ E : ∃d ∈
D. λ(e) = w(i, j,d)}. For everye∈ E, we usedata(e) to denotedata(λ(e)).

4.2 An Operational Model with Stored Reads

We associate with the concurrent systemN a transition system(ConfN ,⇒N) where
ConfN is a set of configurations, and⇒N⊆ ConfN ×ConfN is a transition relation
between configurations.

A configurationof N (an element ofConfN) is any triple(p,d,S) wherep ∈ P,
d ∈M, andS is an event structure overN . The transition relation⇒N is the smallest
relation such that for everyp,p′ ∈ P, for everyd,d′ ∈M, and for everyS = (E,;,λ),
S ′ = (E′,;′,λ′) two event structures overN , we have(p,d,S)⇒N (p′,d′,S ′) if there
is ani ∈ [n], and there arep, p′ ∈ Pi, such thatp[i] = p, p′ = p[i← p′], and one of the
following cases hold:

1. Nop: p nop
−−−→i p′, d = d′, andS = S ′.

2. Write: p
w(i, j ,d)
−−−−−→i p′, d = d′, and∃e∈ E \E such thatS ′= ((S� [e←w(i, j,d)])⊕

{e′; e : e′ ∈max(Ê(i, j))}.

3. RLWE: p
r(i, j ,d)
−−−−→i p′, d = d′, S′ = S, WE(i, j) 6= /0 with em = max(WE(i, j)), ∄e∈

RE(i, j). em ; e, anddata(em) = d.

4. Read: p
r(i, j ,d)
−−−−→i p′, d = d′, eitherWE(i, j) = /0 or data(max(WE(i, j))) 6= d, and

∃e, f ∈ E \E such thatS ′= ((S� {[e← r(i, j,d)], [f ← wfence(i)]})⊕ ({e′; e :
e′ ∈max(E(i, j))}∪{e; f})).

5. Atomic Read-write: p
arw(i, j ,d,d′)
−−−−−−−→i p′,

⋃m
ℓ=1 Ê(i,ℓ) = /0, d[j] = d, d′ = d[j← d′], and

S = S ′.

6. Read fence: p
rfence(i)
−−−−−→i p′,

⋃m
j=1RE(i, j) = /0, d = d′, andS = S ′.

12

7. Write fence: p
wfence(i)
−−−−−−→i p′, d = d′, and ∃e ∈ E \E such thatS ′= ((S � [e←

wfence(i)])⊕{e′; e : ∃k. 1≤ k≤mande′ ∈max(Ê(i,k))}).
8. Memory update: p = p′, and there is an evente such thate is a minimal of;,

λ(e) = w(i, j,d) for somed ∈ D, d′ = d[j ← d], andS ′= S�e.
9. Read validation: p = p′, d′ = d, and there is an evente such thate is a minimal of

;, λ(e) = r(i, j,d), d[j] = d, andS ′= S�e.
10. Write fence elimination: p = p′, d′ = d, and there is an evente such thate is a

minimal of;, λ(e) = wfence(i), andS ′= S�e.

Let us explain each case. A write operationw(i, j,d) is simply added to the structure
by introducing a new evente labelled with this operation, which is inserted after all
write fences issued byP i as well as all the write/read operations ofP i onx j .

A read operationr(i, j,d) can be validated immediately (point 3) ifS still contain a
write of P i on x j (and there is no read ofP i on xi after this write), and the last of such
an operation writes precisely the valued onx j . Otherwise, (in point 4) a read operation
r(i, j,d) is simply added to the structureS after all reads/writes ofP i onx j . Notice, that
the event associated with this read operation is not orderedw.r.t. write fences that are
maximal inS (i.e., the read is allowed to overtake such writefences). Moreover, a new
write fence is inserted after the read. This ensures that, as long as this read has not been
validated, it cannot be overtaken by any write.

An atomic read-write operation, which acts as a fence on all operations of the pro-
cessP i , can be executed only when all events before it have been executed. A readfence
issued byP i is executed immediately (it is not stored inS) if there is no reads inS issued
by P i . A write fence is inserted inS after all the events issued byP i .

Writes are removed fromS and used to update the main memory when these op-
erations correspond to minimal events ofS. Similarly, reads are validated w.r.t. the
main memory and removed fromS if they correspond to minimal events. Finally, a
write fence can simply be removed fromS when it becomes minimal.

Let S /0 denote the empty event structure. Then, we have:

Theorem 4. For every states s and s′, we have ReachNSW
N

(s,s′) iff (s,S /0)⇒∗N (s′,S /0).

5 From Event Structures to FIFO Buffers

We provide in this section a model forNSW using FIFO buffers where reads and fences
are never stored. We proceed in two steps. First, we show thatit is possible to define
an alternative operational model forNSW where reads can be immediately validated
using informations about the sequence of states that the memory had in the past. The
history of the memory states is stored in an additional FIFO buffer. Then, we show that
it is also possible to get rid of writefences by converting event structures into two-level
structures of write buffers.

5.1 Eliminating reads from event structures

We present hereafter a new operational model where reads arevalidated using an ad-
ditional buffer storing memory states, calledhistory buffer. The idea is the following.

13

Consider a read operationr(i, j,d) issued by processP i that can be validated during a
computation by reading from a write operationw(k, j,d) issued by porcessPk. Then, if
at the momentr(i, j,d) is issuedw(k, j,d) has not yet been issued, it is actually possi-
ble forP i to wait untilPk producesw(k, j,d). The reason is that issuingw(k, j,d) by Pk
cannot depend from the actions ofP i afterr(i, j,d), because otherwise, this would mean
that there is a read byPk beforew(k, j,d) which needs (i.e., is causally dependent from)
a write ofP i occurring afterr(i, j,d). But this would imply the existence of a causality
cycle, which contradicts the fact that such cycle do not exist in NSW computations due
to the fact that writes cannot overtake reads (see Thm. 3).

Therefore, it is always possible to consider computations where reads are validated
w.r.t. writes that have been issued in the past. However, since some actions must exit
the event structure of the system configuration (due to fences), we need to maintain the
history of all past memory states in a buffer.

x1 = x2 = 0
P1 P2
(1) w(x1,1) (4) r(x2,1)
(2) wfence (5) nop

(3) w(x2,1) (6) r(x1,0)
x1 = x2 = 1

Then, we use a buffer such that the last element represents
actually the current state of the memory, and where the other
elements represent the precedent states of the memory in the
order they have been produced. Notice that a history buffer is
never empty since it must contain at least one element repre-
senting the current state of the memory. For instance, consider
the program on the right.

Clearly the six operations of this program are executable under NSW because the
operationr(x1,0) can overtake the operationr(x2,1). Now, let see how we can simulate
this behavior without storing reads, starting from the memory state(x1 = 0,x2 = 0). To
validate the operationr(x2,1), we need thatP1 executes its third operation (w(x2,1)).
Then, this process should perform its first write operation which is stored in the event
structure, but the writefence forces the execution ofw(x1,1), and the new memory state
is (x1 = 1,x2 = 0). After the execution ofw(x2,1) it is possible to validater(x2,1), but
the validation of the operationr(x1,0) of P2 needs the old memory state(x1 = 0,x2 = 0).
Putting this state in a history buffer allows to retrieve it in order to validate the last read
and finish our simulation. Notice that in general the sequence of memory states that are
needed to validate reads is not bounded. For instance, consider the case wherew(x1,1)
of P1 is replaced by any longer sequence of different writes onx1.

Now, since reads can be swapped, their validation can use writes that might be
issued in a different order. However, reads by the same process on a same variable
must be done in a coherent way, i.e., they should read from states occurring in the same
order. To ensure that, we introduce pointersπ(i, j) on the history buffer defining for each
processP i and each variablex j the oldest memory state that can be observed. Then, to
validate a read onx j by P i , we should find a memory state that occurs afterπ(i, j) in
the buffer wherex j has the right value. Actually, to simplify the construction, we allow
that a pointer can move in a nondeterministic way toward the tail of the buffer (i.e., the
most recent element). Then, to validate an operationr(i, j,d), we simply require that
the value ofx j in the element pointed byπ(i, j) is preciselyd. Also, when a write event
w(i, j,d) exits the event structure and is used to update the memory, the pointerπ(i, j)
is moved to the last element of the history buffer (i.e., the current state of the memory)
since this is the only value ofx j that is visible toP i .

14

For instance, in the example above, the history buffer afterthe execution ofw(x2,1)
is (1,1)(1,0)(0,0), where the head (i.e., oldest element) is the right-most element, and
the pointers are the following:π(2,1)= (0,0) andπ(2,2)= (1,1). Then, it is possible to
validater(x2,1) since the element pointed byπ(2,2) gives the right value, and similarly,
pointerπ(2,1) allows to validater(x1,0). Actually, it is clear that at any moment, the
relevant part of the history buffer is formed by the elementsbetween the last element
and the oldest element that is pointed byπ. Beyond the first pointer, the elements can be
considered as garbage and can be eliminated (but we do not need to). When the history
buffer is reduced to one element (i.e., all the pointers point to the last element), this
means that the buffer contains only the current state of the memory.

To give the formal description of our model, we need to introduce some definitions
concerning buffers and their manipulation. An event structure (E,;,λ) is totally or-
deredwhen; is a total order. We use such structures to encode FIFO buffers. Given a
bufferB = (E,;,λ) over an alphabetΣ, and a symbola∈ Σ, let add(B,a) be the buffer
(E′,;′,λ′) such that (1)E′=E∪{e} for somee∈ E \E, (2) if E= /0 then;′= {(e,e)},
otherwise;′= (;∪{(max(E),e)})∗, and (3)λ′= λ∪ [e 7→ a]. Then, ifλ(min(B)) = a,
let remove(B,a) be the buffer(E′,;′,λ′) such that (1)E′ = E \ {min(E)}, (2);′=;

|E′ , and (3)λ′ = λ|E′ . We also define the predicateEmptywhich is true when the buffer
has an empty set of events. When the bufferB is not empty, we denote bytail(B) (resp.
head(B)) the elementλ(max(E)) (resp.λ(min(E))).

Given a concurrent systemN , ahistory bufferof memory states is a tupleH =(E,;
,λ,π) where(E,;,λ) is a buffer overM (the set of all memory states) such thatE 6= /0,
andπ : [n]× [m]→ E is a mapping associating with each process and each variablean
event inE. We say that a history buffer isunitary if H is reduced to a singleton (i.e.,
π(i, j) = max(E) for all i ∈ [n] and j ∈ [m]).

Then, we are ready to define the transition system of the new model. A configuration
is a tuple〈p,S ,H 〉 where, as in the previous modelp ∈ P is a vector of control states
of each of the processes andS is an event structure, and whereH is a history buffer
overM. The new transition relation⇛N is the smallest relation s.t. for everyp,p′ ∈ P,
S = (E,;,λ),S ′= (E′,;′,λ′) two event structures overN , andH = (B,π) andH ′ =
(B′,π′) two history buffers overM, whereB= (H,;H ,λH) andB′= (H ′,;H′ ,λH′) are
two buffers overM, we have〈p,S ,H 〉⇛N 〈p

′,S ′,H ′〉 if there is ani ∈ [n], and there
arep, p′ ∈ Pi , such thatp[i] = p, p′ = p[i← p′], and one of the following cases holds:

1. Nop: p
nop
−−−→i p′, S = S ′, andH = H ′.

2. Write: p
w(i, j ,d)
−−−−−→i p′,H =H ′, and∃e∈ E \E such thatS ′=((S� [e←w(i, j,d)])⊕

{e′; e : e′ ∈max(Ê(i, j))}.

3. Write fence: p
wfence(i)
−−−−−−→i p′, H = H ′, and∃e∈ E \E such thatS ′= ((S � [e←

wfence(i)])⊕{e′; e : ∃k. 1≤ k≤mande′ ∈max(Ê(i,k))}).

4. RLWE: p
r(i, j ,d)
−−−−→i p′, S = S′, H = H ′, WE(i, j) 6= /0, anddata(max(WE(i, j))) = d.

5. Move pointer: p = p′, S = S′, B = B′, and∃ j ∈ [m]. ∃e∈ H. π(i, j) ;H e andπ′ =
π[(i, j)← e].

6. Read: p
r(i, j ,d)
−−−−→i p′, S = S′, H = H ′, WE(i, j) = /0, and ∃d ∈ M such that

λH(π(i, j)) = d andd[j] = d.

15

7. Read fence: p
rfence(i)
−−−−−→i p′, S = S′, H = H ′, andπ(i, j) = max(H) for every j ∈ [m].

8. Atomic Read-write: p
arw(i, j ,d,d′)
−−−−−−−→i p′, S = S′,

⋃m
ℓ=1 Ê(i,ℓ) = /0, π(i, ℓ) = max(H) for

everyℓ ∈ [m], there is ad = tail(B) such thatd[j] = d andB′ = add(B,d[j ← d′]),
andπ′ = π[(i, ℓ)←max(H ′)]ℓ∈[m].

9. Memory update: p = p′, ∃e∈min(E) such thatλ(e) = w(i, j,d) for some j ∈ [m]
andd∈D, S ′= S�e, B′ = add(B,d) whered= tail(H)[j← d], andπ′= π[(i, j)←
max(H ′)].

10. Write fence elimination: p = p′, H = H ′, d′ = d, and∃e∈min(E) such thatλ(e) =
wfence(i), andS ′= S�e.

Theorem 5. Let s= (p,d) and s′ = (p′,d′) be two states ofN , and letH and H ′

be two unitary history buffers over M such that tail(H) = d and tail(H ′) = d′. Then,
(s,S /0)⇒∗N (s′,S /0) if and only if〈p,S /0,H 〉⇛∗N 〈p

′,S /0,H
′〉.

5.2 Eliminating write fences from event structures

x= y= 0
P1 P2
(1) w(x,1) (5) w(y,1)
(2) wfence (6) wfence

(3) rfence (7) rfence

(4) r(y,0) (8) r(x,0)
x= y= 1

We show in this section that it is possible to avoid storing
write fences and to convert event structures into write buffers.
The idea is the following. We observe that the projection of
the event structure on the events of a same process is, roughly
speaking, a sequence of partial orders, each of these partial or-
ders corresponding to the set of write events occurring between
two successive writefences. These partial order have also the
property that they are unions ofm total orders, each of them corresponding to the set of
writes to a same variable. These total orders can naturally be manipulated usingmFIFO
buffersWB(i,1), . . . ,WB(i,m). Then, to simulate the whole sequence of partial orders cor-
responding the the events of a process, we need to reuse the same buffers after each
write fence, while ensuring that all writes occurring before the write fence are executed
before all those occurring after it. The solution for that isto introduce for each process
P i an additional bufferWB(i,m+1) used to flush the buffersWB(i,1), . . . ,WB(i,m) after each
write fence without imposing that their content is directly written in the main memory.
To see the necessity of this, consider the example on the right which corresponds to the
SB behavior that is also possible in TSO: The actions of this program are executable
underNSW since reads and readfences can overtake writes and writefences. Then, if
the execution of writefences forces the commitment of the writes to the main memory,
and since readfences require that the next reads can only see the current memory state,
then reads (4) and (8) in the program above cannot not be validated. However, if the
writes (1) and (5) are flushed to intermediary buffers instead of being committed to the
main memory, it is possible to validate the reads (4) and (8) since the main memory will
remain unchanged.

To summarize, the architecture of our model is as follows. Each processP i has two
levels of buffers, a first level withm write buffers storing the writes for each variable,
and a second level with one buffer used to serialize the writes before committing them to
the main memory. Then, we have the history buffer, the last element of which represents
the current state of the memory, and the rest of its elements represent the history of all

16

past memory states. Pointers on this buffer allows to each process to know what is the
oldest value it can read on each variable.

We give hereafter the formal definition of our model. A configuration in this model

is a tuple of the form〈p,(WB(i, j))
j∈[m+1]
i∈[n] ,H 〉 wherep ∈ P, for every i ∈ [n] and ev-

ery j ∈ [m+ 1], WB(i, j) is a write buffer, andH is a history buffer overM. Then,
we define the transition relation→N between configurations as the smallest relation

such that for everyp,p′ ∈ P, for every two vectors of store buffers(WB(i, j))
j∈[m+1]
i∈[n]

and(WB′(i, j))
j∈[m+1]
i∈[n] , whereWB(i, j) = (B(i, j),;(i, j),λ(i, j)) andWB′(i, j) = (B′(i, j),;

′
(i, j)

,λ′(i, j)) for all i and j, and for every two history buffersH = (B,π) andH ′ = (B′,π′),
whereB = (H,;H ,λH) and B′ = (H ′,;H′ ,λH′) are two buffers overM, we have

〈p,(WB(i, j))
j∈[m+1]
i∈[n] ,H 〉 →N 〈p

′,(WB′(i, j))
j∈[m+1]
i∈[n] ,H ′〉 if there arei ∈ [n], andp, p′ ∈ Pi,

such thatp[i] = p, p′ = p[i ← p′], WB(k, j) = WB(k, j) for everyk ∈ [n] \ {i} and every
j ∈ [m+1], and one of the following cases holds:

1. Nop: p nop
−−−→i p′, WB(i, j) =WB′(i, j) for every j ∈ [m+1], andH = H ′.

2. Write: p
w(i, j ,d)
−−−−−→i p′, H = H ′, WB(i,k) = WB′(i,k) for everyk ∈ ([m+ 1] \ { j}, and

WB′(i, j) = add(WB(i, j),w(i, j,d)).

3. Write fence: p
wfence(i)
−−−−−−→i p′, Empty(WB(i, j)) for all j ∈ [m], WB(i,s) =WB′(i,s) for all

s∈ [m+1], andH = H ′.
4. Transfer write: p = p′, H = H ′, ∃ j ∈ [m]. WB(i,k) = WB′(i,k) for everyk ∈ ([m] \

{ j}), and ∃ω = head(WB(i, j)). WB′(i, j) = remove(WB(i, j),ω) and WB′(i,m+1) =

add(WB(i,m+1),ω).

5. RLWE from WB(i, j), j ∈ [m]: p
r(i, j ,d)
−−−−→i p′, H = H ′, WB(i,k) = WB′(i,k) for every

k∈ [m+1], anddata(tail(WB(i, j))) = d.

6. RLWE from WB(i,m+1): p
r(i, j ,d)
−−−−→i p′, H = H ′, WB(i,k) = WB′(i,k) for every k ∈

[m+1], Empty(WB(i, j)), the setW(i,m+1) = {e∈ B(i,m+1) : ∃d′ ∈ D. λ(i,m+1)(e) =
w(i, j,d′)} is not empty, anddata(max(W(i,m+1)) = d.

7. Read: p
r(i, j ,d)
−−−−→i p′, H = H ′, WB(i,k) = WB′(i,k) for every k ∈ [m + 1],

Empty(WB(i, j)), the setW(i,m+1) defined above is empty, and∃d ∈ M such that
λH(π(i, j)) = d andd[j] = d.

8. Move pointer: p = p′, B = B′, WB(i,k) = WB′(i,k) for everyk ∈ [m+ 1], and∃ j ∈

[m]. ∃e∈ H. π(i, j);H eandπ′ = π[(i, j)← e].

9. Atomic Read-write: p
arw(i, j ,d,d′)
−−−−−−−→i p′, Empty(WB(i, j)) andEmpty(WB′(i, j)) for every

j ∈ [m+ 1], π(i, ℓ) = max(H) for everyℓ ∈ [m], there is ad = tail(B) such that
d[j] = d andB′ = add(B,d[j ← d′]), andπ′ = π[(i, ℓ)←max(H ′)]ℓ∈[m].

10. Read fence: p
rfence(i)
−−−−−→i p′, WB(i,k) = WB′(i,k) for everyk ∈ [m+ 1], H = H ′, and

π(i, ℓ) = max(H) for everyℓ ∈ [m].

17

11. Memory update: p = p′, WB(i,k) = WB′(i,k) for everyk ∈ [m], head(WB(i,m+1)) =

w(i, j,d) for some j ∈ [m] andd ∈ D, WB′(i,m+1) = remove(WB(i,m+1),w(i, j,d)),

B′ = add(B,d) whered = tail(H)[j ← d], andπ′ = π[(i, j)←max(H ′)].

Theorem 6. Let s= (p,d) and s′ = (p′,d′) be two states ofN , and letH andH ′ be two
unitary history buffers over M such that tail(H) = d and tail(H ′)= d′. Then,(s,S /0)⇒∗N
(s′,S /0) if and only if〈p,S /0,H 〉 →∗N 〈p

′,S /0,H
′〉, whereS /0 denotes an[n]× [m+1]-dim

vector of empty write buffers.

It is worth noting that for PSO, i.e., when readfences are systematically inserted
after reads, the operational model we define has always a history buffer of size 1 (i.e.,
reduced to the memory state). Notice that still we need two levels of write buffers for
PSO due to the use of writefences. For TSO, write buffers for each variable (WB(i, j)
for j ∈ [m]) are not needed since writes are immediately followed by write fences. This
coincides with the operational model defined, e.g., in [3].

6 The state reachability problem ofNSW

We show hereafter that the state reachability problem ofNSW is decidable. For that,
we use the framework defined in [1] which allows to establish that state reachability
can be solved using backward reachability analysis in the following case: Given a well
quasi-ordering (WQO)� on configurations4, if the system is monotonic w.r.t.�, i.e.,
larger configurations w.r.t.� can always simulate smaller configurations, then back-
ward reachability in this system is guaranteed to terminateif it starts from�-upward
closed sets, i.e., sets that whenever they contain a configurationc, they also contain all
�-larger configurations thanc.

To define such ordering, we observe that a value in the memory written by some
process might be overwritten by other write operations by the same process before any
other process has had time to read it. Therefore, the effect of a write operation sent by
a process to its store buffer may never be used, and this wouldsuggest that we should
define� to reflect the subword relation between the buffer contents.However, this in-
tuition cannot be exploited directly. As we will see below,NSW’s are not monotonic
in general w.r.t. such as subword-based relation. To circumvent this problem, we intro-
duce another model calledNSW+ obtained from theNSW, where, roughly, serialization
buffersW(i,m+1) contain memory states (corresponding to cumulated effectsof write op-
erations) instead of write operations and we associate one history buffer per process, and
we show that (1) the state reachability problem in a givenNSW is reducible to the one
in its correspondingNSW+, and (2) everyNSW+ is monotonic w.r.t. a subword-based
relation on buffers. Notice that the translation fromNSW to NSW+ preserves reacha-
bility but the resulting model from this translation is not bisimilar to the original one
(and therefore monotonicity can not be transferred).

4 Recall that a well quasi-ordering� over a setE is an ordering such that for every infinite
sequencee1,e2, . . . of elements ofE, there exist two integersi < j such thatei � ej .

18

Informal introduction to NSW+: We explain hereafter how aNSW+ model is de-
fined starting from a givenNSW. Let us first see whyNSW’s are not monotonic w.r.t.
the subword relation, i.e., considering that the buffers inNSW are lossyis not sound.
More precisely, while it can be shown that it is possible to consider safely that the write
buffersWB(i, j) for all i ∈ [n] and j ∈ [m] as well as the history buffer are lossy, the serial-
ization buffersWB(i,m+1) for i ∈ [n] cannot be simply turned to lossy buffers. Consider
first a sequence of write operationsw(i, j,d′)w(i, j,d) in the write bufferWB(i, j), for
some j ∈ [m], wherew(i, j,d) is the oldest operation. Since both operations are on the
same variablex j , loosing the operationw(i, j,d), i.e., replacing this sequence by just
w(i, j,d′), yields a valid computation corresponding to compaction ofthe two opera-
tions. Indeed, it is possible to overwrite the valued by d′ before that any process is able
to readd. Therefore, it is possible to loose any operation in a write buffer corresponding
to a variable, except the last operation. This is especiallyimportant for the read-local-
write-early operation. Then, by considering the last symbol in each write bufferWB(i, j)
as a strong symbol (can not be lost), and turningWB(i, j) to a lossy channel does not
introduce computations that are not possible in the original program. Observe that the
number of possible such strong symbols is finite (one per write bufferWB(i, j)).

Consider now a sequence of memory statesd ·d′ in the history bufferH , whered′ is
the oldest state. Then, loosing the memory stated′ in M i is similar to considering that
this state has not been observed byP i . This is perfectly valid since processes observe
the states of the memory in an asynchronous way, and therefore they may miss some
states. However, memory states inH that are pointed by some pointerπ(i, j) should not
be lost, and they must be considered as strong symbol. Indeed, without these pointed
states, reads cannot be validated. In addition, we also should not loose the tail ofH
(which corresponds to the current memory state) since it is used to compute the next
memory state. Then, pointed elements as well as the last element of the history buffer
must be considered as strong symbols (again the number of such symbols is finite).

It remains to consider the case of the serialization write buffer WB(i,m+1). Consider
a sequence of operationsw(i, j,d′)w(i,k,d) in WB(i,m+1). Since these two operations
are on different variables, loosingw(i,k,d) does not correspond to the compaction of
the two operations. To encode the compaction (or the summary) of such a sequence
of operations, we need to use a vector of values defining the last written value to each
variable by the operations in the sequence. Then, an idea is to replace the content of
WB(i,m+1) = ωℓ · · ·ω1 by the sequence of summariesσℓ · · ·σ1 whereσi is the summary
of the sequenceωi · · ·ω1. For instance, in our example, the sequence of summaries is
(x j = d′,xk = d)(xk = d). Then, loosing(xk = d) does not correspond to loosing the
effect of the operationw(i,k,d) since this effect is still visible in(x j = d′,xk = d).
Assume now that(xk = d) has not been lost and has been updated to the main memory.
This value ofxk in the main memory can be over-written by a write operation(xk =
d′′) (d′′ 6= d) of a different process fromP i . Then, when the system decides to update
(x j = d′,xk = d) to the main memory, we should not reset the value ofxk to d (since
the write operation(xk = d) has already taken effect). This shows thatWB(i,m+1) (under
NSW+) must contain avalid sequence of memory states (that will be used to update the
memory in the future). Then, we can formulate a similar argument as in the case of the
history buffer to allow some of the memory states inWB(i,m+1) to be lost.

19

However, in order to have a valid sequence of memory states, the serialization buffer
WB(i,m+1) underNSW+ should simulate the contributions of the other processes. There-
fore, it has to insert inWB(i,m+1) the memory states resulting from writes performed by
other processes. This implies that the system should guess in advance in which order the
write operations will be updated to the main memory. This is performed underNSW+

as follows: (1) a write is removed from some write bufferWB(k, j) (chosen nondeter-
ministically), (2) a new memory state is then computed from the last state added to
WB(k,m+1), and (3) this new state is added toall the serialization buffers. Observe that a
memory state inWB(i,m+1) resulting from a write operation of a processPk (with k 6= j)
should not be detected byP i (since it has not been yet committed to the main memory).

Observe that the execution of each thread is totally determined by the sequence of
memory states and its local configuration (i.e., its controlstate, its store buffer contents,
and its serialization buffer content). Therefore, underNSW+, each processP i has its
own private copy of the history bufferH i (without any need of synchronization with
the other threads) since it has already the sequence of memory states in its serialization
buffer. Now, if a memory state is at the head of the serialization bufferWB(i,m+1) of
the processP i , then this state will be removed from all this buffer and one copy is
transferred to its history bufferH i .

Formal definition of NSW+: A configuration of NSW+ is a tuple of the form

〈p,(WB(i, j))
j∈[m+1]
i∈[n] ,(H i)i∈[n]〉 wherep and(WB(i, j))

j∈[m]
i∈[n] are defined as in the previous

section,(WB(i,m+1))i∈[n] are write buffers overF = {w(i, j,d) : j ∈ [m]∧d ∈M}, and
H i are history buffers overM. Then, we define the transition relation7→N as the smallest

relation such that for everyp,p′ ∈ P, for every two vectors of buffers(WB(i, j))
j∈[m+1]
i∈[n]

and(WB′(i, j))
j∈[m+1]
i∈[n] , whereWB(i, j) = (B(i, j),;(i, j),λ(i, j)) andWB′(i, j) = (B′(i, j),;

′
(i, j)

,λ′(i, j)) for all i ∈ [n] and j ∈ [m+1], and for every two vectors of history buffers
(
H i =

(B i ,πi)
)

i∈[n] and
(
H ′i = (B′i ,π′i)

)
i∈[n], whereB i = (Hi ,;Hi ,λHi) andB′i = (H ′i ,;H′i

,λH′i
)

are two buffers overM for all i ∈ [n], we have〈p,(WB(i, j))
j∈[m+1]
i∈[n] ,(H i)i∈[n]〉 →N

〈p′,(WB′(i, j))
j∈[m+1]
i∈[n] ,(H ′i)i∈[n]〉 if there arei ∈ [n], and p, p′ ∈ Pi, such thatp[i] = p,

p′ = p[i← p′], H k = H k for all k∈ [n]\ {i}, and one of the following cases holds:

1. Nop: p
nop
−−−→i p′, WB(k, j) =WB′(k, j) for all k∈ [n] and j ∈ [m+1], andH i = H

′
i .

2. Write: p
w(i, j ,d)
−−−−−→i p′, H i = H

′
i , WB(k,ℓ) =WB′(k,ℓ) for every(k, ℓ) ∈ ([n]× [m+1])\

{(i, j)}, andWB′(i, j) = add(WB(i, j),w(i, j,d)).

3. Write fence: p
wfence(i)
−−−−−−→i p′, Empty(WB(i, j)) for all j ∈ [m], WB(k,ℓ) = WB′(k,ℓ) for

all k∈ [n] andℓ ∈ [m+1], andH i = H
′
i .

4. Transfer write: p = p′, H i = H
′
i , ∃ j ∈ [m]. WB(k,ℓ) = WB′(k,ℓ) for all (k, ℓ) ∈

([n]× [m] \ {(i, j)}), and∃ω = head(WB(i, j)). WB′(i, j) = remove(WB(i, j),ω) and

for every k ∈ [n], WB′(k,m+1) = add(WB(k,m+1),w(i, j,d′)) where d[ω〉d′ and if

20

Empty(WB(i,m+1)) thend = tail(B i) elsew(t, ℓ,d) = tail(WB(i,m+1)) with t ∈ [n]
andℓ ∈ [m].

5. RLWE from WB(i, j), j ∈ [m]: p
r(i, j ,d)
−−−−→i p′,H i =H

′
i ,WB(k,ℓ) =WB′(k,ℓ) for all k∈ [n]

andℓ ∈ [m+1], anddata(tail(WB(i, j))) = d.

6. RLWE from WB(i,m+1): p
r(i, j ,d)
−−−−→i p′, H i = H ′i , WB(k,ℓ) = WB′(k,ℓ) for all

(k, ℓ) ∈ [n]× [m+ 1], Empty(WB(i, j)), the setW(i,m+1) = {e∈ B(i,m+1) : ∃d′ ∈
M. λ(i,m+1)(e) = w(i, j,d′)} is not empty, andλ(i,m+1)(max(W(i,m+1)) = w(i, j,d)
such thatd[j] = d.

7. Read: p
r(i, j ,d)
−−−−→i p′, H i = H

′
i , WB(k,ℓ) = WB′(k,ℓ) for every (k, ℓ) ∈ [n]× [m+ 1],

Empty(WB(i, j)), the setW(i,m+1) defined above is empty, and∃d ∈ M such that
λHi (πi(i, j)) = d andd[j] = d.

8. Move pointer: p= p′, B i = B
′
i , WB(k,ℓ) =WB′(k,ℓ) for every(k, ℓ) ∈ [n]× [m+1], and

∃ j ∈ [m]. ∃e∈ Hi . πi(i, j);Hi e andπ′i = πi[(k, j)← e]k∈[n].

9. Atomic Read-write: p
arw(i, j ,d,d′)
−−−−−−−→i p′, WB(k,ℓ) = WB′(k,ℓ) for all (k, ℓ) ∈ [n] ×

[m], Empty(WB(i, j)) and Empty(WB′(i, j)) for every j ∈ [m+ 1], πi(i, ℓ) =

max(Hi) for every ℓ ∈ [m], there is ad = tail(B i) such thatWB′(k′,m+1) =

add(WB(k′,m+1),w(i, j,d′)) for all k′ ∈ ([n] \ {i}), d[j] = d, B′i = add(B i ,d′), and
π′i = πi [(k, ℓ)←max(H ′i)]k∈[n],ℓ∈[m] whered′ = d[j ← d′].

10. Read fence: p
rfence(i)
−−−−−→i p′, WB(k,ℓ) =WB′(k,ℓ) for every(k, ℓ) ∈ [n]× [m+1], H i =

H ′i , andπi(i, ℓ) = max(Hi) for everyℓ ∈ [m].

11. Memory update: p = p′, WB(k,ℓ) = WB′(k,ℓ) for every(k, ℓ) ∈ ([n]× [m] \ {(i,m+

1)}), there existt ∈ [n], j ∈ [m] andd ∈M such thathead(WB(i,m+1)) = w(t, j,d),
WB′(i,m+1) = remove(WB(i,m+1),w(t, j,d)), B′i = add(B i ,d), andπ′i = πi [(k, j)←

max(H ′i)]k∈[n] if t = i, otherwiseπ′i = πi .

Let us explain each case. A write operationw(i, j,d) is simply added to the write
bufferWB(i, j) (as inNSW). A write fence operationwfence(i) can be executed only if

all the store buffer(WB(i, j))
j∈[m]
i∈[n] .

A transfer write operation is performed by the processP i underNSW+ as follows:
(1) a write operationω is removed from a write bufferWB(i, j) with j ∈ [m], a new
memory stated′ is then computed from the last stated added to the history bufferH i

(i.e.,d = tail(B i)) if the serialization bufferWB(i,m+1) is empty (i.e.Empty(WB(i,m+1))
holds) otherwise from the last event labelled byw(k, ℓ,d) added toWB(i,m+1), and (3) a
new event labelled byw(i, j,d′) is then added to all the serialization buffersWB(k,m+1)
for all k∈ [n].

A read operationr(i, j,d) can be validated immediately (point 5) if the write buffer
WB(i, j) is not empty and the last operation added toWB(i, j) precisely writes the value
d on x j (i.e., data(tail(WB(i, j))) = d). Now, if the write bufferWB(i, j) is empty and
the set of events inWB(i,m+1) associated with the processP i and the variablex j is
not empty (i.e., the setWi,m+1 defined above is not empty) (point 6), then the last

21

event inWB(i, j) associated withP i and x j precisely writes the valued on x j (i.e.,
data(λ(i,m+1)(WB(i, j))) = w(i, j,d) andd[j] = d). Otherwise, (in point 7), we simply
require that the value ofx j in the event pointed byπi(i, j) (in the history bufferH i

associated withP i) is d (i.e.,λHi (πi(i, j)) = d andd[j] = d).
A Move pointer operation of the processP i can move, in nondeterministic way, the

position of the pointerπi(i, j) associated to the variablex j toward the tail of its history
bufferH i (i.e., most recent element inH i). Observe that we simultaneously move all the
pointersπi(k, j) (for all k∈ [n]) to the same element. This is only done for the purpose
of having a history bufferH i at the end of the computation reduced to one element.
Observe also that the pointersπi(k, j) (for all k∈ [n]\{i} and j ∈ [m]) do play any role
under theNSW+ since they will never be tested.

An atomic read-write operationarw(i, j,d,d′), which acts as a fence on all opera-
tions of the processP i , can be executed only when:(1) all buffers ofP i are empty (i.e.
Empty(WB(i,ℓ)) holds for allℓ ∈ [m]), and(2) the value of the variablex j in the event
pointed byπi(i, j) (which should correspond to the tail of the history bufferH i) is pre-
ciselyd. If it is the case that a new event is added to the history buffer H i labelled by
the memory stated′ obtained from the last memory state added toH i by modifying the
value of the variablex j from d to d′. Moreover, all the pointers of the history bufferH i

are updated to this newly added event. Now, in order that the other processes take into
account this new memory state, an event labelled byw(i, j,d′) is then added to all other
serialization buffersWB(k,) (for all k 6= i).

A Read fence rfence(i) can be executed by the processP i only when all the pointer
of the history bufferH i are pointing to the last event ofH i .

A Memory update of the processP i corresponds to remove the head element
w(t, j,d) of WB(i,m+1), add a new event labelled byd to the history bufferH i , and
update the position of the set of pointersπi(k, j) (with k ∈ [n]) to this newly added
element if the elementw(t, j,d) is performed by the processP i (i.e.,t = i).

In the following, we show that the state reachability problem for a concurrent system
N underNSW can be reduced to its corresponding one forN underNSW+.

Theorem 7. Let s= (p,d) and s′ = (p′,d′) be two states ofN , and letH and H ′

be two unitary history buffers over M such that tail(H) = d and tail(H ′) = d′. Then,
〈p,S /0,H 〉 →∗N 〈p

′,S /0,H
′〉 iff 〈p,S ′/0,H , . . . ,H 〉 7→∗N 〈p

′,S ′/0,H
′, . . . ,H ′〉 whereS /0 and

S ′/0 denotes an[n]× [m+1]-dim vector of empty buffers.

A proof of Theorem 7 can be found in Appendix C. The proof consists in showing
that each computation in one of the models it is possible to associate a computation
in the other model such that along these two computations we have: (1) the same se-
quence of memory states, and (2) the same sequence of operations performed by each
of the processes, i.e., for each process, the two projections of these computations on the
operations of that process are the same.

However, it is not obvious how to translate the ordering on NSW+-configurations
into one onNSW-configurations. In particular the standard proofs that show reductions
between different semantics (models), where each configuration in one model is shown
to be in (bi-)simulation with a configuration in the other model cannot be used here.

22

The state reachability problem for NSW+: We show in the following that the state
reachability problem is decidable for theNSW+ model. As mentioned earlier, we es-
tablish this fact by proving thatNSW+’s are monotonic w.r.t. a particular WQO�.

Let N be an NSW+, and let us define the relation� on the configurations

of N . Consider two configurationsc = 〈p,(WB(i, j))
j∈[m+1]
i∈[n] ,(H k)k∈[n]〉 and c′ =

〈p′,(WB′(i, j))
j∈[m+1]
i∈[n] ,(H ′k)k∈[n]〉, whereWB(i, j) = (B(i, j),;(i, j),λ(i, j)) and WB′(i, j) =

(B′(i, j),;
′
(i, j),λ

′
(i, j)) for all i and j, andH k = (Bk,πk) andH ′k = (B′k,π

′
k) with Bk =

(Hk,;Hk ,λHk) andB′k = (H ′k,;H′k
,λH′k

) for all k ∈ [n]. Then, we consider thatc� c′

holds if

1. c andc′ have the same vector of control states, i.e.,p = p′,

2. the content ofWB(i, j) is a subword of the contentWB′(i, j), while the sequences

of operations inWB(i, j) andWB′(i, j) corresponding the last operations performed
every process on each of the variables are the same, i.e., forevery i ∈ [n] and
j ∈ [m+1], there is an injectiong(i, j) from B(i, j) to B′(i, j) such that:(a) for every

e1,e2 ∈ B(i, j), λ′(i, j)(g(i, j)(e1)) = λ(i, j)(e1) ande1 ;(i, j) e2 impliesg(i, j)(e1);(i, j)

g(i, j)(e2), and(b) for everyk∈ [n] andℓ ∈ [m], if E(k,ℓ) = {e∈ B(i, j) : λ(i, j)(e) ∈
{w(k, ℓ,d′),w(k, ℓ,d′) |d′ ∈ M,d′ ∈ D}} and E′(k,ℓ) = {e ∈ B′(i, j) : λ′(i, j)(e) ∈
{w(k, ℓ,d′),w(k, ℓ,d′) |d′ ∈M,d′ ∈ D}}, theng(i, j)(max(E(k,ℓ))) = max(E′(k,ℓ)),

3. the content ofH k is a subword of the contentH ′k, while the last memory states
added toH k andH ′k are the same, and the memory states pointed byπk(i, j) and by
π′k(i, j) are equal for everyi and j, i.e., for everyk∈ [n] there is an injectiongk from
Hk to H ′k such that:(a) for everye1,e2 ∈Hk, λH′k

(gk(e1)) = λHk(e1) ande1 ;Hk e2

impliesgk(e1);H′k
gk(e2), (b) for everyi ∈ [n] and j ∈ [m], gk(πk(i, j)) = π′k(i, j),

and(c) gk(max(Hk)) = max(H ′k).

By Higman’s lemma (the subword relation is a well quasi-ordering) and standard
composition properties of well quasi-orderings, it is easyto prove the following fact.

Lemma 1 (WQO).The relation� is a WQO on the set ofNSW+-configurations ofN .

Given a setC of NSW+-configurations, we defineC↑= {c′ : c∈C∧c� c′}, i.e.C↑
is the set of configurations generated by those inC via�. A setC is upward closedw.r.t.
� if C ↑= C. Since� is a well-quasi ordering, we can show that every upward closed
set of configurations has finite set of minimal elements. We can exploit this property
to derive an algorithm for the state reachability problem for NSW+ (by applying the
methodology proposed in [1]. The first property we need to prove is that the transition
relationNSW+ is compatible with�. Then, we can prove the following important fact:

Lemma 2 (Monotonicity). For every configurations c1,c2,c′1 of aN such that c1 7→N
c2 and c1� c′1, there exists a configuration c′2 such that c′1 7→

∗
N

c′2 and c2� c′2.

The proof of Lemma 2 can be found in Appendix D.

23

From [1] we know that monotonicity ensures that if a set of configurationsC is�-
upward closed, then the set of its predecessorspreN (C) = {c : c′ ∈C ∧ c 7→N c′} is
also�-upward closed, and since upward closed sets w.r.t. WQO are finitely defined by
their minimals, this fact allows to deduce that the iterative computation of the set of all
predecessors ofC (i.e.,pre∗

N
(C)) eventually terminates. We only need to show that:

Lemma 3 (Effectiveness).Given a finite set M of�-minimals of a�-upward closed
set C, the (finite) set of�-minimals of preN (C) is effectively computable from M.

Showing that we can effectively compute the�-minimals of pre(C) can be per-
formed in a similar way as for lossy channel machines [1].

Then, from the three lemmas above and [1], we deduce the following fact:

Theorem 8. The state reachability problem forNSW+ is decidable.

As a corollary of Theorem 7 and Theorem 8, we obtain the main result of this paper:

Corollary 1. The state reachability problem forNSW is decidable.

7 Nonatomic Writes Cause Undecidability

So far, we have considered only models that do not contain theRRWE (read remote
writes early) relaxation. In this section, we show that adding RRWE to NSW makes
the reachability problem undecidable. The RRWE relaxationallows a processor to read
other processors’ writes even if they are not globally visible yet. This makes writes
non-atomic and can be detected by the IRIW litmus test (Fig. 3). IRIW is not possible
in NSW as defined earlier. However, if we change the model to allow a read operation
of P i on a variablex j to be validated by the last write operation issued byPk (with k 6= i)
onx j , although this last write operation has not been yet updated, it becomes possible.

x= y= 0
P1 P2 P3 P4

(1) r(x,1) (4) r(y,1) (7) w(x,1) (8) w(y,1)
(2) rfence (5) rfence
(3) r(y,0) (6) r(x,0)

x= y= 1

Fig. 3. The IRIW (Independent Reads of Independent Writes) Litmus Test.P3 writes 1 tox and
P4 writes 1 toy. In parallel,P1 observes thatx has been modified beforey, whereasP2 observes
thaty is modified beforex.

24

An operational model An operational model for NSW with the RRWE relaxation can
be defined as an extension of the one defined in Sec. 4. The idea is to add to the event
structureS = (E,;,λ) a mappingσ : [n]× [m]→ E∪{⊥}, with⊥ /∈ E, that associates
with each process and variable, either a pointer on some event of the structure, or⊥
when it is not defined. The pointerσ(i, j) defines an evente such that every future read
operation ofP i on the variablex j should not take its value from a write event that is
;-smaller thane. The intuition is that the validation of successive reads bythe same
process on a same variable should be done in a coherent way, i.e., the writes from which
they read their values should occur in the same order. Ifσ(i, j) points to some evente
in the event structure, thene corresponds to the write event from which the last read
performed by the processP i on the variablex j took its value. The fact thatσ(i, j) =⊥
means that eitherP i has never read a value fromx j , or the last write operation onx j

(issued by some other process) that has validated a read ofP i has already been updated.
Then, to validate a read operation ofP i on x j using the RRWE, an evente must

be found such that(1) e does not occur before the evente′ = σ(i, j) or any read/write
event ofPi on x j , and(2) e is the last write operation onx j of Pk different fromP i . If
this is the case, thenσ(i, j) is updated toe and constraints are added to ensure that(i)
e should be executed after the evente′ and any read/write event ofPi on x j , and(ii) e
should be executed before all writes/reads byP i on x j coming after the validated read
operation. When a write event is executed and exits the eventstructureS, if this write
event is pointed byσ(i, j), thenσ(i, j) is set to⊥. P i can perform a RLWE onx j only if
the event associated to the last write operation ofPi onx j does not occur beforeσ(i, j).

An atomic read-write operationarw(i, j,d,d′) can be executed only when no pend-
ing reads on the same variable still exist in the structureS, i.e.,σ(i, j) =⊥. The reason
is that operations on the same variable cannot be reordered.Finally, all the other opera-
tions are defined as in Sec. 4 while keeping the pointers unchanged.

As an example, consider the IRIW litmus test (Fig. 3). Starting from the memory
state(x= 0,y= 0) and an empty event structureS, the execution of the writes (7) and
(8) by P3 andP4 adds two eventse1 ande2 to S labeled byw(3,x,1) andw(4,y,1),
respectively. Then,P1 andP2 can execute their read operations (1) and (4) that are
validated using the RRWE relaxation, and set the pointersσ(1,x) andσ(2,y) to e1 and
e2. At this point, readfences (2) and (5) can be executed, and then, the read operations
(3) and (6) can be executed since they can be validated w.r.t.the content of the main
memory. Finally, the write operations corresponding to theeventse1 ande2 stored inS
are committed to the main memory, and this yields the memory state(x= 1,y= 1).

We can prove that the addition of the RRWE to NSW models leads to the undecid-
ability of the state reachability problem. The proof is by a reduction of PCP.

Theorem 9. The state reachability problem forNSW∪{RRWE} is undecidable.

8 Conclusion and Future Work

We have sharpened the decidability boundary of the reachability problem for weak
memory models by (1) introducing a model NSW which supports many important

25

relaxations (delay writes, perform reads early, allow partial fences) yet has a decid-
able reachability problem, and (2) showing that the read-write relaxation and the non-
atomic-stores-relaxation are problematic (cause non-decidability) if added to TSO or
NSW, respectively.

Besides decidability, our work contributes in clarifying the effects and the power
of common relaxations existing in weak memory models. It provides an insight on the
formal models needed to reason about these relaxations, which can be useful for other
formal algorithmic verification approaches, including approximate analyses. Notice that
the models we introduce in Sections 4 and 5 can be also considered in the case of an
infinite data domain, and the relationship between them still holds in the same manner.
It is only when we address the decidability issue that we needto restrict ourselves to a
finite data domain.

Future work may address the question of whether the boundarycan be sharpened
further by considering finer distinctions of ther→ w relaxation, say by making it con-
ditional on the absence of control- or data-dependencies. Moreover, we would like to
explore the effect of non-atomic stores in more detail, suchas whether it causes unde-
cidability in weaker forms (e.g. if caused by static memory hierarchies) or if added to
TSO rather than NSW.

References

1. Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. General decidabil-
ity theorems for infinite-state systems. InLICS, pages 313–321, 1996.

2. S. Adve and K. Gharachorloo. Shared memory consistency models: a tutorial.Computer,
29(12):66–76, 1996.

3. M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi.On the verification problem for
weak memory models. InPOPL, pages 7–18. ACM, 2010.

4. M. F. Atig, A. Bouajjani, and G. Parlato. Getting rid of store-buffers in TSO analysis. In
CAV, 2011.

5. H. Boehm. WG21/N2176 memory model rationales. http://open-
std.org/jtc1/sc22/wg21/docs/papers/2007/n2176.html#dependencies, March 2007.

6. H. Boehm and S. Adve. Foundations of the C++ concurrency memory model. InPLDI,
pages 68–78, 2008.

7. A. Bouajjani, R. Meyer, and E. Möhlmann. Deciding robustness against total store ordering.
In ICALP, 2011.

8. S. Burckhardt, R. Alur, and M. Martin. CheckFence: Checking consistency of concurrent
data types on relaxed memory models. InPLDI, pages 12–21, 2007.

9. S. Burckhardt and M. Musuvathi. Effective program verification for relaxed memory mod-
els. InComputer-Aided Verification (CAV), pages 107–120, 2008. Extended Version as Tech
Report MSR-TR-2008-12, Microsoft Research.

10. S. Burckhardt, M. Musuvathi, and V. Singh. Verifying local transformations on relaxed
memory models. InCC’10, pages 104–123, 2010.

11. J. Burnim, K. Sen, and C. Stergiou. Testing concurrent programs on relaxed memory mod-
els. Technical Report UCB/EECS-2010-32, EECS Department,University of California,
Berkeley, Mar 2010.

12. C. Chen, W. Chen, V. Sreedhar, R. Barik, V. Sarkar, and G. Gao. Establishing causality as a
desideratum for memory models and transformations of parallel programs. Technical report,
University of Delaware, 2010.

26

13. K. Gharachorloo, A. Gupta, and J. Hennessy. Performanceevaluation of memory consistency
models for shared-memory multiprocessors. InASPLOS’91, pages 245–257, 1991.

14. M. Kuperstein, M. Vechev, and E. Yahav. Automatic inference of memory fences. InFM-
CAD, pages 111–119, October 2010.

15. M. Kuperstein, M. Vechev, and E. Yahav. Partial-coherence abstractions for relaxed memory
models. InPLDI, San Jose, CA, Jun 2011.

16. L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs.IEEE Trans. Comp., C-28(9):690–691, 1979.

17. A. Linden and P. Wolper. An automata-based symbolic approach for verifying programs on
relaxed memory models. InSPIN, 2010.

18. A. Linden and P. Wolper. A verification-based approach tomemory fence insertion in relaxed
memory systems. InSPIN, 2011.

19. S. Mador-Haim, R. Alur, and M. Martin. Generating litmustests for contrasting memory
consistency models. InComputer Aided Verification, pages 273–287, 2010.

20. J. Manson, W. Pugh, and S.V. Adve. The java memory model. In POPL, pages pages =
378–391, 378–391, 2005.

21. S. Owens. Reasoning about the implementation of concurrency abstractions on x86-tso. In
ECOOP, volume 6183 ofLNCS, pages 478–503. Springer, 2010.

22. S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-TSO. InTPHOL,
2009.

23. E. L. Post. A variant of a recursively unsolvable problem. Bull. of the American Mathemati-
cal Society, 52:264–268, 1946.

24. S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams. Understanding POWER
multiprocessors. InPLDI, San Jose, CA, Jun 2011.

25. J. Sevcik. Safe optimisations for shared-memory concurrent programs. InPLDI, pages
306–316, 2011.

26. J. Sevcik, V. Vafeiadis, F. Z. Nardelli, S. Jagannathan,and P. Sewell. Relaxed-memory
concurrency and verified compilation. InPOPL, pages 43–54, 2011.

27. P. Sewell, S. Sarkar, S. Owens, F. Nardelli, and M. Myreen. x86-TSO: A rigorous and usable
programmer’s model for x86 multiprocessors.Commun. ACM, 53, 2010.

28. Y. Yang, G. Gopalakrishnan, and G. Lindstrom. UMM: an operational memory model spec-
ification framework with integrated model checking capability. Concurrency and Computa-
tion: Practice and Experience, 17(5-6):465–487, 2005.

27

A Proof of Theorem 2

The proof is done by a reduction of PCP (Post’s Correspondence Problem), well-known
to be undecidable [23], to our problem. It follows a similar schema as the one used in
[3] for TSO∪{r→ r/w}, although the encoding is quite different.

We recall that PCP consists in, given two finite lists{u1, . . . ,un} and{v1, . . . ,vn} of
nonempty words over some alphabetΣ, checking whether there is a sequence of indices
i1, . . . , ik ∈ [n] such thatui1 · · ·uik = vi1 · · ·vik.

Then, let{u1, . . . ,un} and{v1, . . . ,vn} be an instance of PCP. We construct a system
N with four processesP1, · · · ,P4 sharing a set of six variablesX = {x1,x2,x3,x4,x5,x6}
such that, two specific states inN underM=TSO∪{r→ r/w} are related by the reach-
ability relationReachM

N
if and only if PCP has a solution for the considered instance.

The idea of the reduction is as follows:

– ProcessP1 has a special statep1. P1 guesses the solution of PCP as a sequence of
indicesi1, . . . , ik and performs iteratively a sequence of operations from the state
p1: It writes successively tox1 the indexi j , and reads fromx2 for j ranging from
1 to k. Moreover, each write (resp. read) operation of any processto (resp. from)
a variable is followed by a write (resp. read) operation of the marker♯. Hence, the
processP1 has the following computation traceτ1from p1 to p1:

w(1,1, i1)w(1,1, ♯)r(1,2, i1)r(1,2, ♯)w(1,1, i2)w(1,1, ♯)
r(1,2, i2)r(1,2, ♯)· · ·w(1,1, ik)w(1,1, ♯) r(1,2, ik)r(1,2, ♯)

– ProcessP2 has a special statep2. P2 guesses the solution of PCP as a sequence of
indicesi1, . . . , ik and performs iteratively a sequence of operations from the state
p2: It writes successively tox3 the indexi j , and reads fromx4 for j ranging from
1 to k. Moreover, each write (resp. read) operation of any processto (resp. from)
a variable is followed by a write (resp. read) operation of the marker♯. Hence, the
processP2 has the following computation traceτ2 from p2 to p2:

w(2,3, i1)w(2,3, ♯)r(2,4, i1)r(2,4, ♯)w(2,3, i2)w(2,3, ♯)
r(2,4, i2)r(2,4, ♯)· · ·w(2,3, ik)w(2,3, ♯) r(2,4, ik)r(2,4, ♯)

– ProcessP3 has a special statep3. P3 guesses the solution of PCP as a sequence
of indicesi1, . . . , ik and performs iteratively a sequence of operations fromp3: It
(1) writes successively tox5 the sequence of symbols ofui j , (2) reads fromx6 the
sequence of symbols ofui j , (3) writes tox2 the indexi j , and (4) readsi j from x3, for
j ranging from 1 tok. Moreover, each write (resp. read) operation of any processto
(resp. from) a variable is followed by a write (resp. read) operation of the marker♯.
Hence, the processP3 has the following computation traceτ3 from p3 to p3:

ω1w(3,2, i1)w(3,2, ♯)r(3,3, i1)r(3,3, ♯)ω2w(3,2, i2)w(3,2, ♯)
r(3,3, i2)r(3,3, ♯) · · ·ωkw(3,2, ik)w(3,2, ♯)r(3,3, ik)r(3,3, ♯)

where for all j ∈ [k], the sequence of operationsω j is defined as follows:

28

ω j = w(3,5,a j
1)w(3,5, ♯)r(3,6,a

j
1)r(3,6, ♯)w(3,5,a

j
2)w(3,5, ♯)

r(3,6,a j
2)r(3,6, ♯) · · ·w(3,5,a

j
kj
)w(3,5, ♯) r(3,6,a j

kj
)r(3,6, ♯)

with ui j = a j
1a j

2 · · ·a
j
kj

.
– ProcessP4 has a special statep4. P4 guesses the solution of PCP as a sequence

of indicesi1, . . . , ik and performs iteratively a sequence of operations fromp4: It
(1) reads successively fromx5 the sequence of symbols ofvi j , (2) writes tox6 the
sequence of symbols ofvi j , (3) writes tox4 the indexi j , and (4) readsi j from x1, for
j ranging from 1 tok. Moreover, each write (resp. read) operation of any processto
(resp. from) a variable is followed by a write (resp. read) operation of the marker♯.
Hence, the processP4 has the following computation traceτ4 from p4 to p4:

ω′1w(4,4, i1)w(4,4, ♯)r(4,1, i1)r(4,1, ♯)ω2w(4,4, i2)w(4,4, ♯)
r(4,1, i2)r(4,1, ♯) · · ·νkw(4,4, ik)w(4,4, ♯)r(4,1, ik)r(4,1, ♯)

where for all j ∈ [k], the sequence of operationsν j is defined as follows:

ω′j = r(4,5,b j
1)r(4,5, ♯)w(4,6,b

j
1)w(4,6, ♯)r(4,5,b

j
2)r(4,5, ♯)

w(4,6,b j
2)w(4,6, ♯) · · · r(4,5,b

j
ℓ j
)r(4,5, ♯) w(4,6,b j

ℓ j
)w(4,6, ♯)

with vi j = b j
1b j

2 · · ·b
j
ℓ j

.

Observe that the insertion of the markers allows to ensure that a written value to
a variable by one of the processes can be read at most once by the other processes.
Observe that the concurrent system can be defined formally following a similar schema
as the one used in Sec. 7.

Then, we prove that PCP has a solution if and only if it is possible ReachM
N
(s,s)

holds withs= 〈p,d〉 such thatp[i] = pi for all i ∈ [n] andd[j] = ♯ for all j ∈ [m]. In
other words, there is a computation trace ofN if and only if all the processes have
guessed the same sequence of indices and that the sequencesui1 · · ·uik andvi1 · · ·vik,
guessed respectively by the processesP3 andP4, are the same.

The “only if direction” can be shown by constructing a traceτ3,4 from the shuffle
of τ3 and τ4 such that:(1) any write of the processP3 to the variablex5 should be
immediately followed by its corresponding read operation of the processP3 to the same
variable, and(2) any write of the processP4 to the variablex6 should be immediately
followed by its corresponding read operation of the processP4 to the variablex6.

Let τ′3,4 be the projection ofτ3,4 on the write operations of the processP3 to the
variablex2 and the read operations of the processP4 to the variablex1. Then, we can
construct fromτ′3,4 the traceτ′1of the processP1 by: (1) replacing any write operation
in τ′3,4 of the formw(3,2,d) by a read operation of the formr(1,2,d), and(2) replac-
ing any read operation inτ′3,4 of the form r(4,1,d) by a write operation of the form
w(1,1,d). It can be seen thatτ′1 is in [{τ1}]R where R is the set of rewrite rules over
traces defining the memory modelM. In fact, this is based on the fact that write op-
erations of processP1 can overtake its read operations and vice-versa. Thus, we can
construct the computation traceτ1,3,4 from the shuffle ofτ′1 andτ3,4 such that:(1) any

29

write of the processP3 to the variablex2 should be immediately followed by its corre-
sponding read operation of the processP1 to the same variable, and(2) any write of the
processP1 to the variablex1 should be immediately followed by its corresponding read
operation of the processP4 to the variablex1.

Let τ′1,3,4 be the projection ofτ1,3,4 on the write operations of the processP4 to the
variablex4 and the read operations of the processP3 to the variablex3. Then, we can
construct fromτ′1,3,4 the traceτ′2of the processP2 by: (1) replacing any write operation
in τ′1,3,4 of the formw(4,4,d) by a read operation of the formr(2,4,d), and(2) replac-
ing any read operation inτ′1,3,4 of the formr(3,3,d) by a write operation of the form
w(2,3,d). It can be seen thatτ′2 is in [{τ2}]R. Thus, we can construct the computation
traceτ from the shuffle ofτ′2 andτ1,3,4 such that:(1) any write of the processP4 to the
variablex4 should be immediately followed by its corresponding read operation of the
processP2 to the same variable, and(2) any write of the processP2 to the variablex3

should be immediately followed by its corresponding read operation of the processP3
to the variablex3.

Finally, it is easy to see thatd[τ〉d and hence thatReachM
N
(s,s) holds withs= 〈p,d〉

such thatp[i] = pi for all i ∈ [n] andd[j] = ♯ for all j ∈ [m].

The argument for the reverse direction is the following: If there is a computation
traceτ such thatd[τ〉d′, then it can be seen that, due to the fact that a read can validate
at most one write, the following facts hold:

– The sequence of read symbols by the processP1 from the variablex2 is a subword
of the sequence of written symbols by the processP3 the same variable.

– The sequence of read symbols by the processP2 from the variablex4 is a subword
of the sequence of written symbols by the processP4 the same variable.

– The sequence of read symbols by the processP3 from the variablex3 is a subword
of the sequence of written symbols by the processP2 the same variable.

– The sequence of read symbols by the processP4 from the variablex1 is a subword
of the sequence of written symbols by the processP1 the same variable.

From the above facts, we can conclude that all the processes have guessed that same
sequence of indicesi1, . . . , ik since the sequence of read symbols by each process from
some variable is the same as the its sequence of written symbols to the same variable.

Furthermore, the sequence of read symbols by processP3 from the variablex6 is
a subword of the sequence of written symbols byP4 to the same variable, and the se-
quence of read symbols by processP4 from the variablex5 is a subword of the sequence
of written symbols byP3 to the same variable. Hence, we haveui1 · · ·uik = vi1 · · ·vik.

These facts imply that the processes have indeed guessed thesame (right) solution
to the given instance of PCP.

B Proof of Theorem 3

Assume that there is a computation having a causality relation containing a cycleC.
Then, for everyi ∈ [n], let Ei(C) be the projection ofC on the events of processP i .
By definition of the program order, for each processi, the setEi(C) is totally ordered

30

w.r.t. the relationpo. If Ei(C) is nonempty, letµi denote itspo-maximal element. It
can be seen thatµi corresponds necessarily to a write event. Indeed, by definition of
the causality relation, a read event can only be the source ofa dep-transition (which
is subset of thepo relation), and therefore if we assume thatµi is a read, this would
contradict its maximality inEi(C). Again by definition of the causality relation, a write
event can only be the source of arf-transition. Therefore, wheneverEi(C) is nonempty,
its maximal elementµi has arf-transition to some read eventr of some processP j .
Suppose thatj = i. Since,µi is maximal inEi(C), we have necessarilyr →po µi . But
the fact thatµi →rf r (by definition of r), means that the readr has been executed
after the writeµi . This contradicts the fact that writes cannot overtake reads in NSW.
Consequently, we must havej 6= i, which means thatµi is an exit point fromEi(C) by
the cycleC. Moreover, a write event can only be the target of adep-transition. Sinceµi

is in a cycle, there is necessarily an entry point toEi(C), and this entry point must be a
read event.

Similarly, it is possible to show that thepo-minimal element ofEi(C) is necessarily
a read event since a write can only be the target of adep-transition, and the existence of
such a transition would contradict minimality inEi(C).

Therefore, the elements of eachEi(C), for anyi, can be partitioned into entry points
(that are all read events), and exit points (that are all write events), with the prop-
erty that after each entry point there is at least an exit point, and before each exit
point there is at least an entry point. (We use “before” and “after” w.r.t. po.) Then,
C can be seen as a sequence of entry and exit points to the different setsEi(C). Let
r0w0r1w1 · · · rℓ−1,wℓ−1r0 be this sequence, where ther i ’s are (entry) read events, and the
wi ’s are (exit) write events. Notice that for everyi ∈ {0, . . . , ℓ−1}, we haver i →dep wi ,
andwi →rf r(i+1)modℓ.

Now, let us assume that the relaxationr→ w has never been applied in the con-
sidered computation, and consider the eventr0. We know that its execution has been
preceded by the execution ofwℓ−1 (due to the read-from relation). Then, since by our
assumption writes have never overtaken reads,rℓ−1 must have been executed before
wℓ−1, and therefore beforer0. By extending this reasoning to the whole sequence, we
deduce thatw0 must have been executed beforer0, which contradicts the assumption
thatr→ w was not used to relax program order.

C Proof of Theorem 7

The if direction : Let us introduce some notations that will be used below. Given
a NSW+ configurationc of the form 〈p,(WB(i, j))

j∈[m+1]
i∈[n] ,H 1, . . . ,H n〉, we define

state(c) = p, buffer(i, j)(c) =WB(i, j) for all i ∈ [n] and j ∈ [m+1], andhistoryk(c) = H k

for all k∈ [n].
Given a history bufferH = (B,π), we useEvent(H) to denote the event structureB

andPointer(H) to denote the pointerπ.
Given a content of the serialization bufferWB(i,m+1) = (B(i,m+1),;(i,m+1),λ(i,m+1))

underNSW+ for somei ∈ [n], we define the serialization bufferSeri(WB(i,m+1)) =
(B′(i,m+1),;

′
(i,m+1),λ

′
(i,m+1)) underNSW as follows:(1) B′(i,m+1) = {e∈ B(i,m+1) |∃ j ∈

[m],d ∈M. λ(i,m+1)(e) =w(i, j,d)}, (2) for everye,e′ ∈B′(i,m+1), we havee;′(i,m+1) e′

31

if and only if e;′(i,m+1) e′, and(3) for everye∈ B′(i,m+1), if λ(i,m+1)(e) = w(i, j,d) for
some j ∈ [m] andd ∈ M, thenλ(i,m+1)(e) = w(i, j,d[j]). Intuitively, the serialization
bufferWB′(i,m+1) is built fromWB(i,m+1) by keeping only the events associated with the
processP i and labeling these events by their corresponding write operations.

Let c1, . . . ,cn be ann-tuple ofNSW+-configurations, we say thatc1, . . . ,cn are syn-
chronized over their history buffers (orSynchronized(c1, . . . ,cn) holds) if and only if
for every i,k ∈ [n], we haveEvent(historyi(ci)) = Event(historyk(ck)) (i.e., the event
structure associated to the history buffer of the processP i in the configurationci is the
same as the event structure associated to the history bufferof the processPk in the
configurationck).

We define also the mappingfnsw+2nsw from n-tuple of NSW+ configura-
tions to NSW-configurations as follows: Given an-tuple c1, . . . ,cn of NSW-
configurations such thatSynchronized(ci1, . . . ,cin) holds, we define theNSW-

configurationfnsw+2nsw(c1, . . . ,cn) = 〈p,(WB(i, j))
j∈[m+1]
i∈[n] ,H = (B,π)〉 as follows:

– For everyi ∈ [n], we havep[i] = state(ci)[i]. This means that the state of the process
P i in fnsw+2nsw(c1, . . . ,cn) is the same as the state ofP i in the configurationci .

– For everyi ∈ [n] and j ∈ [m], we haveWB(i, j) = buffer(i,j)(ci). This means that
the content of the write bufferWB(i, j) of the processP i in the configuration
fnsw+2nsw(c1, . . . ,cn) is the same as the content of the write bufferWB(i, j) of P i
in the configurationci .

– For everyi ∈ [n], we haveWB(i,m+1) = Seri(buffer(i,m+1)(ci)). This means that
the content of the write bufferWB(i,m+1) of the processP i in the configuration
fnsw+2nsw(c1, . . . ,cn) is the same as the content of the write bufferWB(i,m+1) of P i
in the configurationci modulo the functionSeri defined above.

– The event structureB is equal toEvent(historyi(ci)) for all i ∈ [n] (which is well-
defined sincec1, . . . ,cn are synchronized over their history buffers). This means
that the event structureB i is the same as the event structure of the history buffer
associated to the processP i in the configurationci .

– For everyi ∈ [n] and j ∈ [m], we haveπ(i, j) = Pointer(historyi(ci))(i, j). This
means that the processP i is pointing to the sam events in the configurations
fnsw+2nsw(c1, . . . ,cn) andci .

Now, let us assume that there is a computationρ of the form〈p,S ′/0,H , . . . ,H 〉 7→∗N
〈p′,S ′/0,H ′, . . . ,H ′〉. This means that there is a sequencec0, . . . ,ck of NSW+ such that
c0 = 〈p,S ′/0,H , . . . ,H 〉, ck = 〈p′,S ′/0,H ′, . . . ,H ′〉, and ci−1 7→N ci for all i ∈ [k]. Let
Lmax∈ N be the number of events in the history bufferH ′ and Lmin be the number
of events in the initial history bufferH . For everyℓ ∈ {Lmin, . . . ,Lmax}, we associate
two n-tuple ofNSW+-configurationsvmin

ℓ andvmax
ℓ such that:

– vmin
ℓ = (ci1,ci2, . . . ,cin) such that for everyt ∈ [n], it ∈ {0, . . . ,k} is the minimal

index such that, in the configurationcit , the event structure of the history buffer
historyt(cit) of the processPt contains exactlyℓ events

– vmax
ℓ = (ci′1

,ci′2
, . . . ,ci′n) such that for everyt ∈ [n], i′t ∈ {0, . . . ,k} is the maximal

index such that, in the configurationci′t
, the event structure of the history buffer

historyt(ci′t
) of the processPt contains exactlyℓ events

32

Observe that, by definition, then-tuples vmin
ℓ and vmax

ℓ are synchronized (i.e.,
Synchronized(vmin

ℓ) andSynchronized(vmax
ℓ) hold). Let us prove our first lemma:

Lemma 4. For everyℓ ∈ {Lmin, . . . ,Lmax}, fnsw+2nsw(vmin
ℓ)→∗

N
fnsw+2nsw(vmax

ℓ).

Proof. Let us assume thatvmin
ℓ = (ci1,ci2, . . . ,cin) andvmax

ℓ = (ci′1
,ci′2

, . . . ,ci′n). From the

definition ofvmin
ℓ andvmax

ℓ , we haveit ≤ i′t for all t ∈ [n].
Observe that the event structures of the history buffers infnsw+2nsw(vmin

ℓ)
and fnsw+2nsw(vmax

ℓ) are the same. This means that along the computationσ :=
fnsw+2nsw(vmin

ℓ) →∗
N

fnsw+2nsw(vmax
ℓ) no memory update operations have been per-

formed. This implies that the order between the sequences ofoperations performed
by each process alongσ is not relevant. Hence, what we need to prove is that
for every t ∈ [n], we have a computationσt under NSW from the configuration
fnsw+2nsw(ci1,ci2, . . . ,cit , . . . ,cin) to the configurationfnsw+2nsw(ci1,ci2, . . . ,ci′t

, . . . ,cin)
where only the processPt is active. Then, using the computationsσ1, . . . ,σn, we can
construct the computationσ as follows: First, we start by executing the sequence of
operations of the processP1 performed alongσ1, then a sequence of of operations of
the processP2 performed alongσ2, and so on

Now, for every t ∈ [n], we know that there is a computationρt :=
cit ;

∗
N

ci′t
under NSW+. Then, we can construct a computationσt of N

under NSW from the configuration fnsw+2nsw(ci1,ci2, . . . ,cit , . . . ,cin) to the con-
figuration fnsw+2nsw(ci1,ci2, . . . ,ci′t

, . . . ,cin) such that the sequence of operations
performed by the processPt along σt is the same as the sequence of
operations performed byPt along ρt . (Recall that the processPt is the
only active process alongσt .) First, let us assume thatit = i′t , then we
have fnsw+2nsw(ci1,ci2, . . . ,cit , . . . ,cin) = fnsw+2nsw(ci1,ci2, . . . ,ci′t

, . . . ,cin), and so
fnsw+2nsw(ci1,ci2, . . . ,cit , . . . ,cin)→

∗
N

fnsw+2nsw(ci1,ci2, . . . ,ci′t
, . . . ,cin). Now, if it < i′t ,

we can use the following Lemma 5 to prove thatfnsw+2nsw(ci1,ci2, . . . ,cit , . . . ,cin)→
∗
N

fnsw+2nsw(ci1,ci2, . . . ,ci′t
, . . . ,cin).

Lemma 5. For every j∈ {it , . . . , i′t −1}, one of the following cases hold:

– fnsw+2nsw(ci1,ci2, . . . ,c j , . . . ,cin)→N fnsw+2nsw(ci1,ci2, . . . ,c j+1, . . . ,cin), or
– fnsw+2nsw(ci1,ci2, . . . ,c j , . . . ,cin) = fnsw+2nsw(ci1,ci2, . . . ,c j+1, . . . ,cin).

Proof. First observe that theNSW-configurationsγ = fnsw+2nsw(ci1,ci2, . . . ,c j , . . . ,cin)
andγ′ = fnsw+2nsw(ci1,ci2, . . . ,c j+1, . . . ,cin) are well-defined. In fact, by definition, we
have that the event structure of the history buffer associated with the processPt in the
configurationc j andc j+1 is the same the event structure of the history buffer associated
with the processPt in the configurationscit andci′t

.
Observe that the processPt has in the configurationsγ andc j (resp.γ′ andc j+1):

(1) the same control state, (2) the same content of the write buffers(WB(i, j))
j∈[m]
i∈[n] , (3)

the same pointed elements in the history buffer, and (4) the projection ofWB(i,m+1)
underNSW+ over the write operations performed byPt is exactly the same as the
content ofWB(i,m+1) underNSW. Hence, ifPt can perform an operation (other than an
update operation) fromc j to c j+1, thenP i can perform the same operation fromγ to γ′.

33

Otherwise, the local configuration of the processPt in c j andc j+1 remains unchanged,
and henceγ = γ′.

Other than the event structure of the history buffer ofPt remains the same along
the computation fromc j to c j+1, we exclude update operations of the processPt under
NSW+ since this can corresponds to a write operation performed byother processes
(recall that the serialization bufferWB(t,m+1) contain sequence of memory states due to
write operations of all the processes). ⊓⊔

Using the arguments above and Lemma 5, we conclude that for every ℓ ∈
{Lmin, . . . ,Lmin−1}, we havefnsw+2nsw(vmin

ℓ)→∗
N

fnsw+2nsw(vmax
ℓ). ⊓⊔

Our second lemma to prove is the following:

Lemma 6. For everyℓ ∈ {Lmin, . . . ,Lmax−1}, fnsw+2nsw(vmax
ℓ)→N fnsw+2nsw(vmin

ℓ+1).

Proof. Let us assume thatvmin
ℓ+1 = (ci1,ci2, . . . ,cin) andvmax

ℓ = (ci′1
,ci′2

, . . . ,ci′n). From

the definition ofvmin
ℓ+1 and vmax

ℓ , we havei′t < it for all t ∈ [n] (since the size of the
history buffer associated toPt in the configurationcit is stricly greater than the size of
the history buffer associated toPt in the configurationcit).

For everyt ∈ [n], we can show (by contradiction) that we have the following com-
putationci′t

;N cit which is due to an update (or an atomic read-write) operationper-
formed by the processPt . This is an immediate consequence of the definition ofci′t

and
cit . Let us assume thatci′t

;N cit is due to an update operation. The case of an atomic
read-write operation is treated in a similar way.

Then, we have, for everyt ∈ [n], all these update operations correspond to a write
operationω issued by the same process (sayPt′ with t ′ ∈ [n]) since all processes under
NSW+ have guessed the same order in which write operations will beupdate to the
main memory (see the semantics underNSW+ of aTransfer write operation).

Now, we can show that the write operationω is in the head of the serialization buffer
associated to the processPt′ in the configurationfnsw+2nsw(vmax

ℓ) and an update oper-
ation can be performed from this configuration underNSW to reach the configuration
fnsw+2nsw(vmin

ℓ+1). Observe that for everyt ∈ [n]\ {t ′}, the processPt has, in the config-
urationsfnsw+2nsw(vmax

ℓ) and fnsw+2nsw(vmin
ℓ+1), the same control state, the same content

of write buffers(WB(t, j)) j∈[m+1], and the same pointed events in the history buffer.⊓⊔

Now from Lemma 4 and Lemma 6, we obtain that there is a computation under
NSW from the configurationfnsw+2nsw(vmin

Lmin
) to the configurationfnsw+2nsw(vmax

Lmax
).

sincevmin
Lmin

= (c0, . . . ,c0) andvmax
Lmax

= (ck, . . . ,ck), this implies thatfnsw+2nsw(vmin
Lmin

) =

(p,S /0,H) and fnsw+2nsw(vmax
Lmax

) = (p′,S /0,H ′). Hence〈p,S /0,H 〉 →∗N 〈p
′,S /0,H

′〉.

The Only if direction : Assume that there is a computationρ of N underNSW. This
computation provides an orderO in which the write operations are updated to the main
memory (i.e., to the history buffer). This order will determine the moment at which the

write operations underNSW+ will be transferred from the write buffers(WB(i, j))
j∈[m]
i∈[n]

to the serialization ones(WB(i,m+1))i∈[n]. Now, we can construct a computationρ′ of N

34

underNSW+ such that the following invariant is preserved: After each action performed
by a processP i under NSW and NSW+, P i will have: (1) the same control state, (2) the

same content of(WB(i, j))
j∈[m]
i∈[n] , (3) the same pointed elements in the history buffer, and

(4) the projection ofWB(i,m+1) underNSW+ over the write operations performed byP i
is exactly the same as the content ofWB(i,m+1) underNSW. Then, if P i can perform
an operation underNSW, thenP i can perform the same operation underNSW+ while
preserving the above invariant. The transfer of a write operation from a store buffer
WB(i, j) to serialization buffers underNSW+ can be only performed if it respects the
order imposed byO. Moving a pointer underNSW can be simulated by moving this
pointer underNSW+.

D Proof of Lemma 2

First, we can show that any operationt ∈ ∆i performed by a processP i from c1 can be
performed byP i from c′1 and we reach a configurationc′2 larger or equal (wrt. to�)
thanc2. This is an immediate consequence of the definition of� sinceP i has the same
control state inc1 andc′1, the same last pending write operations per process (since they
are encoded as strong symbols), the last event in the historybuffers, and the pointed
events in the history buffers.

Let us assume that the systemN performs aTransfer writeoperation of a write op-
erationw(i, j,d) (labeling an event elemente) from c1 and reachesc2. Now, from the
configurationc′1, the systemN can also perform severalTransfer writeoperations (from
the write bufferWB(i, j)) until a write operationw(i, j,d) labeling an event elemente′

matchinge (wrt. to one of the injection functions defining the ordering) is transferred.
Then, we can easily prove that the reached configurationc′2 after this sequence ofTrans-
fer write operations is larger or equal toc2 (wrt. to�).

Finally, the case of aMemory updateor Move pointeroperation is similar toTrans-
fer write operation. AMemory update(resp.Move pointer) operation fromc1 can be
simulated by a sequence ofMemory update(resp.Move pointer) operations fromc′1.

E Proof of Theorem 9

The proof is by a reduction of PCP (Post’s Correspondence Problem) to our problem.
Let {u1, . . . ,un} and{v1, . . . ,vn} be an instance of PCP. We construct a systemN with
two processesP1 andP2 sharing a set of four variablesX = {x1,x2,x3,x4} such that,
two specific states inN are related by a run iff PCP has a solution for the considered
instance. The idea of the reduction is as follows:

ProcessP1 guesses the solution of PCP as a sequence of indicesi1, . . . , ik and per-
forms iteratively a sequence of operations: It (1) writes successively tox1 the symbols
of ui j , (2) reads fromx3 the symbols ofui j , (3) writes tox2 the indexi j , and (4) readsi j

fromx4, for j ranging backward fromk to 1. Moreover, each write (resp. read) operation
to (resp. from) a variable is followed by a write (resp. read)operation of the marker♯.
The insertion of the markers allows to ensure that a written value to a variable by one
of the processes can be read at most once by the other processes. In parallel, processP2

35

also guesses the solution of PCP and performs the same operations asP1, except that
it writes (resp. reads) symbols of the wordsvi j and the indicesi j to x3 andx4 (from x1

andx2), respectively.
Then, we prove that PCP has a solution if and only if it is possible to reach a state of

the systemN where the event structure is empty. In other words, a full computation of
N checks that the two processes have guessed the same sequenceof indices and that this
sequence is indeed a solution for the considered PCP instance. The “only if direction”
can be shown using the fact that the read operations of the indices i j to x2 andx4 of
processesP1 andP2 can be immediately validated using the RRWE. This means that
whenP1 writesui j to x1 followed by a read ofui j from x3, P2 writesvi j to x3 followed
by a read ofvi j from x1. Then, whenP1writes i j to x2 followed by a read ofi j from
x4, P2 writes i j to x4 followed by a read ofvi j from x2. Now, the read operations of the
indicesi j to x2 andx4 of processesP1 andP2 can be immediately validated using the
RRWE. Thus, the event structure ofN will only contain only event associated to(1)
write operations of the processP1 to the variablesx1 andx2, and of the processP2 to
the variablesx3 andx4, and(2) read operations of the processP1 to the variablex3, and
of the processP2 to the variablex1. (Notice that the write operations on the variablesx2

andx4 do not play any role in the remaining part of the computation since they can be
overtaken by any write/read operations on the variablesx1 andx3.) Then, it is possible
to construct a run of theN where the execution of each write done by one of the process
P1 (resp.P2) on the variablex1 (resp.x3) is immediately followed by its corresponding
read operation done byP2 (resp.P1) onx2 (resp.x1).

The argument for the reverse direction is the following: If there is a run which
empties the event structure, then it can be seen that, due to the fact that a read can
validate at most one write, the sequence of read symbols by processP2 is a subword
of the sequence of written symbols byP1, and vice versa. The same holds also for the
sequences of indices guessed by both processes. These factsimply that the processes
have indeed guessed the same (right) solution to the given instance of PCP.

Let us define more formally the reduction. LetD= Σ∪{♯,−}∪ [n] be the set of data
manipulated by processesP1 andP2.

To simplify the presentation, we need to introduce some notations. Let i ∈ [2],
j ∈ [4], s∈D∗, op ∈ {w, r}, m= length(s) and such thatm≥ 2. We use the macro tran-

sition p
op(i, j ,s)
−−−−−→i p′ to denote the sequence of consecutive transitionsp

op(i, j ,s(1))
−−−−−−−→i p1,

pl
op(i, j ,s(l+1))
−−−−−−−−→i pl+1 for all l ∈ [m−2], andpm−1

op(i, j ,s(m))
−−−−−−−→i p′ wherep1, . . . , pm are

extra intermediary control states ofP i that are not used anywhere else (and that we
may omit from the set of control states ofP i). We use alsoop(i, j,s) to denote the
fact that the event structure contains the following sequence of ordered operations
op(i, j,s(m)) ; · · ·; op(i, j,s(1)).

Let ν be a mapping fromΣ∗ to D∗ such that for every wordu = a1 · · ·am ∈ Σ∗,
ν(u) = ♯ ·a1 · · ·♯ ·am.

Then, a computation of the processP1 (resp.P2) is a sequence of phases where each
phase consists in the following operations:

1. Choose a numberl ∈ [n]:
p nop
−−−→1 pl (resp.q nop

−−−→2ql)

36

2. Write the sequence of dataν(ul) (resp.ν(vl)) to x1 (resp.x3):

pl
w(1,1,ν(ul))−−−−−−−→1 p1

l (resp.ql
w(2,3,ν(vl))−−−−−−−→2q1

l)
3. Read the sequence of dataν(ul) (resp.ν(vl)) from x3 (resp.x1):

p1
l

r(1,3,ν(ul))−−−−−−−→1 p2
l (resp.q1

l
r(2,1,ν(vl))−−−−−−−→2q2

l)
4. Write the sequence of data♯ · l to x2 (resp.x4):

p2
l

w(1,2,♯·l)
−−−−−−→1 p3

l (resp.q2
l

w(2,4,♯·l)
−−−−−−→2q3

l)
5. Read the sequence of data♯ · l from x4 (resp.x2):

p3
l

r(1,4,♯·l)
−−−−−→1 p (resp.q3

l
r(2,2,♯·l)
−−−−−→2q)

Next, we establish the link between the state reachability problem for the NSW∪
{RRWE}memory systemN and the existence of a solution for the PCP.

Lemma 7. There is i1, . . . , ik ∈ [n] such that ui1 · · ·uik = vi1 · · ·vik if and only if the
configuration〈(p,q),(♯, ♯, ♯, ♯),S /0〉 is reachable inN from the initial configuration
〈(p,q),(−,−,−,−),S /0〉.

Proof. (The if direction:) Assume that〈(p,q),(♯, ♯, ♯, ♯),S /0〉 is reachable inN from
〈(p,q),(−,−,−,−),S /0〉. This means that all the read operations ofP1 and P2 have
been validated.

Then, assume thatik, . . . , i1 is the sequence of indices chosen byP1 and that
jh, . . . , j1 is the sequence of indices chosen byP2. We use the facts that (1) write and
read operations by a same process to a same variable cannot bereordered, and that
(2) each write operation ofP1 can only validate a unique read operation ofP2 and
vice-versa (but of course some written values can be missed since processes are asyn-
chronous), to show that the following relations hold:

– ui1ui2 · · ·uik � v j1v j2 · · ·v jh.
– v j1v j2 · · ·v jh � ui1ui2 · · ·uik.
– i1i2 · · · ik � j1 j2 · · · jh.
– j1 j2 · · · jh � i1i2 · · · ik.

This implies thatui1ui2 · · ·uik = v j1v j2 · · ·v jh andi1i2 · · · ik = j1 j2 · · · jh.

(The only-if direction:) Assume that there is a sequence of indicesi1, . . . , ik ∈ [n] such
thatui1 · · ·uik = vi1 · · ·vik. Then, we can construct the following run ofN from the initial
configuration〈(p,q),(−,−,−,−),S /0〉 to the configuration〈(p,q),(♯, ♯, ♯, ♯),S /0〉:

For everyl from k to 1, we have

1. First, P1 chooses the indexi l and stores in its event the sequence of operations
w(1,2, ·i l)r(1,3,ν(ui l))w(1,1,ν(ui l)).

2. Then,P2 chooses the indexi l and stores in its event structure the sequence of oper-
ationsw(2,4, ·i l)r(2,1,ν(vi l))w(2,3,ν(vi l)).

3. P1 can use the RRWE to validate the following read operationr(1,4, i l) with the
last write operation of the processP2 onx4.

4. P2 can use the RRWE to validate the following read operationr(2,2, i l) with the
last write operation of the processP1 onx2.

5. P1 stores in its event structure the write operationw(1,2, ♯).

37

6. P2 stores in its event structure the write operationw(2,4, ♯).
7. P1 can use the RRWE to validate the following read operationr(1,4, ♯) with the last

write operation of the processP2 onx4.
8. P2 can use the RRWE to validate the following read operationr(2,2, ♯) with the last

write operation of the processP1 onx2.

Finally,N adopts the following run where the execution of each write done by one
of the processP1 (resp.P2) on the variablex1 (resp.x3) is immediately followed by its
corresponding read operation done by the processP2 (resp.P1) on the variablex2 (resp.
x1).

