Verifying Computations in the Cloud (and

Elsewhere)

Michael Mitzenmacher, Harvard University
Work oftloaded to
Justin Thaler, Harvard University




Goals of Verifiable Computation

® Provide user with correctness guarantee, without
requiring her to perform full computation herself.
° Ideally user will not even maintain a local copy of the data.

° Checking correctness should be much faster that performing

the computation.

® Minimize extra effort required for cloud to provide

correctness guarantee.

® Achieve protocols secure against malicious clouds, but

1ightweight for use in benign settings.




Interactive Proofs

Cloud Provider Business/Agency/Scientist




Interactive Proofs

Cloud Provider Business/Agency/Scientist




Interactive Proofs

Cloud Provider Business/Agency/Scientist




Interactive Proofs

Cloud Provider Business/Agency/Scientist

‘




Interactive Proofs

Cloud Provider Business/Agency/Scientist




Interactive Proofs

Cloud Provider Business/Agency/Scientist

e S



Interactive Proofs

® Prover P and Verifier V.

® P solves problem, tellsV the answer.
® Then P and V have a conversation.

e P’g goal: convince V the answer is correct.

° Requirements:

® 1. Completeness: an honest P can convince V
to accept.

® 2. Soundness: V will catch a lying P with high [

Source: http:/ /harrypotterfans.blogg.se/2009/december/albus-dumbled:

probability (secure even if P is computationally

unbounded).

ore.html




Interactive Proofs

® |Ps have revolutionized complexity theory in the last 25

years.
e [P=PSPACE [LFKN90, Shamir90].
® PCP Theorem e.g. [AS98, ALMSS98]. Hardness of

approx1matlon.

® /ero Knowledge Proofs.

e But IPs have had very little impact in real delegation scenarios.
° Why?
® Not due to lack of applications!




Interactive Proofs
® Old Answer: Most results on IPs dealt with hard

problems, needed P to be too powertul.

® But recent constructions focus on “easy” problems

(e.g. Interactive Proofs for Muggles [GKR 08]).

® AllowsV to run very quickly, so outsourcing is

useful even though problems are “easy”.

® P does not need “much” more time to prove

correctness than she does to just solve the problem!




Interactive Proofs

° Why does GKR not yield a practical protocol out
of the box?

® P has to do a lot of extra bookkeeping (cubic

blowup in runtime).

® Naively, V has to retain the full input.




Streaming : New Application of [Ps

® Streaming setting: data passes through V but not stored at V; V reads input and can do
small amounts of computation as it passes by.

® Streaming problems: hard because V has to read input in one-pass streaming manner, but
(might be) easy if V could store the whole input.

e Fits cloud computing well: streaming pass byV can occur while uploading data to cloud.

® V never needs to store entirety of data!




Data Streaming Model

® Stream: m elements from universe of size n.

° c.g,S=<x,,%,,...,x,> =3,53,7,5,4,8,7,5,4,8,6,3,2, ...

® Goal: Compute a function of stream, e.g., median, frequency moments, heavy

hitters.
© Challenge:

(i) Limited working memoryj, i.e., sublinear(n,m).

(i) Sequential access to adversarially ordered data.

Slide derived from [McGregor 10]




One round vs. Many rounds

® Two models:
1. One message (Non-interactive) [CCM 09/ CCMT 12]: After

both observe stream, P sendsV an email with the answer, and a

proof attached. Less interaction; more data sent.

2. Multiple rounds of interaction [CTY 10]: P and V have a

conversation after both observe stream.




Costs in Our Models

® Two main costs: words of communication, and V’s working memory.

® Other costs: running time, number of messages.




A Two-Pronged Approach

® First Prong: General purpose implementation to Verify

arbitrary computation [CMT12, TRMP12, T13].
° Building on general—purpose GKR protocol.

e Second Prong: Develop highly optimized protocols for
specific important problems [CCMT12, CMT10, CTY12,
CCGT13].

® Reporting queries (what value is stored in memory location x
of my database?)

® Matrix multiplication.

® Graph problems like perfect matching.
® Certain kinds of linear programs.

® Etc.




Non-Interactive Protocols with Streaming Verifiers:

A Sampling




A general technique

* Arithmetization: Given function f defined on small domain,
replace f with its low-degree extension, LDE(f), as a

polynomial defined over a large field.

e Can view LDE(ﬂ as error-corrected encoding of f Error-

correcting properties give V considerable power over P.

* If two (boolean) functions differ in one location, their LDE’s

will differ in almost all locations.




Second Frequency Moment (F,)

* F,is a central streaming problem.

® Captures sample variance, Euclidean norm, data similarity.

® Definition:

® et X be the frequency vector of the stream.

* (=4 X’

i=1

Raw data stream over universe {a, b, c, d} Frequency Vector X

a[blalc|b]|a -3I2I1I0I
a b ¢ d

F(X)=3+2?+1* =14




Second Frequency Moment

* [CCMT 12]: (/5 comm.,\/n space)-protocol for F,.
e Terabytes of data translate to a few MBs of space
and communication.

* Optimal. Lower bound of W) on comm. * space.




I, Protocol
* Recall: F,(X)= @ X2
® View universe [nlil as [\n] x [Vn]

Frequency Vector X

¥

Frequency

“Square”




® Firstidea: Have P send the answer “in pieces”:

F,(row 1).F,(row 2). And so on. Requires Vn communication.

® V exactly tracks a row at random (denoted in yellow) so if P lies about

any piece, V has a chance of catching her. Requires space Vn.

Frequency Square

P sends
20=22+42

18=32+32

4=7?

Slide derived from [McGregor 10]




® Problem:If P lies in only one place,V has small chance of
catching her.

® What we'd like: it P lies about even one piece, she will have to
lie about many.

® Solution: Have P commit (succinctly) to second frequency
moment of rows of an error-corrected encoding of the
input.

® Note:V can evaluate any row of the low—degree extension
encoding in a streaming fashion.




Low—Degree Extension

of Frequency Square

0 -1 || -5
0 -6 ||| -12
0 -13 | -21

These values
all lie on a
low—degree

polynomial

¥

P sends
20=22+42

18=32+32

4=72
26=(-1)>+(-5)’
180=(-6)>+(-12)?

610=(-13)2+(-21)?




F, Experiments

Time to create proof

XX One Round without FFT
3 | 4—4= One Round with FFT
10 *—* Multiround

10* 10> 10° 107 10® 10° 10%°
N

Multi-round P from [CTY11] vs. Non-interactive P
with and without FFT techniques




General Purpose IPs

(Extending GKR)




Circuits, Fields, and All That

F , circuit




Interactive Proofs on Circuits

e PTOVET Starts the
conversation with

an answer (output).

F , circuit




Interactive Proofs on Circuits

Verifier challenges.
Prover has to respond
with information about

the next circuit level.

F , circuit




Interactive Proofs on Circuits

F , circuit

Challenges continue,
layer by layer down
to the the input.




Interactive Proofs on Circuits

Finally, the Prover
must say something
about the input.
F2 circuit . o > [
The verifier checks the Prover’s final
statement about the input, using the

right kind of “fingerprint”.




Saving V Space and Time [CMT12]

® SavesV substantial amounts of space (works for streaming).

e SaveV substantial amounts of time.

* E.g. when multiplying two 512x512 matrices, V requires .12s, while naive matrix

multiplication takes .70s.

® Savings for V will be much larger at larger input sizes, and for more time-intensive

computations.




Minimizing P’s Overhead [CMT12]

* Brought P’s runtime down from £2(S°), to O(S log S), where
S is circuit size.
* Lots of additional engineering.
® Choosing the “right” finite field to work over.
® Using the “right” circuits.
® Etc.
® Practically speaking, still not good enough on its own.
® 256 x 256 matrix multiplication takes P 27 minutes.

® Naive implementation of GKR would take trillions of times

longer.




Reducing Overhead Further [T13]

* Improvements for “regular” circuits: Reduce P’s runtime to
O(S).
® Experimental results: 250x speedup over [CMT12].

® P less than 10x slower than a C++ program that just evaluates
the circuit for example applications: MatMult, DISTINCT, F,,
Pattern Matching, FFTs.




Results for Regular Circuits [T13]

Problem P time P time V time Rounds Protocol Circuit
[CMT12] [T13] [Both] [T13] Comm*  Eval Time
[T13]
DISTINCT 56.6 17.2s 25S 236 40.7 KB 1.88s
(n=2%) minutes
MatMult 2.7 378s 1s 1361 54 KB 6.07 s

(512 x512) hours




Dealing with Irregular Circuits [T13]

* No magic bullet for dealing with irregular wiring patterns.
® Need some assumption about the computation being outsourced.

® [s there structure in real-world computations?

® Yes: Data Parallel computation.

® Any setting where a sub-computation Cis applied to many pieces
of data.

® Make no assumptions about C itself.

® These are the sort of problems getting outsourced!




Aggregation




Leveraging Parallelism [T13]

® Problem: Verify massive parallel computations.
° Directly applying existing results has big overhead.

® Costs depend on number of data pieces.

* Approach: take advantage of parallelism.
® Reduce V's effort to proportional to size of C.
® Reduce P's overhead to log size of C.

e No dependence on number of data pieces.

* Key insight: C may be irregular internally, but the

computation is rnaxirnally regular between copies of C.




A Final Result: MatMult [T13]

® Let A be any time t, space s algorithm for n x n MatMult.
® New MatMult protocol:

® P takes time t + O(n?) and space s + o(n?).

° Optimal runtime up to leading constant assuming no O(nz) time

algorithm for MatMult.
Problem Naive Additional \/ Time Rounds Protocol
Size MatMult P time Comm
Time
1024 x 1024 217 s 0.03s 0.67s 11 264 bytes

2048 x2048  18.23s 0.13s 2.89s 12 288 bytes




Future Directions

® Build a system that avoids the circuit model.
®  Writing computations as circuits is limiting, can blow up time for verification.
® Can we design systems that work with general C programs?
In theory, mostly yes; currently prover time is impractically large.
® Can we design systems that work with MapReduce?
* Continue pushing speed, functionality, of current systems

1 More room fOI‘ improvement

¢ From the big data cloud to small attachable devices.

® Imagine special purpose high-speed attachable devices for special purposes — e.g., decrypting
messages, custom calculations.

Special ASICs, or GPUs, or...
® These devices should be able to Verify their work.




