
April 21th, 2015 1

Do we need
Rack-Scale Coordination?

Alysson Bessani

April 21th, 2015 2

Rack-Scale Computers (RSC)
(or Datacenter-in-a-Box systems)

•  Tightly integrated rack
(in a single box)

•  Very fast node
interconnection

•  Special-purpose
components

•  “Uncommon” network
topologies

Node Node Node

Node Node Node

Node Node Node Node

FPGA CPU

GPU NIC

April 21th, 2015 3

Rack-Scale Computers (RSC)
(or Datacenter-in-a-Box systems)

“Traditional” Model “Torus” Model

Node Node Node

Node Node Node

Node Node Node

Node Node Node

April 21th, 2015 4

Do they need coordination?

•  Leader election
•  Locks
•  Barriers
•  Atomic counters
•  Augmented Queues
 …
•  Configuration management

April 21th, 2015 5

Out of the box Alternatives

•  Shared memory algorithms

•  Multi-kernel coordination

•  Datacenter coordination

April 21th, 2015 6

Single-machine Coordination
•  Shared-memory algorithms

–  Classical shared memory locking algorithms exist since the 70s
(Lamport’s Bakery, etc.)

–  Algorithms require some consistency on the shared memory
•  Total Store Ordering (TSO – weaker than sequential consistency)
•  The best know result requires a constant number of remote memory

references and memory barriers [PODC’13]

•  Multi-kernel Solution
–  A service (deployed on a core) that provides all the coordination

primitives that applications need
•  E.g., Barrelfish supports a service like Zookeeper [APSys’12]

•  Both solutions do not tolerate faults

April 21th, 2015 7

Datacenter Coordination
•  Coordination services:

–  dependable (limited) storage
–  synchronization power
–  client failure detection

System Data Model Sync. Primitive Wait-free
Boxwood [44] Key-Value store Locks No
Chubby [17] (Small) File system Locks No
Sinfonia [6] Key-Value store Microtransactions Yes
DepSpace [14] Tuple space cas/replace ops Yes
ZooKeeper [31] Hierar. of data nodes Sequencers Yes
etcd [3] Hierar. of data nodes Sequen./Atomic ops Yes
LogCabin [5] Hierar. of data nodes Conditions Yes

Table 1. Coordination services and their characteristics.

includes multiple operations on shared locks in Chubby. This
kind of tradeoff is inherent to the choice of synchroniza-
tion primitives. As far as we know there is no “silver bullet”
primitive that would allow the implementation of all coordi-
nation tasks in an optimal way, that is, using a single RPC.

Possible Solutions. A possible solution would be to im-
plement and provide a rich and extensive API with all prac-
tically-relevant primitives. However, this approach presents
two fundamental limitations. First, it is hard to define the
set of operations such API must provide, probably requir-
ing regular changes to account for new uses of the system.
Second, this would create a huge coordination kernel, mak-
ing it difficult for programmers to figure out how to cor-
rectly implement their tasks. A good coordination kernel
is small, elegant, expressive, and stable, providing under-
pinnings for normal programmers to create coordination li-
braries and custom coordination tasks.

Notice that some systems provide extensive libraries of
coordination recipes, which are implemented based on their
respective coordination kernel (e.g., Apache Curator [2] for
Zookeeper). Despite the ease of use of such libraries, the
performance of the coordination tasks are still constrained
by the underlying coordination kernel, as we show in §6.

An entirely different approach is to build custom services
tailored to the specific needs of an application (e.g., as done
in [33]). This way, all coordination tasks can be natively sup-
ported via a single RPC to the service. The basic idea is to
implement a highly-available service with the required in-
terface and features from ground up, based on a consensus
protocol (e.g., Paxos [39], RAFT [46], Zab [35]) or a repli-
cation library (e.g., BFT-SMaRt [13], JZab [4]). The first ap-
proach is time-consuming since reimplementing a replicated
state machine is quite complex [20]. The second approach,
although much simpler than the first, can be extremely error
prone, since ensuring determinism and predictable perfor-
mance in replicated state machines is inherently difficult.

Our Approach. We advocate the use of extensions at the
server side for making (fixed-kernel) coordination services
as efficient as possible for any coordination task. The ob-
jective is to get the best features of fixed-kernel (simple and
expressive programming model) and custom (optimal coor-
dination tasks) coordination services.

3. A Model for Extensible Coordination
In this section, we introduce a conceptual model to discipline
the extensibility of current and future coordination services.

3.1 System Model
A coordination service CS is a stateful service accessed
through a set of operations op1, ..., opn that read or mod-
ify its state S, which consists of a set of data objects. These
operations define the API of the coordination kernel. If an
operation op can change the state S (depending on its pa-
rameters and the actual state) it is called an update, other-
wise it is called a read. The modification of the state by an
update triggers an event v. An extension e = hP,Ai contains
a pattern P and a sequence of operations A that are executed
atomically. The extension is triggered when an operation or
an event matches the pattern P defined for the extension.

3.2 Requirements
Our extension mechanism must satisfy these requirements:

• No changes to the API: A fundamental principle of our
extension model is to not change the coordination kernel.

• Security: An extension should run with the privileges of
the client that has invoked it. To prevent attacks, an exten-
sion should only be executed if a client has acknowledged
the use of the extension, either by registering the exten-
sion itself or by sending an explicit one-time request.

• Bounded resource consumption: Extensions should con-
sume a bounded amount of memory and CPU in order to
not degrade or disrupt system performance as well as to
support performance predictability.

• Determinism: To ensure consistency, extensions in ac-
tively-replicated systems have to be deterministic: given
a state and an operation, applying an extension must
always generate the same reply and resulting state.

3.3 Types of Extensions
We distinguish between two main categories of extensions.
An operation extension is invoked as the direct result of
a client issuing a request to the coordination service. In
contrast, an event extension is executed in reaction to the
state of the coordination service being changed. Extensions
of both types may be combined, as shown in §6.1.4.

Operation Extensions. Operation extensions allow clients
to invoke multiple operations on the coordination service by
using only a single RPC. In the typical use-case scenario,
operations called by the same extension are dependent on
each other (e.g., because they access and/or modify the same
data objects), and a client combines them in order to exploit
atomic execution. Operation extensions offer one key bene-
fit: instead of shipping the data to be processed to the client,
such extensions allow complex operations to be performed
at the server side, directly on the data objects.

April 21th, 2015 8

So…

•  A RSC has multiple fault domains, so fault
tolerance is needed
– Coordination services are our best bet

•  Durability may or may not be needed
– Strictly required for configuration management

•  Extensibility for improved performance
– See the “Extensible Distributed Coordination”

paper/talk on EuroSys’15

April 21th, 2015 10

Traditional Network
•  The coordination service is implemented as usual,

i.e., “just deploy Zookeeper on your RSC”
–  A bunch of replicas ensure the service is fault tolerant
–  Durability techniques ensure full crash recovery

•  Possible improvements:
–  More efficient replication algorithms

•  DARE [HPDC’15] proposes RAFT-like RDMA-based state
machine replication with 12 microsec latency (1kB write)

–  35x faster than ZK in the same network

–  Faster durability mechanisms (e.g., NVRAM)

April 21th, 2015 11

Torus Network
•  Coordination scope

–  L0: local CPU
–  L1: CPU + other local computing

devices
–  L2: all nodes reachable in one hop
–  L3: all nodes reachable in two hops
–  …
–  LN: all nodes reachable in N-1 hops

•  This may lead to the development
of new quorum systems and fault-
tolerant algorithms

Node Node Node

Node Node Node

Node Node Node

Node Node Node

Node Node Node

Node Node Node

Node Node Node

Node Node Node

Node Node Node

Node Node Node

Node Node Node

Node Node Node

Node Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

1
2

3

April 21th, 2015 12

Questions… questions…

•  The RSC software stack requires general
coordination support. The question is:
–  Do we need anything specific or it is just a matter of

deploying what we already have?

•  Other questions:
–  Can specialized hardware (FPGA) help?
–  Can we assume/implement reliable failure detection?
–  Efficiency or predictability?
–  What about data-centric coordination?

April 21th, 2015 13

More Questions?

