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A Data-Driven Approach for Correcting Search Queries

A Submission to the Speller Challenge

Gord Lueck
gord.lueck@utoronto.ca

ABSTRACT

Search phrase correction is the challenging problem of propos-
ing alternative versions of search queries typed into a web
search engine. Any number of different approaches can be
taken to solve this problem, each having different strengths.
Recently, the availability of large datasets that include web
corpora have increased the interest in purely data-driven
spellers. In this paper, a hybrid approach that uses tradi-
tional dictionary-based spelling tools in combination with
data-driven probabilistic techniques is described. The per-
formance of this approach was sufficient to win Microsoft’s
Speller Challenge in June, 2011.

1. INTRODUCTION

Spelling correctors for search engines have the difficult task
of accepting error-prone user input and deciphering if an er-
ror was made, and if so suggesting plausable alternatives
to the phrase. It is a natural extension to the existing
spell checkers that are common in document editors today,
with the added expectation that suggestions leverage ad-
ditional context provided by other terms in the query. In
addition, it is common for search phrases to legitimately in-
clude proper nouns, slang, multiple languages, punctuation,
and in some cases complete sentences. The goal of a good
search phrase corrector would be to take all factors into con-
sideration, evaluate the probability of the submitted query,
and to suggest alternative queries when it is probable that
the corrected version has a higher likelihood than the input
phrase.

A good spelling corrector should only act when it is clear
that the user made an error. The speller described herein
also errs on the side of not acting when it is unclear if a
suggested correction is highly probable. Common speller
implementations tend not to suggest phrases that have sim-
ilar probability if the input query is sane.

*Corresponding Author

Another useful metric to measure input queries woul dbe to
determine the number of relevan tsearch results the query
has. However, without the luxury of a large search en-
gine from which to measure number of results for candidate
phrases, this implementation relies upon probability data
solely from Microsoft via their web-ngram service[6].

This paper gives an overview of the methods used to create
such a search phrase correction service. An overview of the
problem as formulated by the challenge administrators is
given, including an outline of some of the assumptions and
models that were used in the creation of this algorithm.

A key component to the entry is an error model that takes
into consideration probabilities as obtained through a his-
torical bing search query dataset while estimating frequen-
cies of errors within search queries. The widely available
hunspell dictionary[1] speller is used for checking for the ex-
istence of a dictionary word matching each word in the input
query, and for suggesting potential corrections to individual
words. Any algorithmic parameters present in the final al-
gorithm are also described, and methods used to fix those
parameters are described. Some specific optimizations for
the contest are described, and recommendations are made
for improvement of the expected recall metric of the contest
evaluator.

We describe our approach to the problem, some assump-
tions that we made, and describe an error model that we
formulated to approximate frequencies and locations of er-
rors within search queries. Our algorithm is described, as
well as methods for calculating parameters that were used
in the final submission to the challenge[4].

2. PROBLEM FORMULATION

The algorithm is evaluated according to the published EF1
metric. Suppose the spelling algorithm returns a set of vari-
ations C(q), each having posterior probabilities P(c|q). S(q)
is the set of plausable spelling variations as determined by
a human, and Q is the set of queries in the evaluation set.
The expected precision, EP, is

1
EP =15 > > Ir(c,q)P(clg)
q€Q ceC(q)
and, the expected recall is

1 1r(C(g), 0)
FR=1512. 2 ~ s

q€Q a€S(q)
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where the utility functions are:

Ir(C(q),a) = lifa € C(q) for a € S(q),0 otherwise

Ip(c,q) = lifc € S(q),0 otherwise

For a given search query g, the algorithm will return a set
of possible corrections, each with an assigned probability,
such that the probabilities P(c|q) add to unity for ¢ € Q.
A successful spelling algorithm will return a set of possible
corrections and probabilities that maximizes EF1.

2.1 Assumptions
A number of assumptions guided our submission:

e Binary operators (AND, OR, NOT) are not supported
in the search engine. That is, every word or phrase in
the query is by default an ’AND’ operation.

e Punctuation and its affect on the submitted query would
be negligible.

e Most queries would have spaces correctly located within
the printable characters.

e The evaluation dataset would be similar to the evalu-
ation dataset in terms of error type, error frequency,
phrase length, and frequency of english words vs. proper
nouns.

e Dictionary based text corrections would be able to pro-
vide the basis for the most obvious spelling errors in
the query string.

These assumptions may not be valid for all spelling domains,
but seemed to be true based on inspection of the TRECI5]
dataset that was to be used for evaluation. These assump-
tions were not validated, either, but were generated through
some iterative testing on the evaluation dataset. It was de-
termined that a sufficient speller could be formulated using
basic dictionary based software tools, the joint probability
n-gram service provided by Microsoft, and some balancing
of probabilities.

3. ALGORITHM

There are two main sections of the algorithm - a generation
step wherein a set of alternative spellings are postulated,
and second, a step where these alternatives are trimmed
and sorted via a probability calculation.

3.1 Generation of Alternatives

The speller recommends corrections for each individual term
resulting from the input query having been split on whites-
pace. Each term is compared against a well known english
dictionary. If the term does not exist in the dictionary,
the original term plus the N; most likely spelling sugges-
tions were obtained from this service, and added to the set
of possible terms. These individual term corrections were
generated from the well known hunspell library[l], using
the United States English dictionary that comes with the
ubuntu operating system[2]. This implementation only con-
sidered an English language dictionary.

3.1.1 Trimming the Search Space

The generation of alternative terms was repeated for each
term ¢ in the search phrase. In doing this, the algorithm
generates a potentially large number of candidate phrases,
as the corrected phrase set consists of the set of all possi-
ble combinations of candidate terms. That is a maximum of
(n¢+1)" possible corrections. For a typical query of 5 terms,
each having 4 suggestions, that means checking 3125 differ-
ent combinations of words for probabilities. If more than
100 potential corrections were found, the search space was
reduced by halving the number of individual term queries
until the number fell below 100. In practice, this trimming
step was only rarely performed, but was left in to meet basic
latency requirements for a web service. In practice there was
no penalty in the contest for having a long running service,
and the algorithms’ accuracy was likely not affected by this
trimming step.

3.2 Probabilistic Error Model

The algorithm is required to return the term P(c|q), the
probability that the requester meant the phrase ¢ when q
was input. By Bayes’ theorem,

P(clq) =

(1)

We can reduce this problem for the generation of a single
query correction set - for a single query, P(q) is constant
and can be ignored.

P(clg) ~ P(gle) * P(c) (2)

Microsoft’s n-gram service provides the ability to query var-
ious datasets the relative probability of an arbitrary n-gram
c. Our algorithm made little attempt to modify or tune
these data for P(c) by altering the Microsoft bing source or
date. The crux of the problem, then is to generate a model
for P(g|c), the probability that the search query ¢ was input
given a possible correction c.

It seems reasonable that P(g|c) decreases exponentially with
increasing edit distance between ¢ and ¢, but that the length
of the query is also important. It was postulated that there
is an average error rate for typing search queries. The more
a user types, the more errors they are likely to make. It
was postulated that the probability of an error occurring
in a string is a function of its’ length and the levenshtein
distance from the query to the corrected query.

We modelled our error term P(g|c) based on this. The loga-
rithmic probability as received from the web-ngram service
log(P(c)) was modified as follows to calculate P(c|q):

relev(q, c)

log(P(clq)) = log(P(c)) — ial

; ®3)

where lev is the well known levenshtein distance between
two strings, and |g| is the length of the query string q. 7 is
an unknown constant that represents a kind of error rate for
search queries. Combining 3 and 2, we have a simple means



of calculating the probability of a correction given the input
query, and for any individual correction out of the generated
candidates,

P(cilg)
[L,ec Plesla)

is the returned probability, such that all probabilities add to
one.

P(eilq) = (4)

3.3 Phrase Splitting

Sometimes no plausable alternate spelling candidates are
generated as described above. This can occur if all terms
existed in the dictionary or the original query was simply
the most optimal according to the above metric. For these
queries a second method of correction was attempted, us-
ing Microsoft’s word breaker service. The search phrase was
submitted, without whitespace, to the service advertised as
part of the n-gram service[3]. Any alternate versions of the
phrase returned were also evaluated according to that de-
scribed in Probabilistic Error Model.

3.4 Determination of Parameters

Two parameters were tuned to the publicly available eval-
uation dataset before the test was run onthe speller. Ng,
the number of term suggestions per input term, and eg,
the error penalization term, were both tuned using a greedy
search over the input space. It was determined that the
optimal settings were Ny = 2 and er = 36.

Interestingly enough, only two suggestions per term were
requested from the hunspell library for words that did not
exist in the dictionary. There was little change in the final
score with N; > 2.

The other interesting fact was that probabilities were penal-
ized by a factor of 10 according to the error rate of the input
query. With er = 36, the algorithm reduces the probability
by a factor of 10 for each edit occurring in a string of length
36. Longer strings are penalized less for having an error,
shorter strings are penalized more.

4. SCORE OPTIMIZATION
4.1 Thresholding

A few optimization steps were completed before returning
a final result. If the original query was still the most likely
phrase of all of the candidates examined, our algorithm re-
turns the search query unchanged, with a probability of 1.0.
From a users’ standpoint, it would not be desireable in this
case to suggest a correction to the input phrase.

The evaluation metric for the contest is the harmonic mean
of expected precision (EP) and expected recall (ER). There
is a slight weakness in the recall metric in that it is possi-
ble that a speller returns many incorrect modifications to a
search phrase with very low probability in an effort to gain
a high recall score. A perfect recall score can be obtained if
any speller returns all of those corrections in the evaluation
dataset, despite the probability calculated by the speller.

If, upon completion of the algorithm, there are any number
of candidate strings with a score less than 10x less likely
than the most likely result, these phrases are returned, but

their probabilities are minimized to a very small number
(1z107'5). The higher probability remaining phrases are
increased accordingly, such that the total of all corrections
remains 1.0.

4.1.1 Common Errors

A number of very common transformations in the English
language were applied to the input query, and returned with
this same very low, probability. These include adding and
removing the most commonly misplaced characters from the
input query. In practice, this not a good strategy but one
that simply optimizes for the lawed Expected F1 (EF1) met-
ric for the purposes of the contest only.

To determine the common transformations, the evaluation
dataset was examined in terms of the types of errors that
occurred, and the characters that were most likely in error.
To generate this set of characters, the character differences
were calculated in the evaluation dataset for cases where the
input phrase had at least one correction as determined by
expert. A simple script generated and counted these charac-
ters when they were involved in an edit operation mapping
the input query to a corrected version. These characters in-
cluded, in order, ’’, ’s’, ’e’, ’t’, ’a’, 'r’, ¥, 'u’, ', ’s’, 'n’ and
so on. These characters were used to calculate by brute force
a very large set of possible corrections, and assigned these
the same miniscule probability used above, adjusting the al-
gorithmically calculated corrections accordingly to maintain
a sum of one across all corrections.

S.  CONCLUSIONS

The use of already established algorithms for English lan-
guage spell checking and word suggestion as well as very
large datasets that supply probability information has proved
to be a successful approach to writing a speller. This sub-
mission made no attempt to tag parts of speech or named
entities, but to use only a basic dictionary corrector and the
microsoft n-gram web service to approximate probabilities
of input strings.

The lack of good quality test data in this space motivated
the author to tune towards error statistics in an evaluation
dataset. In practice, the extensibility of this approach to
a wider audience would need to be tested in a production
environment with a wider variety of data.

There is certainly a risk of overfitting any algorithm to a
narrow set of training data, only very basic properties of
the evaluation dataset were used to tune this algorithm. The
error rate, the approach of penalizing corrections with high
error rates, and the general method of generating suggestion
candidates seems valid.

It is recommended that any future contest based on the
expected recall metric be altered to consider the posterior
probabilities of the returned corrections.

The algorithm as presented does have its shortfalls. This
particular implementation performs very poorly when pre-
sented with misspelled proper nouns, slangs, and punctua-
tion variations. No effort was made to accommodate differ-
ent lexicons. More work is needed in these areas before a



worthy spelling corrector based on this technique could be
useful in a production setting.
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ABSTRACT

Query spelling correction is a crucial component of moden
search engines that can help users to express an informa-
tion need more accurately and thus improve search quality.
In participation of the Microsoft Speller Challenge, we pro-
posed and implemented an efficient end-to-end speller cor-
rection system, namely CloudSpeller. The CloudSpeller sys-
tem uses a Hidden Markov model to effectively model major
types of spelling errors in a unified framework, in which we
integrate a large-scale lexicon constructed using Wikipedia,
an error model trained from high confidence correction pairs,
and the Microsoft Web N-gram service. Our system achieves
excellent performance on two search query spelling correc-
tion datasets, reaching 0.970 and 0.940 F1 scores on the
TREC dataset and the MSN dataset respectively.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Query Alteration

General Terms

Algorithms, Performance, Experimentation

Keywords
CloudSpeller, Spelling Correction, Hidden Markov Model

1. INTRODUCTION

The Text Information Management group at the Univer-
sity of Illinois at Urbana-Champaign has participated in the
Microsoft Speller Challenge. The task of the challenge is
to develop a speller that generates most plausible spelling
alternatives for a search query. This paper is a report of
our proposed methods, experiments and findings about the
problem based on the results and analysis on two spelling
datasets.

Copyright is held by the author/owner(s)..

Spelling correction has a long history [10]. Traditional
spellers focused on dealing with non-word errors caused by
misspelling a known word as an invalid word form. They
typically rely on manually created lexicons and simple dis-
tance measures like Levenshtein distance. Later, statistical
models were introduced for spelling correction, in which the
error model and n-gram language model are identified as two
critical components [3]. Whitelaw et al. alleviated the cost
of building error model by leveraging the Web to automati-
cally discover the misspelled/corrected word pairs [15].

With the advent of the Web, the research on spelling cor-
rection has received much more attention, particularly on
the correction of search engine queries. Compared with tra-
ditional spelling tasks, it is more difficult as more types of
misspelling exist on the Web. Research in this direction
includes utilizing large web copora and query log [4, 5, 2],
employing large-scale n-gram models [Brants et al. 2007],
training phrase-based error model from clickthrough data
[13] and developing additional features [7].

To address the challenges of spelling correction for search
queries, we propose several novel ideas which are imple-
mented in an efficient end-to-end speller system (called Cloud-
Speller) of high precision and recall. First, we construct a
large and reliable lexicon from Wikipedia. The large size
(over 1.2 million words) of the lexicon overcomes the lim-
itation of using a small traditional lexicon, such as iden-
tifying human names and neologisms. A clean dictionary
is also critical for handling non-word spelling errors, which
is the most frequent error type in search queries. Second,
we propose a Hidden Markov Model to model all major
types of spelling errors into a unified framework. A Top-K
paths searching algorithm is designed to efficiently maintain
a small number of highly confident correction candidates.
Third, the candidate paths are finally re-ranked by a ranker
which takes into account two major types of features, one
from the error model, the other from the n-gram language
model. We train the error model with a set of query cor-
rection pairs from the web. Web scale language model is
obtained by leveraging the Microsoft Web N-gram service.
We demonstrate that these two types of features are suffi-
cient for building a highly accurate speller for web queries.
Such a system also has the advantage in efficiency compared
to systems employing tens of features [7].

2. PROBLEM SETUP AND CHALLENGES

Given a search query, the task of search query spelling



correction is to find the most effective spelling variant of the
query that would retrieve better results than the original
query. Formally, let ¥ be the alphabet of a language and
L C X* be a large lexicon of the language. We define a
general search query correction problem as:

Given query ¢ € ¥*, find top-K ¢’ € L such that
P(q'lg) € mazKier+ P(tlq),

where P(q'|q) is the conditional probability of ¢’ given ¢ that
follows the general noisy channel framework.

The problem of search query spelling correction is signifi-
cantly harder than the traditional spelling correction. Pre-
vious researches show that approximately 10-15% of search
queries contain spelling errors [5]. We have identified four
major types of errors in search queries. (1) non-word sub-
stitution, e.g. insertion, deletion, misspelling of characters.
This type of error is most frequent in web queries, and it is
not uncommon that up to 3 or 4 letters are misspelled. This
type of error can be corrected accurately using the noisy
channel model with a trusted lexicon. (2) confusable valid
word substitution, e.g. “persian golf” — “persian gulf”. This
type of error can be effectively addressed by the context sen-
sitive spellers[9]. (3) cancatenation of multiple words, e.g.
“unitedstatesofamerica” — “united states of america”. This
problem can be tackled by n-gram model based word breaker
[14] (4) splitting a word into parts, e.g. “power point slides”
— “powerpoint slides”. For each type of errors in search
query spelling correction, there are effective solutions. How-
ever, predicting the error type given a query is difficult, and
it is quite common that more than one type of errors co-
occur in a query. Therefore, a successful speller for web
queries requires a solution addressing all types of spelling
errors with high accuracy.

3. THE CLOUDSPELLER ARCHITECTURE

The CloudSpeller system accepts a search query as input.
Then a unified HMM model generates a small list of most
likely candidate corrections (paths). After that, a ranker
will score and re-rank those candidate paths, and finally
generate the top-K corrections as the output. In this section
we describe the unified HMM model and the ranker. We
will also describe the critical components our HMM model
and ranker rely on, namely the large-scale lexicon, the error
model and n-gram model.

3.1 An HMM Model for Query Correction

We adopt a generative model for spelling correction. More
specifically, we employ a Hidden Markov Model (HMM) for
this purpose. The generative process follows a word-by-word
process. At the beginning, the user has a word in its correct
form in mind, it is then transformed through a noisy channel
and becomes potentially misspelled. In this process, it is
not only possible to misspell the given word into another
word, but also sometimes possible to split the word into
several words, or even combine the two types of misspellings.
When the user has a second word in mind, he or she may
have similar misspellings as the previous word, but may also
incorrectly attach the word (or part of it) to the previous
word. Note that this HMM is more general than the existing
HMDMs used for spelling correction [5] because it can model
many different kinds of spelling errors.

Formally, let § = {A, B, 7} be the model parameters of the

HMM, including the transition probability, emission prob-
ability and initial state probability. Given a list of query
words (obtained by splitting empty spaces), the states in
a state sequence are one-to-one corresponding to the query
words except for the merging state. Each state is represented
by a phrase in ¥*. Theoretically the phrase in a state can
be chosen arbitrarily, however for the sake of efficiency we
reduce the state space by only choosing a phrase in the lex-
icon L* such that dist(s,t) < §, where dist(s,t) is the edit
distance between the state phrase s and word ¢ in the query.
Each state also has the type information; indicating whether
the state is a substitution, merging, splitting or NULL state.
In order to accommodate a merging state we introduce the
NULL state. The NULL state doesn’t emit any phrase, and
the state transition probability is always equal to 1. For
the model parameter A, B, we employ the bigram model
probability as the state transition probabilities A and use
the error model probabilities as the emission probabilities
B. After this treatment, the probability of generating the
original query from a state sequence (path) is the product of
all phrase-to-phrase error model probabilities and the total
language modeling probability of the path.

Figure 1 illustrates our HMM model and a generative ex-
ample. In this example, there are three potential errors
with different error types, e.g. “goverment” — “government”
(substitution), “home page” — “homepage” (splitting), “illi-
noisstate” — “illinois state” (concatenation). The state path
showed in Figure 1 is one of the state sequences that can gen-
erate the query. Take state ss for example, s2 is represented
by phrase homepage. Since s2 is a merging state, it emits a
phrase home page with probability P(home pagelhomepage)
according to the error model. Subsequently sz transits to
state sz with probability P(ss|s2) according to the bigram
language model.

With this model, we are able to come up with arbitrary
corrections instead of limiting ourselves to an incomprehen-
sive set of queries from query log. By simultaneously model-
ing the misspellings on word boundaries, we are able to cor-
rect the query in a more integrated manner. Moreover, to
handle the large number of potential corrections, we have de-
signed and implemented a dynamic programming algorithm
to compute the Top-K corrections efficiently. If there are
n states in a state path, and the maximum number of can-
didate words for each query term is M, the computational
complexity of our algorithm is O(M? - n - K). Experiments
results show that the recall of Top-40 corrections obtained
by this algorithm is about 98.4% in the TREC dataset and
96.9% in the MSN dataset.

query: goverment home page of illinoisstate
emission: goverment home page | of | | illinoisstate |
state path: Gu) (o)
S1 S2 S3 S4 S5
type: substitution type: merging  type: NULL type: substitution type: splitting

Figure 1: HMM model for query spelling correction

11



3.2 Candidate Paths Re-ranking

After generating a small list of candidate paths, we pro-
pose a ranker to re-rank these paths based on the weighted
sum of error model probability and n-gram model proba-
bility. We find that probabilities from these two compo-
nents are most important factors for web query correction.
However, a successful speller requires a careful combination
of these probabilities. Specifically, for a candidate path ¢’
with n state nodes. We score ¢’ based on the following 7-
parameter interpolated model:

S, = an logP(qnlqy)| + w7 -log(P'(¢")) (1)

n=1

where P(qn|g),) is the error model probability of transform-
ing the phrase gy, from g;,, P'(q’) is the n-gram probability of
the phrase in path ¢’. And w, € {w1,...,we} is determined
by the type of the state node s,, according to the following
rule:
if g, € L:
if ¢, is transformed to ¢, by concatenation: w, = w;
else if ¢}, is transformed to ¢, by splitting: w, = wa
else: w, = w3
else if q;, ¢ L:
if ¢/, is transformed to g, by concatenation: w, = w4
else if ¢}, is transformed to ¢, by splitting: w, = ws
else: wy, = ws
The model parameters {w1, ..., w7} are trained by the Powell
search algorithm [12] on the development dataset.

3.3 A Large-scale Trusted Lexicon

We find that with a clean vocabulary, it will significantly
improve the performance of spelling correction. However, to
obtain such a clean vocabulary is usually difficult in prac-
tice. To do this, we make use of the Wikipedia data. Par-
ticularly, we select the top 2 million words from Wikipedia
by their word frequencies, and automatically curate the ob-
tained words by removing those frequent but illegitimate
words from the vocabulary. This curate process involves
checking if the word appears in the title of a Wikipedia ar-
ticle, comparing the bigram probability of other words etc.
Finally we obtained 1.2 million highly reliable words in the
vocabulary.

34 Error Model Training

The error model intends to model the probability that
one word is misspelled into another (either valid or invalid).
Previous studies have shown that a weighted edit distance
model trained with a sufficient large set of correction pairs
could achieve a comparable performance with a sophisti-
cated n-gram model [6]. Meanwhile, a higher order model
has more tendency to overfit if the training data is not large
enough. Given these considerations, we adopt the weighted
edit distance model as the error model in our system. More
specifically, we follow the study of Duan and Hsu [6] to
model the joint probability of character transformations as
the weighted edit distance. In this model, the basic edit
operation is defined as a pair of characters from source and
destination of the correction, respectively. Null character is
included in the vocabulary to model the insertion and dele-
tion operation. The misspelled word and its correction are
viewed as generated from a sequence of edit operations. The
parameters in this model are trained with an EM algorithm

which iteratively maximizes the likelihood of the training
set of correction pairs. To obtain a proper set of correction
pairs for training, we leverage the existing spelling services
of major search engines (Google and Bing). We submit the
queries to the spelling services and record the corrections
once consensus is reached.

3.5 Use of Web N-gram Model

Another important factor in selecting and ranking the cor-
rection candidates is the prior probability of a correction
phrase. It represents our prior belief about how likely a
query will be chosen by the user without seeing any input
from the user. In this work we make use of the Web n-gram
service provided by Microsoft [1]. Web n-gram model in-
tends to model the n-gram probability of English phrases
with the parameters estimated from the entire Web data.
It also differentiates the sources of the data to build differ-
ent language models from the title, anchor text and body
of Web pages, as well as the queries from query log. In
our study, we find the title model is the most effective for
query spelling correction. We hypothesize that this may be
because the training data for query model is much noisier.
Particularly, misspelled queries may be included in the train-
ing data, which makes it less effective for the task of spelling
correction. Despite trained with the Web data, Web n-gram
model may also suffer from data sparseness in higher order
models. To avoid this issue, we make use of the bigram
model in building our spelling system.

4. EXPERIMENTS AND DISCUSSION

In order to evaluate the performance of CloudSpeller, we
have tested it on two query spelling correction datasets. One
is the TREC dataset based on the publicly available TREC
queries (2008 Million Query Track). This dataset contains
5892 queries and corrections annotated by the Speller Chal-
lenge organizers. There could be more than one plausible
corrections for a query. In this dataset only 5.3% of queries
are judged as misspelled. We also annotated another dataset
that contains 4926 from the MSN queries, for each query
there is at most only one correction. About 13% of queries
are judged as misspelled in this dataset, which is close to
the error rate of real web queries. We divide the TREC
and MSN datasets into training and test set evenly. Cloud-
Speller is trained on the training sets and finally evaluated
on the TREC test set containing 2947 queries and MSN test
set containing 2421 queries.

4.1 Results

We follow the same evaluation metrics as the Speller Chal-
lenge, and report results on TREC and MSN datasets in
Table 1. Top 40 corrections are used in the default setting
of CloudSpeller. The results indicate that CloudSpeller is of
very high precision and recall in TREC dataset. In the MSN
dataset which is considered harder since it has more mis-
spelled queries, CloudSpeller also achieves high precision of
0.912 and recall of 0.969. This suggests CloudSpeller is very
effective for handling spelling errors in search queries over-
all. We also break down the results by error types so that
we can see more clearly the distribution of types of spelling
errors and how well our system addressing each type of er-
rors. We present the results of this analysis on Table 2. The
breakdown results show that most queries are in the group
of “no error”; which are much easier to correct than the other
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three types. As a result, the overall excellent performance effect of lexicon size is significant on precision: the precision
was mostly because the system performed extremely well on increases as the lexicon size increases. However the recall is
the “no error” group. Indeed, the system has substantially not sensitive to the lexicon size.

lower precision on the queries with the other three types of

errors. The splitting errors seem to be the hardest to correct, 0% | g—tl—u—=u—=u g —a—a—2—=u
3 085

followed by the concatenation errors, and the substitution 096
errors seem to be relatively easier. 053 s 08
052 —&#— precision 085 —&#— precision
=l recall
f1
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Figure 3: Correction results by lexicion size

4.4 Clean VS Noisy Lexicon

In Table 3 we show the effects of using a clean lexicon

Table 2: Results by spelling error type

dataset error type % queries precision recall f1

oo 04.7 0.983 0.986  0.9%4 for improving the precision and recall of the spelling sys-
TREC  substitution 3.9 0.391 0.970 0557  tem. We can see that for both two test dataset, there is
coneatenation 0.8 0.352 0.929 0.510 noticeable improvement in precision. By removing the noise
eplitting 0.6 0.301 0.945  0.457 in the automatically constructed lexicon, our system is able
R 37.0 0.971 0973 0972 to find matches for candidate queries more precisely. It is
MSN  cubstitution 10.1 0.475 0.904 0.623 interesting that we also observe small improvement in recall
conentonation 1.6 0.398 0.886  0.479 for the second test dataset. This is reasonable as we have
eplitting 1.3 0.304 0.866  0.450 to limit the number of output candidates in our system due

to performance consideration. By reducing the number of
matches against the noisy terms, we are able to include more
promising results in our ranker, and hence able to improve
the overall recall.

4.2 Number of Spelling Corrections

The Speller Challeng encorages participants to generate

all plausible query corrections. However it’s unknown that Table 3: Clean VS noisy lexicon

how many spelling corrections are enough. In this section we dataset lexicon type precision recall f1
investigate the effect of number of spelling corrections to the TREC clean lexicon 0.955 0.984 0.970
results. We have carried out experiments on five correction noisy lexicon 0.950 0.984  0.966
size (1,5,10,20,40) on both datasets. Figure 2 summarizes MSN  clean lexicon 0.912 0.969 0.940
the results. It’s clear that a bigger number of corrections noisy lexicon 0.896 0.967 0.930

leads to higher recall, and the most drastical increase of re-
call lies from 1 correction to 5 corrections. But the correction
size has no effect on precision on both datasets, which sug-
gests that the correction size doesn’t affect the top-ranked
spelling correction.

5. CONCLUSIONS

The key novelty of our system lies in the unified Hidden
i 0.98 Markov model that successfully models all major types of

ez | T—_—;’,‘""'v'-__f 0.96 spelling errors in search queries, which is under addressed by

0.94 previous works. The large and clean lexicon, advanced error
o2 / 092 model and n-gram model are also critical to our system. In
BB | e e q 09 . T T the future, we w.ant to directly train the HMM 'model with
08 s o e gl fl  examples, removing the need to re-rank the candidate paths.

We are also investigating a better way to cache n-gram prob-
abilities, which is crucial to the speed of our system.

i 5i 10 20 40 1 5 10 20 40
TREC MS5N
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Figure 2: Results by number of corrections

The size of the trusted lexicon is an important factor influ-
encing the speller correction result. In order to investigate
the effect of lexicon size we conducted a set of experiments
on both datasets according to different lexicon sizes (rang-
ing from 100,000 to 900,000). Results in Figure 3 shows the
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ABSTRACT

In this work we address the challenging problem of Web
search queries in order to build a speller that proposes the
most plausible spelling alternatives for each query. First we
generate a large set of candidates using diverse approaches
including enumerating all possible candidates in edit dis-
tance of one, fuzzy search on known data sets, and word
breaking. Then, we extract about 150 features for each
query-candidate pair and train a ranking model to order
the candidates such that the best candidates are ranked on
the top of the list. We show that re-ranking top results,
iterative correction, and post-processing of the results can
significantly increase the precision of the spell checker. The
final spell checker, named ¢Spell', achieves a precision of
0.9482 on a test data set randomly collected from real search
queries. qSpell won the 3rd prize in the recent Microsoft’s
Speller Challenge.

1. INTRODUCTION

The spelling correction problem is typically formulated us-
ing the noisy channel model [9]. Given an input query g, we
want to find the best correction ¢* among all the candidate
corrections:

¢ = argmaxP(q|c)P(c),

where P(g|c) is the error model probability which shows
the transformation probability from c to ¢, and P(c) is the
language model probability which shows the likelihood that
c is a correctly spelled query.

The noisy channel model only considers error model and
language model probabilities. However, a Web-scale spelling

correction system needs to consider signals from diverse sources

to come up with the best suggestions. We treat the spelling
correction problem as a ranking problem where we first gen-
erate a set of candidates from the query and then rank them

"http://Aamingo.ics.uci.edu/spellchecker/

Copyright is held by the author/owner(s).
Spelling Alteration for Web Search Workshop, July 2011,
Bellevue, WA, USA

by learning a ranking model on the features extracted from
them. The ranking process is expected to bring the best
candidates to the top of the ranked list.

We extract several features from query-candidate pairs
and use a machine learning based ranking algorithm for
training a ranking model on these features. The top-k re-
sults of this ranking model are then re-ranked using another
ranker. This step further increases the quality of the ranked
list.

Given that it is hard to generate the best candidates for
queries that require several corrections, we use an iterative
approach which applies one fix at each iteration. In the final
step, we use a rule-based system to process the final ranked
list and decide how many candidates from the top of the
list should be suggested as possible good candidates for this
query. In the next sections, we describe more details of our
spell correction system.

2. ERROR MODEL

For computing error model probabilities we used the ap-
proach proposed by Brill in [9]. To train this model, we
needed a training set of (s;, w;) string pairs, where s; repre-
sents a spelling error and w; is the corresponding corrected
word. We extracted these pairs from the query reformula-
tion sessions that we extracted from the AOL query log [1].
We processed this query log and extracted pairs of queries
(¢1,g2) which belonged to the same user and were issued
within a time window of 5 minutes. The queries are further
limited to cases where the edit distance between ¢1 and g2
is less than 4 and the user has not clicked on any result for
query g1 and has clicked on at least one result for query ga.
We processed about 20M queries in this query log and ex-
tracted about 634K training pairs. Following the approach
proposed in [9] for each training pair (g1,¢2), we counted
the frequencies of edit operations o — 3. These frequencies
are then used for computing P(aw — ), which shows the
probability that when users intended to type the string o
they typed B instead.

To extract edit operations from the training set, we first
aligned the characters of g1 and g2 based on their Damerau-
Levenshtein distance [13]. Then for each mismatch in the
alignment, we found all possible edit operations within a
sliding window of a specific size. As an example, we extract
the following edit operations from the training pair
(satellite,satillite):

e Window size 1: e — i;
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Table 1: Language Model Datasets

Dataset No. of tokens No. of ngrams

Google 1T 615M (up to trigrams)
Yahoo 3B 166M (up to trigrams)
Wikipedia Body 1.4B 134M (up to trigrams)

e Window size 2: te — ti, el — il;
e Window size 3: tel — til, ate — ati, ell — ill.

We counted the frequency of each of these edit operations
in the training set and used these frequencies for comput-
ing probability of each edit operation and picking the most
probable edits when computing the error model probabilities
for different candidates.

3. LANGUAGE MODELS

We implemented three different smoothed language mod-
els in our system: Stupid Backoff [8], Absolute Discounting
[10], and Kneser Ney [10] smoothing. Moreover each of these
language models is computed on three different datasets:
Google ngrams [7], Yahoo ngrams [3], and Wikipedia body
ngrams (Table 1). Each of these data sets has different prop-
erties and we were expecting this diversity to improve the
accuracy of our speller. The Google ngrams dataset is col-
lected from public Web pages and therefore also includes
many misspellings as well. On the other hand, the Yahoo
ngrams dataset is collected from news Websites and there-
fore is cleaner. However, in terms of number of tokens it is
much smaller than Google ngrams dataset. Both of these
datasets are based on crawls of the Web in 2006 and there-
fore do not cover new topics. For this reason, we also cre-
ated an ngram dataset from Wikipedia articles by process-
ing the dump of Wikipedia articles content released in Jan
2011 [2]. Table 1 shows the properties of these datasets.
We used a MapReduce cluster to normalize the ngrams in
these datasets. For example “The”, “the” and “THE” are all
normalized to “the” and their frequencies are aggregated.

Each of these language models has parameters that need
to be tuned. We used parallel grid search on a MapReduce
cluster to tune the parameters of these Language models for
unigram, bigram and trigram levels. To train these language
models, we used a training set of (g, c”) pairs, where ¢ is a
query and c¢* is the optimal candidate for this query. The
goal of the training process was to find optimal values for
language model parameters such that the conditional prob-
ability P(c*|q) is maximized:

oy = _Plale)P(e)
P = S~ pieipie)

As for the training set, we extracted 634K pairs of (q,c")
from the AOL query log as explained in Section 2.

In addition to the above-mentioned word based language
models, we also used a character based language model.
We used a Hadoop job to extract the frequencies of 1-5
character grams from the Google data set and used it with
Stupid Backoff smoothing as an additional language model.
Note that this language model is not sparse and therefore
we rarely need to backoff to lower-order ngrams. Therefore
the choice of the smoothing method does not have any sig-
nificant effect on the features that are extracted from this
language model.

4. NGRAMS SERVICE

Given that we needed to query the ngram datasets very
frequently it was important to have a service which can re-
turn the frequency of each given ngram in a short amount
of time. For this purpose, we used the “compress, hash and
displace” algorithm as described in [6] to create a minimal
perfect hash (MPH) function for each dataset. This hash
function is constructed on a set of N grams and assigns a
unique number between 1 and N to each of them. This
unique number can then be used to read the frequency of
the ngram from an array.

While the hash function is guaranteed to return a unique
number for each of the ngrams in the corpus, it still returns
some unique number between 1 and N for any other string
that has not been in the corpus. To reduce the occurrence of
these false positives, we followed the approach suggested in
[12]. In this approach, in addition to storing the frequencies
of ngrams, we stored a fingerprint for each ngram as well.
These fingerprints help in detecting a significant portion of
the false positives.

Figure 1 demonstrates this process. The hash function re-
turns a unique number for each ngram. This unique number
is then used as an index to read the fingerprint and frequency
of the ngram from an array. We first check the fingerprint of
ngram and verify that it matches the expected fingerprint.
If fingerprints do not match, we return zero frequency. Oth-
erwise the frequency value which is stored in the array is
returned.

We store a 20-bit fingerprint for each ngram. The largest
frequency in Google data sets is 23,142,960,758 which can be
stored in 35 bits. However, there are only 528,917 unique fre-
quency numbers in this data set. Therefore, to save memory
space, we sorted the unique frequency numbers and stored
them in an array with 528,917 elements. Then for each
ngram instead of storing the raw frequency of the ngram,
we stored the index into this unique frequencies array (Fig-
ure 1).

Ve N

Hash

ngram — -
9 Function |
o ,,/
Fingerprint | Frequency Index

Frequency

Figure 1: A memory-efficient data structure for fast
look up of ngram frequencies

Using this approach we would be saving 15 bits per ngram.
We were able to fit the Normalized Google ngrams dataset
(unigrams to trigrams) in about 3.2GB of memory and the
look up time was about 3 micro seconds. We measured the
false positives rate by submitting the four-grams and five-
grams in this data set and the rate was 9.6 x 1077 which
was small enough for our purpose.

S. CANDIDATE GENERATION

We implemented three different candidate generators in
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Table 2: Word segmentation with different data sets
and language model smoothing techniques

Dataset Language Model Smoothing | Recall
Google Stupid Backoff 97.06%
Google Absolute Discounting 96.03%
Google Kneser Ney 90.86%
Yahoo Stupid Backoff 95.11%
Yahoo Absolute Discounting 94.39%
Yahoo Kneser Ney 93.44%
Wikipedia | Stupid Backoff 94.59%
Wikipedia | Absolute Discounting 93.40%
Wikipedia | Kneser Ney 91.85%

our system that generate about 3,000 candidates for each
query. First, a character-based candidate generator gener-
ates all possible candidates within an edit distance of 1. It
considers replacing each character with all possible charac-
ters in the alphabet, transposing each pair of adjacent char-
acters, deleting each character and etc.

A quick analysis of the AOL query logs showed that 16% of
the query corrections that we had extracted from this query
log differ from the original query only in adding/removing
spaces. The followings are some examples:

e cbayauction — ebay auction

® broccoliandcheesebake — broccoli and cheese bake

e i cons — icons

In order to handle this class of queries, we implemented
the word segmentation algorithm described in [15] with some
minor changes. For each possible segmentation, we query a
language model to compute the probability of different seg-
mentations of the query. The most probable segmentations
are then added to the candidate list.

In order to find out which data set and language model
smoothing is more appropriate for the word segmentation
task, we filtered the (g,c*) pairs that were extracted from
AOL query logs and extracted 40,000 pairs where the dif-
ference of query ¢ and the expected candidate ¢* is only in
space. Then we used this data set to see which choice of the
ngrams data sets and language model smoothing techniques
maximized the probability of generation of ¢* after apply-
ing the word segmentation algorithm on the query. Table 2
shows the results. As this table shows, the Stupid Backoff
language model on Google ngrams data set outperformed
the others and therefore we used this combination in our
word segmentation module.

None of the above two candidate generators can generate
candidates where corrections are at edit distances of more
than 1 and not only in adding or removing spaces. For ex-
ample, for the query “draigs list irvine” we want to have
“craigslist irvine” as a candidate. We used the Flamingo
package? to perform fuzzy search and quickly find known un-
igrams with a small edit distance to unigrams and bigrams
of the query. We extracted 790K most popular unigrams
from the Google ngrams dataset and 947K most popular
unigrams from the Wikipedia dataset. This step resulted in
a set of 1.3M unigrams which were indexed by the Flamingo
package.

Zhttp://flamingo.ics.uci.edu/

6. LEARNING TO RANK CANDIDATES

In this section, we describe the details of the machine
learning approach that we took for training a ranking model
that orders candidates. We first needed to have a training
data set. During the speller challenge competition, partic-
ipants were provided with a data set of publicly available
TREC queries from 2008 Million Query Track [4]. The data
set also includes human judgments for correct spellings of
each query as suggested by several human assessors. How-
ever, queries in this data set are sampled from queries which
have at least one click in the .gov domain [5]. Therefore this
data set was highly biased towards a special class of queries
and was not a good representative for the general search
queries.

6.1 Training Data Set

To have an unbiased data set for training and testing the
ranking models, we randomly sampled 11,134 queries from
the publicly available AOL and 2009 Million Query Track
query sets and asked 8 human assessors to provide spelling
corrections for these queries. Each query was judged by
at least one human assessor. Queries for which the human
assessors had provided at least one suggestion which was
different from the original query were reviewed by at least
another human assessor. In order to assist the human as-
sessors in providing the most plausible suggestions for each
query, we had designed an interface that was showing Google
and Bing search results for each query.

A total of 12,042 spelling suggestions were proposed for
the queries. From these suggestions 2,001 of them are dif-
ferent from the original query; while in 905 of the cases the
difference is only in adding or removing spaces. Out of the
remaining 1,096 cases, 73% of the suggestions are at edit
distance of 1 from the original query and 23% of the sugges-
tions are at edit distance of 2 from the original query.

We used 6, 000 of the queries in our data set for 5-fold cross
validation and determining which features are helpful to be
included in the feature set. The remaining 5,134 queries
are kept untouched for evaluation purposes. We refer to
this dataset as JDB2011 in the rest of this paper and it is
available publicly®. A spell checker which always returns
the original query without any change will get a baseline
precision of 0.8971 on the test queries.

In order to train a ranking model on this data set, we
need to assign a label to each query-candidate pair to show
the preference for different candidates. Then the ranking
model would be trained on these samples to learn to rank
better candidates on top of the others. As mentioned in sec-
tion 5, we generated about 3,000 candidates for each query.
We want the candidates that match suggestions provided by
human assessors to be ranked on top of the list. Then we
prefer candidates which are within an edit distance of 1 from
any of these suggestions and etc. Therefore, we labeled the
candidates according to this preference logic and used these
labels for training the ranking model.

6.2 Ranking Features

We extracted 89 raw features for each query-candidate
pair. These features include: error model features, candi-
date language model features, query language model fea-
tures, surface features capturing differences of the query and

3http://flamingo.ics.uci.edu/spellchecker/
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Table 3: Entity Datasets

Source No. of Entities
Wikipedia titles 3.1 M
dmoz domains 2.1 M
dmoz titles 6.5 M
IMDB 3.3 M
Porno domains 448 K

the candidate, frequency of the query and the candidate and
their substrings in different lists such as Wikipedia titles,
dmoz and imdb. Table 3 shows the number of entities in
different lists that we used for this purpose.

In addition to these raw features, we also extracted 49
meta features for each query-candidate pair. Meta features
are computed by applying some basic operations on the orig-
inal ranking features. For example, we expected a good can-
didate to be highly probable based on the error model prob-
ability, P(q|c). Also we expected the ratio of the P(c)/P(q)
to be high. Therefore we used the following meta-feature
which combines these three ranking features:

log P(g|c) + log P(c) — log P(q).

6.3 Ranking Model

We used an Ensemble of gradient boosted trees [16] for
learning a ranking model from the extracted features. Given
that only about 15% of the queries in our data set needed
spell correction, the training data set was imbalance and
therefore the ranker was preferring the candidate which is
equal to query (as this option is correct in 85% of the cases).
For handling this problem we randomly selected several bal-
anced datasets from the original training set and trained
different ensembles on each of them. The final ranker is a
bagged ensemble that uses the average of these ensembles to
determine the ordering of candidates. As mentioned in [11],
the bagged ensemble also results in a more accurate model
that also has lower variance. The precision at position 1 for
this ranker on JDB2011 test set is 0.9055.

7. RE-RANKING TOP CANDIDATES

Re-ranking of top search results has shown to improve the
quality of rankings in information retrieval problems [14].
Given that in spelling correction the main focus is on the
top of the ranked list of candidates, we added a re-ranker
module on top of the ranker module. This significantly im-
proved the results of the original ranker. There are two main
reasons for the success of the re-ranker: 1) It focuses only on
top-k results and therefore it is solving a much easier prob-
lem compared to the original ranker which needs to consider
about 3,000 candidates for each query. 2) In the re-ranking
phase we added some more features which are extracted from
top k results. These features include the score computed in
the ranking phase, average, max, min, and standard devia-
tion of the scores of the top-k candidates, etc. In contrast to
the original ranking features, which are only extracted from
query-candidate pairs, these new features also consider the
top candidates of the query and therefore include valuable
information that may help in the ranking process.

The precision at position 1 on JDB2011 test set after
re-ranking increases to 0.9412 which is significantly better
than the precision of the ranking module.

8. ITERATIVE CORRECTION

The spelling correction approach that was described in the
previous sections does not handle more complex cases where
multiple terms in the query need to be corrected, or a single
term needs multiple corrections and the correct term is not
among the originally generated candidates. For handling
these cases, we use iterative correction to apply one correc-
tion at each iteration. For example, for the query “satilite
whether maps” we have the following iterations:

satilite whether maps
1
satilite weather maps
2
satellite weather maps

3

satellite weather maps

As this example shows, we stop when there is no change the
query in the last iteration. The precision at position 1 on
JDB2011 test set after applying iterative correction increases
to 0.9453.

9. FINAL POST-PROCESSING

In the final phase and after iterative correction is stopped,
we need to pick one or more candidates from the top of the
ranked list of candidates. For this purpose, we used post-
processing rules that process the final ranked list of candi-
dates and decide which ones should be picked as suggested
corrections. For example, most of the times we want to sug-
gest the top ranked candidates as well as other candidates
that are on top of the list and their score is within a thresh-
old from the score of the top-ranked candidate and differ
from this candidate only in adding or removing space or in
singular/plural cases.

In addition, we used some other rules that target different
classes of queries. For example, given that a large portion
of search queries are navigational queries, we use different
lists compiled from dmoz and porno blacklists (Table 3) to
detect domain names and treat them specially. In case of
domain names, we show the original query and the most
probable segmentation of the query. For example for query,
“annualcreditreport” we suggest both “annualcreditre-
port” (which is a domain name) and “annual credit re-
port” which is its most probable segmentation.

After applying the post-processing rules, the precision at
position 1 on JDB2011 test set increases to 0.9482.
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ABSTRACT

This paper describes three different offline query spell checkers
that have been entered in the Microsoft Speller Challenge
competition and a method of combining their output in order to
obtain better results. The combination is justified by the fact that
each of the spellers has been developed with a different design
and that, on the Speller Challenge TREC Data, their errors are
complementary, i.e. they do not make the same mistakes.

Categories and Subject Descriptors

G.3 [Probability and Statistics]: — statistical computing, H.1.2
[User/Machine Systems]: — human information processing, H.3.3
[Information Search and Retrieval]: — query formulation,
relevance feedback, 1.2.6 [Learning]: — parameter learning,
induction, 1.2.7 [Natural Language Processing]: — language
models.

General Terms
Algorithms, Experimentation, Human Factors, Languages.

Keywords
Spellchecking, Maximum Entropy classifiers, Viterbi search,
language models, WordNet, ensemble classifiers.

1. INTRODUCTION

Approximately 30.2% of the world population uses the Internet in
searching for diverse information [9]. Whether is the results of
their favorite sports team or the weather forecast for the next day,
these millions of people take their queries to a search engine in
hope to find useful information. Queries are often typed in haste,
sometimes on devices having small keyboards and usually by
non-native English speakers searching for information in English.
This is why misspelling, due to typographic or cognitive errors
[13], is an ordinary fact among search engines queries.
Consequently, the users’ preference towards a search engine or
another is highly influenced by their capability to deal with such
errors and the performance of a web searcher will ultimately
depend on how it manages to detect what the users are really
looking for.

Studies show that 10 to 12 percent of all query terms entered into
Web search engines are misspelled [10, 4] due to a variety of
reasons [6], such as the accidentally hitting of an adjacent key on
the keyboard (movius — mobius), typing quickly (teh — the),
inconsistent spelling rules (goverment — government), ambiguous
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word breaking (health care — healthcare) or just new words
(exenatide, baggravation, funkinetics).

Search engines have two ways of helping their users express and
retrieve the desired information: the offline spelling correction or
the online spelling correction [6]. The latter has some advantages
over the former, first of all because it can eliminate the mistakes
in spelling and the ambiguity of the query in real time, while the
user is still typing — something very similar to auto-completion. It
is nowadays employed by well-known search engines like Bing,
Google or Altavista and requires a large amount of as much as
possible training data (both correct and misspelled), which can be
automatically acquired by gathering users’ input and analyzing it.

This paper shortly presents three different offline query spell
checkers enrolled in the Microsoft Research Speller Challenge
competition. The individual experiments revealed that they
behave differently, often suggesting variants that are differently
ranked and usually making different mistakes. This brought us in
the position of considering combining their results, as it is well-
known that, when certain conditions are met, more decision
makers (classifiers) working together are likely to find a better
solution than when working alone [5, 14]. Such conditions require
similar performance for the decision makers and, in addition, that
they should not make similar errors.

The paper describes each of the spellers and the method of
combining their results.

2. THE FIRST ALGORITHM

The dataset used as the primary resource for this algorithm is
based on the 2006 Google Web IT 5-gram Corpus' (GC) (an
alternative taken into consideration was the Books N-gram Corpus
[11] but it did not have a good impact on the accuracy of the
algorithm). To build the speller’s lexicon, only occurrences more
frequent than 300,000 were taken into consideration (in order to
avoid misspellings) and also all words obtained from the
Princeton WordNet 3.0 (PWN) [7] ignoring their frequencies.
Using several English inflection rules such as plural forming on
regular nouns, present participle of verbs and superlative and
comparative of adjectives, the lexicon was enriched with more
than 30,000 words.

Another way to enrich the lexicon was by adding co-occurrences
existing in PWN, which are considered strong n-grams: william
Jjefferson clinton, september 11, etc. They contain up to nine terms
and have a high weight in computing the final score. Strong n-
grams are also used for finding missing words between terms if it

Copyright is held by the author/owner(s)

'http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-
belong-to-you.html
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happens that a query contains a strong n-gram minus one or more
terms. Other additions are proper names of people, countries and
cities.

Table 1 - Strong n-grams from PWN

2-grams 58125
3-grams 9400
4-grams 1726
5-grams 302
6-grams 76
7-grams 22
8-grams 21

The proposed algorithm is a basic two-step approach.

The first step is statistical ranking based on the GC lexicon, bi and
trigrams and the PWN. It uses a modified Levenshtein distance
(LD) [12] algorithm and the weighed frequency of terms in the
GC (see the equation below). We also split the existing candidates
into smaller words” and create concatenation variations.

The second step takes the first ranked alternative and compares its
score to the original query score. If the difference does not exceed
a certain threshold (see below), it returns the original query as the
first spelling option. The scores of the spelling variants are then
normalized with the first result being assigned a higher probability
for better precision. Thus, we obtain an overall precision of about
95% on the Speller Challenge TREC dataset (4 percent points
over the baseline).

The problem with the classical LD is that it does not make
distinctions between candidates that have nothing to do with the
original query and those who are corrections of common mistakes.
Producing good suggestions requires that all the words in the
query be processed and variations created to accommodate both
mistypes and inappropriate use of terms. Classifying alternatives
that are not misspellings is very difficult. The difference between
out-of-vocabulary terms and typos is insignificant in many cases.

The modified LD that was used to create term variations takes
into consideration common mistakes such as misspelling of two
consecutive letters, transposition etc. (e.g. “Carribbean”—
“Caribbean”, “porgramming”— “programming”). Word length
is a factor that indicates a higher probability of mistake on longer
terms. We do not apply this method on words with less than 4
letters. Instead we use a list of common mistakes of these words.
The resulting query alternatives are ranked using unigrams,
bigrams and trigrams (see the next equation). The score is
multiplied by a factor dependent on the above-mentioned LD
between the original query and the alternative query:

@ D f)+E Y fwwie) +

S(qD) =
Y * Z fwy, wipy, wits)

* Flg,qu)

where:

w; is the /1 term of the query g1,

2 It is highly important not to split terms needlessly. For instance,
instead of breaking “improving” into “imp” (mythological
being), “rov” (remotely operated vehicle) and “ing” (bank) or
“imp” and “roving” (a long and narrow bundle of fibers), we
leave it in place based on the frequency (17,855,962 for
“improving”) and the length of the parts.

a = 0.0001,8 = 0.005,y = 0.9949 are n-gram weights tuned
to Speller Challenge TREC dataset;

f(¢1,..t3) are frequency counts;

Flgqn = 109 is a factor dependent on Levenshtein distance d
between the original query gand the spelling variant g1.

When calculating the score for an alternative query, we discard
extremely high frequency words. They are not used in unigrams
and bigrams and cannot start or end a trigram. For instance, when
referring to “best of luck”, the score will not be influenced by the
unigram “of” or the bigrams “best of”” and “of luck”. On the other
hand, “of” can be in a middle of a trigram, so the score will be
given by the following elements: unigram “best”, unigram “luck”
and trigram “best of luck”.

The GC is outdated (2006) and this makes it unreliable when
computing the score for choosing the best spelling suggestion.
Due to this inconvenience and based on the statistical fact that
about 85% of the queries in the Speller Challenge TREC dataset
were correct (not misspelled at all), we decide not to replace the
original query if its probability is 50% less than that of the best
alternative. Also, in situations where the highest ranked
alternative is the same as the original query but containing
different inflected variants of the original query terms (plural,
superlative, comparative), the original query will be preferred.

3. THE SECOND ALGORITHM

The second algorithm is very simple and has three main steps: (i)
compacting the given query, (ii) select correct suggestions for
each word in the obtained query, according to a database of
unigram frequencies, and (iii) choose the combination of
suggestions which has the maximum probability according to the
available language model. The main resources employed by the
speller are:

e a unigram table containing Google Web 1T 5-gram Corpus
(GC) unigrams with frequencies above 10,000, Princeton
WordNet 3.0 (PWN) word-forms, various named entities:
names of persons, cities, minerals, cyclones and dinosaurs
extracted from public sites like Wikipedia® or NOAA* and
various bigrams obtained by splitting all unigrams in the GC,
into two words that make sense. This table is kept in memory
for fast operations;

e GC bigrams and trigrams kept in a fast Berkeley DB
interrogated through a REST Web Service.

In the first step, the speller compacts the queries, which means
that terms in the initial queries are glued if they can form words
that make sense (according to the unigram table) with a
reasonable high frequency (above 1,000,000). The idea is to have
the same consistent approach in correcting a query, weather it is
compact or it has spaces inserted. Here, “health care” becomes
“healthcare” and “web service” becomes “webservice”.

While iterating from the leftmost to the rightmost term in the
query, two things happen: first, the consecutive mono-character
terms are glued (“n 0 a a” becomes “noaa” and “u s” becomes
“us”); second, two terms ¢; and #, are glued into #;¢, if the
following constraints are simultaneously satisfied: (i) #; is not a
term composed of other mono-character terms, (ii) ¢, is not a
mono-character term, (iii) ¢; and #, are not stop words unless they

3 http://en.wikipedia.org/wiki/Main_Page
* http://www.nhc.noaa.gov/aboutnames.shtml
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form certain words like byproduct or online and (iv) ¢z, can be
found in the unigram table with a frequency larger than 1,000,000.

In the second step, selecting the best correct suggestions for each
term in the query is done by employing a complex lexical
similarity measure (between words) which is mainly based on the
Levenshtein Distance (LD), length difference in characters,
unigram frequencies and the longest common substring:

a
(LD(t,s) + 1)k = (LD(t,, spm) + DF

score(t,s) =

where ¢ is a query term, s is a possible suggestion for ¢ and & is a
constant (0.66), while o and f are variables depending on the
above parameters. ¢, and s,, are modified versions of the ¢ and s
obtained by getting rid of duplicate letters and by replacing some
character sequences in the following way: space is replaced by
empty string, ph by f, y by i, hn by n, ha by a. Notice that adding 1
to the LD score values ensures a non-zero denominator. For
example, if ¢ = corect and s = correct, then a = 1, f = 0.2, and
score(t,s) = 0.87. If t = corect and s = corect, a = 0.53, = 0.33
and score(t,s) = 0.56.

Using this measure, the algorithm computes scores against all the
unigrams in our table, using multi-threads for an improved speed.
Most of the variants are discarded from the start based on length
differences, and so, this process is fast, a complete search for a
query term being completed in approximately half of a second. In
the end, the best top ten suggestions are kept for every term.

In step three, the algorithm validates and scores the different
combinations of suggestions according to the GC language model.
This is done by using a modified version of the Viterbi algorithm
[15] that allows for multiple results output. For smoothing, the
speller uses an interpolation function that would allow for all the
parts of an n-gram to contribute to the final score:

S(abc) = if(constrains are satisfied) 2*0.5 + 0.25*S(ab) +
0.25*S(bc)

S(ab) = if(constrains are satisfied) 1*0.5 + 0.25%S(a) + 0.25*S(b)°

These equations show that this model gives high importance to the
terms (which can now be considered words) in the middle of the
queries. In order to take into account an n-gram, the following
constrains must be satisfied:

o at least one of the words must be the best suggested unigram

variant;
o the words in the n-gram must not be part of a stop-words list;
o the log-likelihood like score (LL) must be above a threshold;

This approach successfully brings on the first place “capitol hill
massacre” for the input query “capital hill massacre”,
“commonwealth of virginia” for “commonwealth of virgina” or
“jedi knight” for “jedy night”.

In the end, different alternatives of the best returned spelling
variant are added.. Spaces are inserted between words containing
only consonants (as they are probably abbreviations), compressed
words like “us” turn into “u s”, indefinite articles are added in
front of long words, as well as the genitive particle “s” and plurals
like “veterans” turn into “veteran s” to also allow for the genitive.

Finally the speller outputs the most probable 50 suggestions plus
the original query if is not already there. Using a so called decay
function similar to the one used by the first algorithm, it assigns

3 We write S and not P since these are not probabilities.

more than 99% of the probability mass to the best suggestion, the
remaining mass being split between the others. The reason for
using the decay function relies on the fact that the speller had a
very high precision on the TREC training data (around 95%). The
large number of suggestions allows it to aim for a high recall too.

4. THE THIRD ALGORITHM

The third algorithm divides the query alteration process into error
detection and error correction based on the fact the second
process necessarily depends on the first process but the first
process may well stand on its own.

The error detection mechanism is based on a classifier that given
an input term chooses between two classes: “leave it”” (the term is
considered to be correctly spelled and consequently should be left
unchanged) and “change it” (the term is not recognized and
spelling variants should be generated). We observed that, in
accordance with the Speller Challenge TREC Data — a gold
standard collection of correct and misspelled queries along with
the correct variants, detecting when a query term is correctly or
incorrectly spelled depended on a variety of features such as:

e a rare, frequent or very frequent threshold; word frequencies
were extracted from unigrams of Google Web 1T 5-gram
Corpus (2006 release, version 1). We observed that while the
majority of rare words needed to be changed and the majority
of very frequent words needed to be left alone, a part of
frequent words needed to be changed (e.g. “capital” —
“capitol” from a query like “capital hill history”);

e English morphology clues: inflection (plural for nouns, past
tense for verbs, etc), words with a repeating consonant (e.g.
“carribean” — “caribbean”), proper nouns (e.g. “acey byrd” —
“acey byrd” not ‘“ace bird”), word is a functional word
(preposition, conjunction, pronoun, determiner, etc.), word is
not functional (noun, adjective, adverb, verb).

In order to decide whether or not to propose spelling variants to a
given query term, we employed a Maximum Entropy (ME) [1]
classifier that will make this decision based on our features-
encoded knowledge of that term. Specifically, we have used the
following feature functions: isRare, isFrequent, isVeryFrequent,
isInflected, isProperNoun, isFunctionWord, isNoun, isVerb,
isAdjective, isAdverb, hasDoubleConsonant.

We have trained the ME classifier on a collection of spellchecking
data gathered from multiple sources® among which the aspel! test
data and the Wikipedia collection of editing spelling errors. The
best accuracy of this classifier is 90.74% for the “change it” class,
93.04% for the “leave it” class and 91.89% overall.

The error correction algorithm seeks to optimally and
simultaneously do two different things: select the most probable
spelling variant for each query term while, at the same time,
selecting the most probable spelling alternative to the given query.
In order to cope with split and joined terms, we first recursively
generate all possible split and join variants for the given input
query such that each query term is joined with the neighboring
terms and/or split in at most three parts.

For each query term that the classifier deems “change it”, we
generate the most 30 frequent spelling variants that are at most
two string edit operations away from the misspelled term. The
frequencies are extracted from the GC and the threshold was
experimentally set to 5x10* (if the frequency of the alternative is
below this threshold, the alternative is discarded). If it is not

® http://www.dcs.bbk.ac.uk/~roger/corpora.html
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changeable, we only generate the most frequent 15 string edit
distance on variants more frequent than 5x10* that form a frequent
(threshold of 10%) bigram or trigram with surrounding words (the
frequencies of bigrams and trigrams are also determined from the
GC). We have added this generation step in order to compensate
for the approx. 7% of classifier failures in the case of “leave it”
class and also because, for the current version of the speller, we
were not able to program the classifier to take the context of the
input word into account.

For each query term we also generate variants that are
semantically and/or morphologically related to the term if and
only if the term is deemed non-changeable by the Maximum
Entropy classifier. Thus, we want to generate plurals for nouns or
present participles for verbs since these forms are often used when
formulating queries. Also, we would like to generate different
correct alternative spellings such as “fumor” and “fumour”. To do
this, we used Princeton WordNet 3.0 (PWN) and extracted an
associative list of all literals that are two string edit operations
away and belong to semantically related synsets (synonyms,
hypernyms, meronyms, etc.).

The algorithm for searching the best spelling alternative for the
given input query uses the Viterbi algorithm [15] with a beam of 5
(it remembers the most probable 5 solutions at each point in the
search path). We output the first 20 spelling alternatives plus the
original query (21 spelling alternatives).

The transition probabilities are given by the inverse of the
perplexity of the alternative query up to that point. The language
model that was used by the Viterbi procedure is also based on the
GC. It’s a trigram language model that uses the Jelinek-Mercer
interpolation [3] with fixed, experimentally determined weights:
0.8 for trigram probability, 0.19 for bigram probability and 0.01
for the unigram probability.

In order to be able to rank relevant queries higher (queries that are

more likely to produce results) we have trained the MITLM [8]

language modeling toolkit (with ModKN smoothing) over a

corpus consisting of:

e the “AOL query log” corpus [2] aiming at obtaining low
perplexities (and top ranking) for queries that have been asked
by other users. This is our way of enforcing both correct
English syntax (or, at least, OK-for-searching English syntax)
and similarity to users’ interests;

e a collection of PWN expressions with at least 2 words per
expression each of them repeated 100 times in order to give it
statistical significance;

e the correct part of the Speller Challenge TREC Data;

e an existing selection of 4,000 English Wikipedia documents
aiming at enriching the language model with named entities and
terminological data.

5. THE COMBINER

The combining method we employed is a simple voting system.
Since the spellers assign probabilities to the spelling variants they
return, their values are comparable. The experiments performed
on the training data revealed that the three algorithms frequently
suggest differently ranked variants and usually make different
mistakes. We considered that the conditions for combining the
algorithm were met.

We decided that each alternative spelling should receive a score
computed as the sum of the probabilities given by each of the
spellers. For this to happen, we switched off (for all spellers) the
decay function that assigns over 99% of the probability mass to

the first top suggestion. The next step was to normalize the scores
and reorder the entire list according to the new values. If the
obtained top suggestion was different from the original one and
the difference between its score and that assigned to the original
was lower than 0.1, we gave credit to the original and swap the
suggestions. The table below shows the performances of the
spellers and the combiner on both Bing Test Data and TREC
training data.

Table 2: Official results for the three spellers and the

combiner
speller FlonBing | F1 on TREC
Test Data | Training Data
1% algorithm
NemoRitor-WrapperSpeller 76.07% ~96%
author: Tiberiu Borog
2" algorithm
TNGS-tgr 71.19% ~95%
author: Dan Stefanescu
3rd algorithm
DR. Speller-langmodrank 65.66% ~94%
author: Radu Ion
Combiner
4™ place at Microsoft 79.50% ~97%
Speller Challenge

6. CONCLUSIONS

After the Microsoft Speller Challenge ended, we had a chance to
study the speller’s httpd logs and collect the actual Bing Test Data
which comprises of 1,325 queries. Comparing these queries with
those from Speller Challenge TREC Data, we noticed how much
more “noisy” the Bing Test Data is by comparison: there are a lot
of queries composed of “cryptic” terms such as chemicals, proper
names, names of web sites, units of measure, different acronyms,
hard-to-split terms, etc. most of which our spellers tried to correct
as they did not recognize them. This is one of the main reasons
explaining the large difference between the performances
obtained on the Training Data and those obtained on the Test Data
(about 18%). Other reasons might be:
e test data has a completely different ratio of short vs. long
queries than training data;
o test data has a completely different ratio of correct vs. incorrect
queries than training data;

Looking at the results, it seems obvious that a system returning
the given queries unchanged (as the baseline) would have surely
been one of the top winners.

One should also notice that the Microsoft recall measure favors
the systems returning a large number of spelling alternatives in the
hope that all the correct ones would be covered. This could be
speculated by the some systems that could return thousands of
spelling alternatives, luckily obtaining a recall close to 100%. We
consider such a high number of alternatives as being utterly
irrelevant to practical purposes of spell checking.
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ABSTRACT

We propose a spelling generation algorithm based on edit
distances. Our idea is to get high recall without reducing its
expected precision. Whereas general precision has trade-off
relation with general recall, there is theoretically no trade-
off between the expected precision and recall, the evalua-
tion measures of Microsoft Speller Challenge. We used a bit
tricky way: the output candidates with very small or zero
probability hurts little expected precision. The candidates
are generated based on edit distance from the input query,
so that they can increase the recall. In this case, edit dis-
tance is the number of edit operations to a character: insert,
delete, replace, and swap. Output size is limited to some
bytes, because the bottleneck of latency in this strategy is
the network.

1. INTRODUCTION

Microsoft Speller Challenge is the first contest of spelling
correction for search engine query. We had to read thor-
oughly the rule at first. We noticed that there are some
fuzziness around rules that allows utilizing external APT or
even dataset. Expected F1 (EF1) is adopted as evaluation
measure'. It has two components: one is Expedted Precision
(EP) and anotheris Expected Recall (ER). EP is defined as
below:

EP = 1|Z 3" Ir(c.q)P(cla) (1)

|Q q€Q ceC(q)

Where ¢ is an input query in test dataset @, c is a query in
correct set C(q) of query ¢, Ip(c, q) is the indicator function
whether ¢ = ¢ or not. ER is defined as below:

"http://spellerchallenge.com/Rules.aspx

ER = ﬁz > In(C(g),)/IS(q)] (2)

q€Q a€S(q)

Where a is an answer in speller output set S(a), Ir(C(q),a)
is the indicator function whether a is in C(g). Finally, EF1
is defined as a combination of EP and ER.

=T 1 (3)

Note that ER contains no information about probability,
so it should be simply called as recall. Now we can set
probability to enhance EP without bothering ER.

2. TRIALS

At first, we submitted our speller to the contest’s official
evaluation system. But soon we noticed that the system
doesn’t show the actual component of EF1: EP and ER.
We developed our original evaluation script, allowing us to
know which of EP or ER is bottleneck. Then we tried some
spellers as below and Table 1 shows the results of trials.

e Overfit speller: This speller achieves top in current
leader board (May 26, 2011) with 1.0 Expected F1
and 275 Latency. Of course, this works well on only
TREC dataset, and doesn’t work on final Bing dataset,
because output candidates are exactly same to the an-
notation of TREC dataset.

e Noop speller: This speller actually does nothing and
return exactly the same one as the input query. This
speller achieved 0.91 EF1, 0.94 EP and 0.87 ER. This
result implies that recall might be bottleneck.

e Bing speller: We tried the bing speller API?. Although
this was expected to achieve high score, its score was
actually 0.91 EF1: lower than Noop speller. This re-
sult reminded us that the annotation policy of TREC
dataset is quite differ from commercial search engine
query speller. TREC anotation policy prefers various-
ness of spellings, rather than one exact spelling.

*http://www.bing.com/developers/
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Table 1: Result of Trials
Speller EP ER EF1

Overfit speller 1.0 1.0 1.0

Noop speller 0.9472 | 0.8773 | 0.9109
Bing speller 0.9463 | 0.8765 | 0.9101
Bing+Noop speller | 0.9467 | 0.8788 | 0.9115
Final 0.9472 | 0.9018 | 0.9239

e Bing+Noop speller: This speller is a combination of
Noop speller and Bing speller. The output is an input
query itself and a query that was corrected by Bing
speller. Each candidate have the same probability 0.5.

e Editl speller: Our first edit distance based speller with
one edit operation.

e Edit2 speller: Our second edit distance based speller
allowing two edit operation.

e Edit24+anagram speller: Two edit operation or one
swap (anagram) operation is allowed in this speller.

e Time limit speller: This speller limits the CPU time
in spelling generation.

e Line limit speller: This speller limits the number of
output lines.

e Byte limit speller: This speller limits the bytes of out-
put size.

3. FINAL SUBMISSION

We adopted edit-distance-based approach to generate speller
candidates. Edit distance means the number of edit opera-
tions as below:

e insert: insert a character at any place in the input
query. Example: microsoft -> micronsoft

e delete: delete a character in the input query. Example:
microsoft -> micosoft

e replace: replace a character in the input query with
different character. Example: microsoft -> microzoft

e swap: swap two character in the input query between
different position. Example: microsoft -> microzoft

We expanded edit operation with additional swap operation.

Our final submission adopts following strategy:

1. Output input query itself with probability 1.

2. Output candidates which have edit distance 1 with in-
put query.

3. Output candidates like an anagram of input query,
swapping two characters.

4. Output candidates which have edit distance 2 with in-
put query.

5. If total output size as bytes was over some constant,
exit program.

All but first candidate can have very low probability or even
zero probability. They might raise recall, without reducing
expected precision. The EP for TREC dataset is 0.9472,
equal to Noop speller when those probabilities are zero. Our
speller might generate exactly same candidate, because two
edit operations might restore the original query or swapping
same characters.

We developed this alogrithm as PHP script at first, but the
latency was so large. Then we switched to C++ CGI scripts
to improve its latency. Note that we don’t need any data
management. After some parameter tuning, we decided to
adopt 50MB as the value of size limit. Our speller achieved
0.9239 EF1 and 43912 latency on TREC dataset.

4. CONCLUSION

We developed very simple spelling generation algorithm based
on edit distance. This approach achieves high recall if la-

tency is not limited. We apologize that our speller might

have been caused large responses, but we didn’t intend to

overflow the speller evaluation system of Microsoft. Al-

though this approach is a bit tricky, it does not cheat the

rule or evaluation measures.

We considered standard noisy channel model and utiliza-
tion of external API, but these might drop expected preci-
sion. Our simple approach depends on no dataset or external
APIs, leading to its concise implementation. Although we
have a trie implementation ® which supports fuzzy search,
it needs sufficient query logs to train language model.

Thank you for reading.

3https://github.com/nokuno/stakk
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ABSTRACT

The paper describes the implementation of an online English spell
checker that was developed for the Microsoft Spelling Challenge
Contest. The spelling correction program proposes a list of
plausible corrections ordered by probability. The probabilities are
computed using the noisy channel model [6] trained using a list of
common misspellings. The misspelling detection phase involves
generating a key for misspelled word and locating words in the
dictionary whose keys collate closely with the key of the
misspelled word [4]. The correction phase involves choosing
plausible candidates from the list of candidates selected during the
detection phase. The algorithm also tries to correct spelling errors
caused by word boundary infractions. The modified Levenshtein
distance is used to compute how similar the proposed correction
and the misspelled words are. In addition to the above, the
algorithm uses Princeton WordNet synsets database to look up
words missing from the similarity dictionaries and for alternative
spellings’ lookup. Finally, the algorithm relies on Microsoft N-
Gram service to evaluate the posterior and joint probabilities used
to rank and choose best spelling correction candidates.

Categories and Subject Descriptors
D.3.3 English Spelling Correction

General Terms
Algorithms, Experimentation

Keywords
Automatic Spelling Correction, Similarity Key, N-grams,
WordNet, Lucene, Apache, LingPipe, Tomcat, NLP.

1. INTRODUCTION!

The spell checker is a REST-based Web Service (further referred
to as the program) implemented as a Java Servlet which runs in
the Tomcat environment behind Apache Web Server. The APIs
used include LingPipe [12], Apache Lucene [13] and MIT
WordNet APl [11]. The following is a sample of the output
produced by the program:

californiastate california state  1.00000

satelite photos earth satellite photos earth  0.9601

coach retirement home 0.71114322
couch retirement home 0.16817989
coch retirement home 0.12067688

coch retirement home

Query Output

Strontium 90 Strontium 90 1.000000

! Copyright is held by the author/owner(s).

The output produced by the program may contain multiple
spelling suggestions each one corresponding to a plausible
spelling correction candidate chosen and ranked high enough to
be included into the result set.

The corrections are listed in a non-increasing order of their
probability. The posterior probability of the correction is
computed and returned along with the spelling correction
candidate.

The overarching criterion at the core of the design of the spelling
correction program was to avoid as much as possible using any
language specific information to remain as flexible as possible.

In this paper | describe an online spell checking service which
attempts to address spell checking challenges by combining
several different strategies to solve various spelling problems that
arise due to a variety of possible types of misspellings.

2. Three Problems of the Spelling Correction
Kukich in her survey of the existing spelling correction techniques
[1] identified three distinctive problems: 1) non-word error
detection; 2) isolated non-word error correction; 3) real-word
context dependent word correction. While the first and the
second problems have been extensively studied and a number of
various techniques have been developed (dictionary lookup, n-
grams), the third problem poses a significant challenge [1].

3. Why spelling correction is difficult

The three problems of the auto spelling text correction become
even more exaggerated and complex when trying to auto-correct
short input queries that carry almost no or very little contextual
information, frequently do not follow any proper grammar and
potentially contain a large number of acronyms or proper nouns.
The input queries can also belong to a wide range of different
topic categories, thus presenting a significant challenge to the
dictionary-based lookup techniques that expect the dictionaries to
be topic specific.
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4. Training Data and Similarity Key

Dictionaries

The program was trained using publicly available corpora from
the Gutenberg online project which was used to generate spelling
correction dictionaries. The program uses dictionaries which
entries are ordered alphabetically based on a similarity key
generated for each dictionary entry to choose a sub-set of
plausible spelling correction candidates. I’11 discuss similarity key
concept later in greater details. The original concept of using
similarity key was first described by Joseph J. Pollock and
Antonio Zamora in [4]. Along with each entry in the dictionary is
also stored a frequency of the word associated with the entry. The
frequencies are used to evaluate the prior probabilities of the
spelling correction.

The process of training the spell checker consists of generating
two dictionaries which entries are ordered based on the similarity
and skeleton keys [4]. The spell checker uses both dictionaries
during non-word spelling correction phase to look up and select a
range of plausible candidate corrections.

To further strengthen the detection and correction performance,
the program also uses the Princeton WordNet Synset databases to
look up rare words and find alternative spellings. WordNet
database is  publicly available for  download at
http://wordnet.princeton.edu/wordnet/.

The noisy channel model was trained using publicly available list
of common misspellings. The misspellings were automatically
parsed to generate four confusion matrices used to evaluate the
likelihood of a misspelling [6].

5. Correcting Spelling Errors

5.1 Query Language Detection

In order to avoid spell checking the queries written in language
other than the language that was used to train the spell checker
(English in this case), the program uses a simple vector-space
based classifier which, given an input query, returns a language
class. Queries classified as non-English are not spell checked. The
classifier maintains two sets of test vectors with the same
dimensionality: w, for English and wg for Spanish. The classifier
maps the input query Q = {w; w,,...,wy} into a binary vector
using the following rule:

1, we, € Q

x= {x1,%y ..., X5}, Where x; = { 0. otherwise
)

Where n is the number of elements in the test vector w,, and k is
the number of tokens in the input query. The program computes
the angular distance between the input vector and the test vectors:
_ 1 X We

O = O T,

x +w, denotes a dot product of the input and the test vectors.
[lx|lllwe|l is a product of the lengths of the input vector and the
test vector. The equation is used to evaluate angular distances
between the input vector and the vectors representing Spanish and
English. The language of the input query is chosen to be English
if the angular distance between the input vector and the test vector
representing English is smaller than the angular distance between
the input vector and the vector representing Spanish.

5.2 lIsolated Non-word Detection and
Correction

5.2.1 Isolated non-word error detection
The first phase of the spelling correction program is to identify
potentially misspelled words and suggest plausible spelling
correction candidates. The program relies on the similarity key
dictionaries sorted by the omission and skeleton keys [4] to look
up a term and return a list of possible corrections.

Few words need to be said about the omission and skeleton keys.
The skeleton key is constructed by leaving the first letter of the
word in its place followed by unique consonants in order of
occurrence and then followed by the unique vowels in the order of
occurrence.

The omission key is constructed as follows: the unique consonants
come in the reverse order of their omission (hence the name)
frequency order, followed by the unique vowels in the original
order.

The consonant omission frequency order is a result of the work
done by Joseph J. Pollock and Antonio Zamora [4] and is as
follows:

RSTNLCHDPGMFBYWVZXQKJ

which basically means that “R” is omitted more often than “S”,
and so forth.

So, for example, the misspelling “carribean” and its correct form
“caribbean” will have the following skeleton and omission keys:

Word Skeleton Key Omission Key
carribean CRBNAIE BCNRAIE
caribbean CRBNAIE BCNRAIE

As it is apparent from the above table, both misspelled and correct
words have the same skeleton and omission keys. This is not
always a case, as in the following example:

Word Skeleton Key Omission Key
adust ADSTU DTSAU
adjust ADJSTU JDTSAU
adult ADLTU DLTAU

Both “adjust” and “adult” are plausible corrections, however a set
of plausible candidates returned by the dictionary lookup using
the omission key will unlikely contain the “adjust”. Likewise, the
results returned by the dictionary lookup using the skeleton key
are also unlikely to contain the desired correct word, unless the
search window has been made very large.

Based on the experimental findings, to overcome some of the
shortcomings associated with the similarity key based dictionary
lookups, the spelling error detection used by the program includes
a trie-based lookup that utilizes a trie structure and the minimum
edit distance algorithm to search for all possible corrections in a
trie tree [10], whenever the similarity key dictionary lookup was
unable to detect any plausible candidate corrections.

5.2.2 Isolated non-word error correction
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Each plausible correction candidate discovered during the
detection phase is compared against the misspelling using the
Levenshtein distance with the following edit costs for each of four
possible corrections:

Deletion 1.2
Insertion 1.2
Substitution 2.0
Transposition 1.0

In addition, the insertions that result in the same character being
inserted more than once are discounted and are 1/5 of the regular
insertion cost. In other words, the distance between the
misspelling “cost” and “cooost” is only 0.48.

The candidate corrections with the distance from the misspelled
word exceeding some pre-defined threshold are discarded. The
rest of the plausible candidate corrections are added to the list of
plausible candidate corrections.

5.3 Scoring

During the isolated non-word error correction phase the program
evaluates posterior probability of each plausible candidate
correction using the Bayes’ equation:

P(clw)P(w)

PWle) = =5

Where P(w) is a prior probability of the candidate; P(c|w) is a
likelihood that the word w was mistyped, and P(c) is a
normalizing constant.

The prior probability P(w) of the potential spelling correction is
the word frequency counter divided by the total number of the
tokens in the training corpora.

The likelihood P(c|w) of a misspelling given a correct word is
estimated based on the confusion matrices compiled during the
training phase [6]:

del[w;_;, w;]
chars[w;_q, w;]
add[w;_q, ;]

chars[w;_1]
subs[c;, w;]
chars[w;]

if deletion

P(clw) = if addition

if substitution

Where del[w;_4, w;] is the number of times the characters w;_,w;
were typed as w;_q; add[w;_4,c;] is the number of times the
character w;_, was typed as w;_, c;; subs[c;, w;] is the number of
times w; as typed as c;; and revs[c;, w;] is the number of times
that w;w;,, was typed as w;,qw;. The chars[w;_;w;] and
chars[w;] is the number of times w;_; w; or w;_; appeared in the
training corpora.

The product of the posterior probabilities of each misspelling in
the query string is the total posterior probability of the corrected
sentence given the input query.

5.4 Word boundary infraction misspellings

When parsing the query, the assumption is that the word
boundaries are defined by the white space such as blanks, tabs,
etc. However, based on the test data set there is a significant
number of spelling errors caused by either split or run-on words.
Kukich [1] found that a total of 15% of all non-word errors were

due to either split or run-on words. The program attempts to
correct the word boundary infractions and proposes a set of
spelling candidates which are then ranked based on the joint
probability of the correction times distance between the
misspelling and the candidate correction. Microsoft N-gram
service is used to evaluate the correction candidates against the
online n-gram corpus.

5.4.1 Spelling errors resulting in split words

To simplify the correction of the spelling errors caused by
insertion of a blank space, the algorithm assumes that the split is
limited to just two adjacent words. The split word error correction
consists of two phases. During the first phase the input sentence is
analyzed for any potential split word errors. The algorithm
iteratively removes blank spaces between adjacent words and adds
the newly formed words to a list of potential correction
candidates.

Once all candidates are discovered, the algorithm moves to a next
phase during which the conditional probability of each candidate
is evaluated. The candidates are then sorted in a non-descending
order based on their probabilities. The candidate with the highest
posterior probability is chosen.

5.4.2 Spelling errors caused by run-on words

The program explicitly handles the spelling errors caused by the
run-on words. First, a sub-set of all possible run-on word
corrections is selected. To avoid combinatorial explosion, the sub-
set is limited to the combinations consisting of no more than a
pre-determined maximum number of blank space deletions. The
total number of possible corrections is:

k
o = (n—1)!
fk) T LG-Dia- D!
Where n is a length of the incorrectly spelled word, k is a
maximum number of the blank space deletions, and f(n,k) is a
function that returns a number of possible candidate corrections.
For example, given a misspelled word “californiastate”, and k=4
(the maximum number of deleted blank spaces), the sub-set of
possible permutations will have the total number of elements

equal to:
(15-1)!
Z (15-)rG@—1)!

Evaluating the above equation gives us f(n,k) = 470, in other
words there are 470 distinct spelling candidates that will be
generated by the run-on word correction algorithm. The table
below lists some of the candidates generated by the run-on
correction algorithm:

f(n=15k=4)

“c aliforniastate”

“ca liforniastate”

“ca li forniastate”

“ca li fornia state”

“c ali fornias tate”

To enumerate all possible run-on permutations, the program uses
a memorization optimization technique from dynamic
programming to improve the running time by decreasing the
computational complexity in time by “memorizing” the results of
evaluation of sub-sequences.
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5.5 Alternative Spellings

There is a category of spelling corrections that does not really
require a correction. Rather, during the last phase the spelling
correction program tries to suggest alternative spellings by
looking up words in the WordNet database. WordNet offers rich,
albeit limited to English, lexical network of meaningfully related
words and concepts. The WordNet is a useful tool for natural
language processing and computational linguistics [11].

For words that are present in the WordNet databases, the program
extracts the synsets and analyzes the lemmas that have the same
meaning. The program computes the minimum edit distance
between the alternative spelling and the original input and
discards the alternative spellings with the minimum edit distance
cost exceeding some pre-defined threshold. The alternative
spelling is then added to the list of plausible corrections. The
probability of the alternative spelling is evaluated and ranked
according to its conditional probability. For example, the program
will detect that the word “center” has the alternative spelling
“centre” and propose both as plausible spelling candidates.

5.6 Final Ranking

Once the error detection and spelling correction phases are done,
the program generates all possible spelling correction
combinations of the entire input sequence using the lists of
plausible candidates generated by the previous phases on the
algorithm.

Each of the generated sequences is re-evaluated using the
Microsoft N-Gram service by computing its joint probability.
Each sentence is then re-ranked using its computed joint
probability and the scores computed during error correction
phases. The combined ranking is used to sort the plausible
corrections in a non-decreasing order. The corrections scored
below some pre-defined threshold, are discarded. The remaining
corrections are normalized so that the sum of the probabilities
adds up to 1.

5.7 Evaluation

The accuracy of the spelling corrections was evaluated using the
F-measure, the harmonic mean of precision and recall. The
evaluation results below are based on the sub-set of the TREC
dataset manually annotated by the human experts:

Test Set F-Measure Precision Recall

207 queries 0.9319834906 | 0.9439781203 | 0.9202898550
409 queries 0.9162777685 | 0.9317057259 | 0.9013524264
1507 queries | 0.9185730419 | 0.9352770727 | 0.9024552090

5.8 Known Issues

5.8.1 Input Query Language Classification

The technique used to determine the language can be improved to
map the input query into a weighted vector where the element of
the vector represents some metric associated with a word, for
example its overlay frequency.

5.8.2 Training corpora

It is necessary to clean the training corpora to get rid of
intentionally misspelled words some books tend to have (for
example, “War and Peace” by Alexei Tolstoy contain a relatively
large amount of foreign and intentionally distorted text).

5.8.3 Word boundary infractions

When correcting the run-on words, the program assumes the
correct and misspelled sequences differ only in the number of
blank spaces. In other words, no corrections, other than restoring
deleted blank spaces, are required. This constraint was imposed as
a trade-off between the precision and running time.

5.8.4 Real word error detection and correction
Real-word correction phase is not currently implemented,
although there is an ongoing effort to add the real-word correction
to the algorithm. There are several possible directions among
which the text collocation [9] and neural nets [7].

5.8.5 Detection of Proper Nouns

The detection and correction of words that represent proper nouns
still remains an elusive task due to ever growing body of proper
nouns that not only include names of places and people, but also
the names of the web sites, companies, etc. No dictionary lookup
technique can possibly account for every variety out there.
Therefore, the current version of the program uses a rule-based,
pattern matching approach where it tries to detect whether the
input query represents a name of the web site using known
patterns.
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