
Learning Map Sentences to Meaning

Luke Zettlemoyer
University of Washington

Computer Science & Engineering

joint work with Michael Collins, Sharon Goldwater,
Tom Kwiatkowski, Mark Steedman

From Text to Meaning

We want to build systems that recover meaning from text

Increasingly Informative Meaning Representation

Information Extraction
Recover information about pre-specified
entities and relations

Example Task
Relationship
Extraction

OBAMA is PRESIDENT

Increasingly Informative Meaning Representation

We want to build systems that recover meaning from text

From Text to Meaning

Broad-coverage Semantics
Focus on specific phenomena, e.g.
matching verbs to their arguments

Us forces killed
Osama Bin
Laden in his
compound in
Abbottabad.

Example Task
Summarization

We want to build systems that recover meaning from text

From Text to Meaning

Increasingly Informative Meaning Representation

Supervised Semantic Parsing
Recover Complete Meaning
Representations

Example Task
Database Querying

Question:
What states border texas?

Database

Answer:
Oklahoma

New Mexico
Arkansas
Louisiana

We want to build systems that recover meaning from text

From Text to Meaning

Increasingly Informative Meaning Representation

Mapping Sentences to Meaning

 Texas borders Kansas.

Mapping Sentences to Meaning

 Texas borders Kansas.
 next-to(TEX,KAN)

Mapping Sentences to Meaning

 Texas borders Kansas.
 next-to(TEX,KAN)

 What states border Texas?
 λx.state(x) ∧ next-to(x,TEX)

Mapping Sentences to Meaning

Machine Learning Problem
 Given: Many input, output pairs
 Learn: A function that maps sentences to lambda-
 calculus expressions

 Texas borders Kansas.
 next-to(TEX,KAN)

 What states border Texas?
 λx.state(x) ∧ next-to(x,TEX)

More Examples

 Input: What is the largest state?
Output: argmax(λx.state(x), λy.size(y))

 Input: What states border the largest state?
Output: λz.state(z) ∧ borders(z,
 argmax(λx.state(x), λy.size(y)))

 Input: What states border states that border
 states ... that border Texas?
Output: λx.state(x)∧ ∃y.state(y) ∧ ∃z.state(z)∧ ...
 ∧ borders(x,y)∧ borders(y,z)∧ borders(z,texas)

Many Potential Applications

This talk: Natural language interfaces to databases

> What states border Texas?
[Louisiana, Arkansas, Oklahoma, New Mexico]

> Which is the largest?
[New Mexico]

> List the rivers that run through it.
[...]

Many Potential Applications

This talk: Natural language interfaces to databases

Soon: Conversational systems
Long Term: Machine translation, Document understanding

> What states border Texas?
[Louisiana, Arkansas, Oklahoma, New Mexico]

> Which is the largest?
[New Mexico]

> List the rivers that run through it.
[...]

Why Machine Learning?

Need to analyze complex sentences:
• show me all flights both direct and connecting to either san francisco

or oakland from boston that arrive before 2pm

• where does delta fly to that american doesn't

• which airline has more business class flights than any other airline

• eastern flies from atlanta to denver what type of aircraft do you use
before 6pm

Why Machine Learning?

Need to analyze complex sentences:
• show me all flights both direct and connecting to either san francisco

or oakland from boston that arrive before 2pm

• where does delta fly to that american doesn't

• which airline has more business class flights than any other airline

• eastern flies from atlanta to denver what type of aircraft do you use
before 6pm

Traditional Approach: hand-engineered systems
•Many person-years spent on each application

Machine Learning: only need training data
•Techniques apply across applications

Machine Learning: Input X and Output Y
• given training data, a set of pairs
• find a function

A Challenge: Structured Input, Output

Brief Article

The Author

March 28, 2009

f : X → Y
w ∈ R2

test
xi ∈ R2, yi ∈ {−1,+1}
x ∈ R2, yi ∈ {−1,+1}
(xi, yi) for i = 1 . . . n
asdf asdf f
For t = 1 . . . T :

For i = 1 . . . n:
zi = sign(w · xi)
If zj �= yi

w = w + yixi

1

Brief Article

The Author

March 28, 2009

f : X → Y
w ∈ R2

test
xi ∈ R2, yi ∈ {−1,+1}
xi ∈ R2, yi ∈ {−1,+1}
x ∈ R2, yi ∈ {−1,+1}
(xi, yi) for i = 1 . . . n
(x, y), x ∈ X, y ∈ Y
asdf asdf f
For t = 1 . . . T :

For i = 1 . . . n:
zi = sign(w · xi)
If zj �= yi

w = w + yixi

1

Machine Learning: Input X and Output Y
• given training data, a set of pairs
• find a function

A Challenge: Structured Input, Output

Brief Article

The Author

March 28, 2009

f : X → Y
w ∈ R2

test
xi ∈ R2, yi ∈ {−1,+1}
x ∈ R2, yi ∈ {−1,+1}
(xi, yi) for i = 1 . . . n
asdf asdf f
For t = 1 . . . T :

For i = 1 . . . n:
zi = sign(w · xi)
If zj �= yi

w = w + yixi

1

Brief Article

The Author

March 28, 2009

f : X → Y
w ∈ R2

test
xi ∈ R2, yi ∈ {−1,+1}
xi ∈ R2, yi ∈ {−1,+1}
x ∈ R2, yi ∈ {−1,+1}
(xi, yi) for i = 1 . . . n
(x, y), x ∈ X, y ∈ Y
asdf asdf f
For t = 1 . . . T :

For i = 1 . . . n:
zi = sign(w · xi)
If zj �= yi

w = w + yixi

1

Binary classification:

Brief Article

The Author

March 28, 2009

f : X → Y
w ∈ R2

test
x ∈ Rd, y ∈ {−1,+1}
xi ∈ R2, yi ∈ {−1,+1}
x ∈ R2, yi ∈ {−1,+1}
(xi, yi) for i = 1 . . . n
(x, y), x ∈ X, y ∈ Y
asdf asdf f
For t = 1 . . . T :

For i = 1 . . . n:
zi = sign(w · xi)
If zj �= yi

w = w + yixi

1

Machine Learning: Input X and Output Y
• given training data, a set of pairs
• find a function

A Challenge: Structured Input, Output

Key Challenge: outputs have rich structure (lambda-calculus)

Brief Article

The Author

March 28, 2009

f : X → Y
w ∈ R2

test
xi ∈ R2, yi ∈ {−1,+1}
x ∈ R2, yi ∈ {−1,+1}
(xi, yi) for i = 1 . . . n
asdf asdf f
For t = 1 . . . T :

For i = 1 . . . n:
zi = sign(w · xi)
If zj �= yi

w = w + yixi

1

Brief Article

The Author

March 28, 2009

f : X → Y
w ∈ R2

test
xi ∈ R2, yi ∈ {−1,+1}
xi ∈ R2, yi ∈ {−1,+1}
x ∈ R2, yi ∈ {−1,+1}
(xi, yi) for i = 1 . . . n
(x, y), x ∈ X, y ∈ Y
asdf asdf f
For t = 1 . . . T :

For i = 1 . . . n:
zi = sign(w · xi)
If zj �= yi

w = w + yixi

1

Binary classification:

Brief Article

The Author

March 28, 2009

f : X → Y
w ∈ R2

test
x ∈ Rd, y ∈ {−1,+1}
xi ∈ R2, yi ∈ {−1,+1}
x ∈ R2, yi ∈ {−1,+1}
(xi, yi) for i = 1 . . . n
(x, y), x ∈ X, y ∈ Y
asdf asdf f
For t = 1 . . . T :

For i = 1 . . . n:
zi = sign(w · xi)
If zj �= yi

w = w + yixi

1

what states border texas

λx.state(x) ∧ next-to(x,TEX)

f

This talk: x is a sentence, y is a lambda-calculus expression

A Challenge: Learning Hidden Structure

Approach 1. Fully annotated training examples (parse trees):

A Challenge: Learning Hidden Structure

Approach 1. Fully annotated training examples (parse trees):

flight from Boston to Seattle
N

λx.flight(x)
NP
FRI

N\N
λf.λx.f(x)∧day(x,FRI)

Show me the latest on Friday
N\N/NP

λy.λf.λx.f(x)
∧day(x,y)

NP
SEA

N\N
λf.λx.f(x)∧to(x,SEA)

N\N/NP
λy.λf.λx.f(x)

∧to(x,y)

NP
BOS

N\N
λf.λx.f(x)∧from(x,BOS)

N\N/NP
λy.λf.λx.f(x)
∧from(x,y)

NP/N
λf.argmax(f(x),
λy.time(y))

S/NP
λx.x

N
 λx.flight(x) ∧from(x,BOS)

N
 λx.flight(x) ∧from(x,BOS) ∧to(x,SEA)

N
λx.flight(x) ∧from(x,BOS) ∧to(x,SEA) ∧day(x,FRI)

NP
 argmax(λx.flight(x) ∧from(x,BOS) ∧to(x,SEA) ∧day(x,FRI),

λy.time(y))

 S
 argmax(λx.flight(x) ∧from(x,BOS) ∧to(x,SEA) ∧day(x,FRI), λy.time(y))

A Challenge: Learning Hidden Structure

Our approach. Only requires annotations of final meanings

flight from Boston to Seattle
N

λx.flight(x)
NP
FRI

N\N
λf.λx.f(x)∧day(x,FRI)

Show me the latest on Friday
N\N/NP

λy.λf.λx.f(x)
∧day(x,y)

NP
SEA

N\N
λf.λx.f(x)∧to(x,SEA)

N\N/NP
λy.λf.λx.f(x)

∧to(x,y)

NP
BOS

N\N
λf.λx.f(x)∧from(x,BOS)

N\N/NP
λy.λf.λx.f(x)
∧from(x,y)

NP/N
λf.argmax(f(x),
λy.time(y))

S/NP
λx.x

N
 λx.flight(x) ∧from(x,BOS)

N
 λx.flight(x) ∧from(x,BOS) ∧to(x,SEA)

N
λx.flight(x) ∧from(x,BOS) ∧to(x,SEA) ∧day(x,FRI)

NP
 argmax(λx.flight(x) ∧from(x,BOS) ∧to(x,SEA) ∧day(x,FRI),

λy.time(y))

 S
 argmax(λx.flight(x) ∧from(x,BOS) ∧to(x,SEA) ∧day(x,FRI), λy.time(y))

A Challenge: Learning Hidden Structure

flight from Boston to SeattleShow me the latest on Friday

 argmax(λx.flight(x) ∧from(x,BOS) ∧to(x,SEA) ∧day(x,FRI), λy.time(y))

Our approach. Only requires annotations of final meanings

?

Talk Outline

Learning to map sentences to meaning:
•Representing and recovering meaning
•An example supervised learning
algorithm

•Other problems: interpreting
instructions, grounding, task-oriented
dialog, talking to robots

Combinatory Categorial Grammars (CCG)

We will learn a linguistically-plausible CCG
grammar:
• mildly context-sensitive formalism
• explains a wide range of linguistic
phenomena: coordination, long distance
dependencies, etc.

• joint model of syntax and semantics
• statistical parsing algorithms exist

[Steedman 96,00]

Compositional Semantics

The Mississippi traverses Texas

runs-through(MISS-RIV,TEX)

?

Compositional Semantics

The Mississippi traverses Texas
MISS-RIV λx.λy.runs-through(y,x) TEX

[Montague, 70]

Compositional Semantics

The Mississippi traverses Texas
MISS-RIV λx.λy.runs-through(y,x) TEX

[Montague, 70]

Compositional Semantics

The Mississippi traverses Texas
MISS-RIV λx.λy.runs-through(y,x) TEX

λy.runs-through(y,TEX)

[Montague, 70]

Compositional Semantics

The Mississippi traverses Texas
MISS-RIV λx.λy.runs-through(y,x) TEX

λy.runs-through(y,TEX)

[Montague, 70]

Compositional Semantics

The Mississippi traverses Texas
MISS-RIV λx.λy.runs-through(y,x) TEX

λy.runs-through(y,TEX)

runs-through(MISS-RIV,TEX)

[Montague, 70]

Combinatory Categorial Grammar (CCG)

[Steedman 96,00]

The Mississippi traverses Texas

MISS-RIV λx.λy.runs-through(y,x) TEX
(S\NP)/NP NPNP

Combinatory Categorial Grammar (CCG)

[Steedman 96,00]

The Mississippi traverses Texas

MISS-RIV λx.λy.runs-through(y,x) TEX
(S\NP)/NP NPNP

Combinatory Categorial Grammar (CCG)

[Steedman 96,00]

The Mississippi traverses Texas

MISS-RIV λx.λy.runs-through(y,x) TEX
(S\NP)/NP NPNP

Combinatory Categorial Grammar (CCG)

[Steedman 96,00]

The Mississippi traverses Texas

MISS-RIV λx.λy.runs-through(y,x) TEX
(S\NP)/NP NPNP

Combinatory Categorial Grammar (CCG)

[Steedman 96,00]

The Mississippi traverses Texas

MISS-RIV λx.λy.runs-through(y,x) TEX
(S\NP)/NP NPNP

λy.runs-through(y,TEX)
S\NP

Combinatory Categorial Grammar (CCG)

[Steedman 96,00]

The Mississippi traverses Texas

MISS-RIV λx.λy.runs-through(y,x) TEX
(S\NP)/NP NPNP

λy.runs-through(y,TEX)
S\NP

Combinatory Categorial Grammar (CCG)

[Steedman 96,00]

The Mississippi traverses Texas

MISS-RIV λx.λy.runs-through(y,x) TEX
(S\NP)/NP NPNP

λy.runs-through(y,TEX)
S\NP

runs-through(MISS-RIV,TEX)
S

Models Complex Linguistic Effects

λx.flight(x) ∧ nonstop(x) ∧
 (from(x,NEW) ∨ from(x,NYC)) ∧
 (to(x,SFO) ∨ to(x,OAK))

Show me flights from Newark and New York
to San Francisco or Oakland that are
nonstop.

[Steedman 96,00]

Many Meanings: Lexical Ambiguity

Texas borders Kansas

Many Meanings: Lexical Ambiguity

Texas borders Kansas

Texas borders Kansas

TEX λx.λy.next-to(y,x) KAN

(S\NP)/NP NPNP

next-to(TEX,KAN)

S

Texas borders Kansas

TEX-CITY λx.λy.next-to(y,x) KAN

(S\NP)/NP NPNP

next-to(TEX-CITY,KAN)

S

or

Many Meanings: Structural Ambiguity

flights from Newark or from New York
that are nonstop

Many Meanings: Structural Ambiguity

flights from Newark or from New York
that are nonstop

λx.flight(x) ∧ nonstop(x) ∧
 (from(x,NEW) ∨ from(x,NYC))

λx.flight(x) ∧ (from(x,NEW) ∨
 (from(x,NYC) ∧ nonstop(x)))

or

[[flights from Newark or from New York] that
are nonstop]

[flights from Newark or [from New York that
are nonstop]]

 What states border Texas?
 λx.state(x) ∧ next-to(x,TEX)

Training Examples:

A Supervised Learning Problem

A function f that maps sentences to meaning.

A Multilingual Learning Algorithm

[Kwiatkowski, et al 2010]

Key challenge: learn from data with different natural
languages and meaning representations

English, logical-form:

 NL: what states border texas
 MR: λx.state(x)∧ next_to(x,tex)

Turkish, functional query language:
 NL: texas a siniri olan eyaletler nelerdir
 MR: answer(state(next_to_2(stateid tex)))

 Will Lean: Probabilistic CCG

, θNPTexas tex

Lexicon: Parameters:

Λ=

 Will Lean: Probabilistic CCG

, θNPTexas tex

Lexicon: Parameters:

Probability distribution: sentence x, parse y, logical form z
• Log-linear model:

• Parsing:

hangi eyaletin texas ye siniri vardir
S/NP NP/NP NP NP\NP

λx.answer(x) λx.state(x) tex λx.border(x)
<

NP
border(tex)

>
NP

state(border(tex))
>

S
answer(state(border(tex)))

what states border texas
S/(S|NP) S|NP/(S|NP) S\NP/NP NP
λfλx.f(x) λfλx.state(x)∧f(x) λyλx.next to(x, y) tex

>B
S|NP/NP

λyλx.state(x) ∧ next to(x, y)
>

S|NP
λx.state(x) ∧ next to(x, tex)

>
S

λx.state(x) ∧ next to(x, tex)

Figure 1: Two examples of CCG parses with different logical form representations.

defined as:

P (y, z|x; θ,Λ) = eθ·φ(x,y,z)�
(y�,z�) e

θ·φ(x,y�,z�) (1)

Section 7 defines the features used in the experi-
ments, which include, for example, lexical features
that indicate when specific lexical items in Λ are
used in the parse y. For parsing and parameter es-
timation, we use standard algorithms (Clark & Cur-
ran, 2007), as described below.

The parsing, or inference, problem is to find the
most likely logical form z given a sentence x, as-
suming the parameters θ and lexicon Λ are known:

f(x) = argmax
z

p(z|x; θ,Λ) (2)

where the probability of the logical form is found by
summing over all parses that produce it:

p(z|x; θ,Λ) =
�

y

p(y, z|x; θ,Λ) (3)

In this approach the distribution over parse trees y

is modeled as a hidden variable. The sum over
parses in Eq. 3 can be calculated efficiently using
the inside-outside algorithm with a CKY-style pars-
ing algorithm.

To estimate the parameters themselves, we
use stochastic gradient updates (LeCun et al.,
1998). Given a set of n sentence-meaning pairs
{(xi, zi) : i = 1...n}, we update the parameters θ it-
eratively, for each example i, by following the local
gradient of the conditional log-likelihood objective
Oi = logP (zi|xi; θ,Λ). The local gradient of the
individual parameter θj associated with feature φj

and training instance (xi, zi) is given by:

∂Oi

∂θj
= Ep(y|xi,zi;θ,Λ)[φj(xi, y, zi)]

−Ep(y,z|xi;θ,Λ)[φj(xi, y, z)]

(4)

As with Eq. 3, all of the expectations in Eq. 4 are
calculated through the use of the inside-outside al-
gorithm on a pruned parse chart. In the experiments,
each chart cell was pruned to the top 200 entries.

4 Splitting Lexical Items

Before presenting a complete learning algorithm, we
first describe how to use higher-order unification to
define a procedure for splitting CCG lexical entries.
This splitting process is used to expand the lexicon
during learning. We seed the lexical induction with
a multi-word lexical item xi�S :zi for each training
example (xi, zi), consisting of the entire sentence xi
and its associated meaning representation zi. For ex-
ample, one initial lexical item might be:

New York borders Vermont �S:next to(ny, vt) (5)

Although these initial, sentential lexical items
can parse the training data, they will not generalize
well to unseen data. To learn effectively, we will
need to split overly specific entries of this type into
pairs of new, smaller, entries that generalize better.
For example, one possible split of the lexical entry
given in (5) would be the pair:

New York borders � S/NP : λx.next to(ny, x),
Vermont �NP : vt

where we broke the original logical expression into
two new ones λx.next to(ny, x) and vt, and paired
them with syntactic categories that allow the new
lexical entries to be recombined to produce the orig-
inal analysis. The next three subsections define the
set of possible splits for any given lexical item. The
process is driven by solving a higher-order unifica-
tion problem that defines all of the ways of splitting
the logical expression into two parts, as described in
Section 4.1. Section 4.2 describes how to construct

hangi eyaletin texas ye siniri vardir
S/NP NP/NP NP NP\NP

λx.answer(x) λx.state(x) tex λx.border(x)
<

NP
border(tex)

>
NP

state(border(tex))
>

S
answer(state(border(tex)))

what states border texas
S/(S|NP) S|NP/(S|NP) S\NP/NP NP
λfλx.f(x) λfλx.state(x)∧f(x) λyλx.next to(x, y) tex

>B
S|NP/NP

λyλx.state(x) ∧ next to(x, y)
>

S|NP
λx.state(x) ∧ next to(x, tex)

>
S

λx.state(x) ∧ next to(x, tex)

Figure 1: Two examples of CCG parses with different logical form representations.

defined as:

P (y, z|x; θ,Λ) = eθ·φ(x,y,z)�
(y�,z�) e

θ·φ(x,y�,z�) (1)

Section 7 defines the features used in the experi-
ments, which include, for example, lexical features
that indicate when specific lexical items in Λ are
used in the parse y. For parsing and parameter es-
timation, we use standard algorithms (Clark & Cur-
ran, 2007), as described below.

The parsing, or inference, problem is to find the
most likely logical form z given a sentence x, as-
suming the parameters θ and lexicon Λ are known:

f(x) = argmax
z

p(z|x; θ,Λ) (2)

where the probability of the logical form is found by
summing over all parses that produce it:

p(z|x; θ,Λ) =
�

y

p(y, z|x; θ,Λ) (3)

In this approach the distribution over parse trees y

is modeled as a hidden variable. The sum over
parses in Eq. 3 can be calculated efficiently using
the inside-outside algorithm with a CKY-style pars-
ing algorithm.

To estimate the parameters themselves, we
use stochastic gradient updates (LeCun et al.,
1998). Given a set of n sentence-meaning pairs
{(xi, zi) : i = 1...n}, we update the parameters θ it-
eratively, for each example i, by following the local
gradient of the conditional log-likelihood objective
Oi = logP (zi|xi; θ,Λ). The local gradient of the
individual parameter θj associated with feature φj

and training instance (xi, zi) is given by:

∂Oi

∂θj
= Ep(y|xi,zi;θ,Λ)[φj(xi, y, zi)]

−Ep(y,z|xi;θ,Λ)[φj(xi, y, z)]

(4)

As with Eq. 3, all of the expectations in Eq. 4 are
calculated through the use of the inside-outside al-
gorithm on a pruned parse chart. In the experiments,
each chart cell was pruned to the top 200 entries.

4 Splitting Lexical Items

Before presenting a complete learning algorithm, we
first describe how to use higher-order unification to
define a procedure for splitting CCG lexical entries.
This splitting process is used to expand the lexicon
during learning. We seed the lexical induction with
a multi-word lexical item xi�S :zi for each training
example (xi, zi), consisting of the entire sentence xi
and its associated meaning representation zi. For ex-
ample, one initial lexical item might be:

New York borders Vermont �S:next to(ny, vt) (5)

Although these initial, sentential lexical items
can parse the training data, they will not generalize
well to unseen data. To learn effectively, we will
need to split overly specific entries of this type into
pairs of new, smaller, entries that generalize better.
For example, one possible split of the lexical entry
given in (5) would be the pair:

New York borders � S/NP : λx.next to(ny, x),
Vermont �NP : vt

where we broke the original logical expression into
two new ones λx.next to(ny, x) and vt, and paired
them with syntactic categories that allow the new
lexical entries to be recombined to produce the orig-
inal analysis. The next three subsections define the
set of possible splits for any given lexical item. The
process is driven by solving a higher-order unifica-
tion problem that defines all of the ways of splitting
the logical expression into two parts, as described in
Section 4.1. Section 4.2 describes how to construct

where

hangi eyaletin texas ye siniri vardir
S/NP NP/NP NP NP\NP

λx.answer(x) λx.state(x) tex λx.border(x)
<

NP
border(tex)

>
NP

state(border(tex))
>

S
answer(state(border(tex)))

what states border texas
S/(S|NP) S|NP/(S|NP) S\NP/NP NP
λfλx.f(x) λfλx.state(x)∧f(x) λyλx.next to(x, y) tex

>B
S|NP/NP

λyλx.state(x) ∧ next to(x, y)
>

S|NP
λx.state(x) ∧ next to(x, tex)

>
S

λx.state(x) ∧ next to(x, tex)

Figure 1: Two examples of CCG parses with different logical form representations.

defined as:

P (y, z|x; θ,Λ) = eθ·φ(x,y,z)�
(y�,z�) e

θ·φ(x,y�,z�) (1)

Section 7 defines the features used in the experi-
ments, which include, for example, lexical features
that indicate when specific lexical items in Λ are
used in the parse y. For parsing and parameter es-
timation, we use standard algorithms (Clark & Cur-
ran, 2007), as described below.

The parsing, or inference, problem is to find the
most likely logical form z given a sentence x, as-
suming the parameters θ and lexicon Λ are known:

f(x) = argmax
z

p(z|x; θ,Λ) (2)

where the probability of the logical form is found by
summing over all parses that produce it:

p(z|x; θ,Λ) =
�

y

p(y, z|x; θ,Λ) (3)

In this approach the distribution over parse trees y

is modeled as a hidden variable. The sum over
parses in Eq. 3 can be calculated efficiently using
the inside-outside algorithm with a CKY-style pars-
ing algorithm.

To estimate the parameters themselves, we
use stochastic gradient updates (LeCun et al.,
1998). Given a set of n sentence-meaning pairs
{(xi, zi) : i = 1...n}, we update the parameters θ it-
eratively, for each example i, by following the local
gradient of the conditional log-likelihood objective
Oi = logP (zi|xi; θ,Λ). The local gradient of the
individual parameter θj associated with feature φj

and training instance (xi, zi) is given by:

∂Oi

∂θj
= Ep(y|xi,zi;θ,Λ)[φj(xi, y, zi)]

−Ep(y,z|xi;θ,Λ)[φj(xi, y, z)]

(4)

As with Eq. 3, all of the expectations in Eq. 4 are
calculated through the use of the inside-outside al-
gorithm on a pruned parse chart. In the experiments,
each chart cell was pruned to the top 200 entries.

4 Splitting Lexical Items

Before presenting a complete learning algorithm, we
first describe how to use higher-order unification to
define a procedure for splitting CCG lexical entries.
This splitting process is used to expand the lexicon
during learning. We seed the lexical induction with
a multi-word lexical item xi�S :zi for each training
example (xi, zi), consisting of the entire sentence xi
and its associated meaning representation zi. For ex-
ample, one initial lexical item might be:

New York borders Vermont �S:next to(ny, vt) (5)

Although these initial, sentential lexical items
can parse the training data, they will not generalize
well to unseen data. To learn effectively, we will
need to split overly specific entries of this type into
pairs of new, smaller, entries that generalize better.
For example, one possible split of the lexical entry
given in (5) would be the pair:

New York borders � S/NP : λx.next to(ny, x),
Vermont �NP : vt

where we broke the original logical expression into
two new ones λx.next to(ny, x) and vt, and paired
them with syntactic categories that allow the new
lexical entries to be recombined to produce the orig-
inal analysis. The next three subsections define the
set of possible splits for any given lexical item. The
process is driven by solving a higher-order unifica-
tion problem that defines all of the ways of splitting
the logical expression into two parts, as described in
Section 4.1. Section 4.2 describes how to construct

Λ=

Splitting lexical items

what states border texas := S : λx.state(x) ∧ next-to(x,tex)

Initial, Fully Specified Lexical Entries:

Splitting lexical items

what states border texas := S : λx.state(x) ∧ next-to(x,tex)

Initial, Fully Specified Lexical Entries:

Will need to split:

what states := S/(S|NP) : λf.λx.state(x) ∧ f(x)
border texas := S|NP : λx.next-to(x,tex)

Splitting lexical items

what states border texas := S : λx.state(x) ∧ next-to(x,tex)

Initial, Fully Specified Lexical Entries:

Will need to split:

what states := S/(S|NP) : λf.λx.state(x) ∧ f(x)
border texas := S|NP : λx.next-to(x,tex)

Challenge:
Do not have a-priori knowledge of how words align with meaning

Algorithm will run on all languages!

texas a siniri olan eyaletler nelerdir :=
S : λx.state(x) ∧ next-to(x,tex)

Splitting logical forms
Solve a higher-order unification problem [Huet 75]
For logical meaning h find all pairs (f,g) such that:

- application

- composition

f = λqλx.q(x) g = λx.state(x) /\ next_to(x,tex)
f = λqλx.q(x) /\ next_to(x,tex) g = λx.state(x)
f = λqλx.state(x) /\ q(x) g = λx.next_to(x,tex)
f = λyλx.state(x) /\ next_to(x,y) g = tex
f = λq.q g = λx.state(x) /\ next_to(x,tex)

h = f (g) , or
h = λx.f (g(x))

 h = λx.state(x) ∧ next-to(x,tex)

Splitting lexical items

Two Step Learning Algorithm

By interleaving step 1 with step 2 we can use the parsing
model to guide lexical expansion

Input:
Set of (sentence, meaning) pairs

Iterate:
For each (sentence, meaning) pair

1. Add items to CCG lexicon

2. Update parameters of parsing model

Trace of Learning Algorithm

texas a siniri olan eyaletler nelerdir
λx.state(x) ∧ next-to(x,tex)

Iteration: 1
Training pair: (xn,zn)

1. Find highest scoring
 correct parse.

2. Find split, of any
 node, that most
 increases the score.

3. Add resultant items
 to lexicon.

4. Update parameters.

Trace of Learning Algorithm

S\NP
a siniri olan eyaletler nelerdir
λy.λx.state(x) ∧ next-to(x,y)

NP
texas
tex

Iteration: 1
Training pair: (xn,zn)

1. Find highest scoring
 correct parse.

2. Find split, of any
 node, that most
 increases the score.

3. Add resultant items
 to lexicon.

4. Update parameters.

Trace of Learning Algorithm

Iteration: 1
Training pair: (xn,zn)

1. Find highest scoring
 correct parse.

2. Find split, of any
 node, that most
 increases the score.

3. Add resultant items
 to lexicon.

4. Update parameters.

S\NP
a siniri olan eyaletler nelerdir
λy.λx.state(x) ∧ next-to(x,y)

NP
texas
tex

Trace of Learning Algorithm

Iteration: 1
Training pair: (xn,zn)

1. Find highest scoring
 correct parse.

2. Find split, of any
 node, that most
 increases the score.

3. Add resultant items
 to lexicon.

4. Update parameters.

S\NP
a siniri olan eyaletler nelerdir
λy.λx.state(x) ∧ next-to(x,y)

NP
texas
tex

hangi eyaletin texas ye siniri vardir
S/NP NP/NP NP NP\NP

λx.answer(x) λx.state(x) tex λx.border(x)
<

NP
border(tex)

>
NP

state(border(tex))
>

S
answer(state(border(tex)))

what states border texas
S/(S|NP) S|NP/(S|NP) S\NP/NP NP
λfλx.f(x) λfλx.state(x)∧f(x) λyλx.next to(x, y) tex

>B
S|NP/NP

λyλx.state(x) ∧ next to(x, y)
>

S|NP
λx.state(x) ∧ next to(x, tex)

>
S

λx.state(x) ∧ next to(x, tex)

Figure 1: Two examples of CCG parses with different logical form representations.

defined as:

P (y, z|x; θ,Λ) = eθ·φ(x,y,z)�
(y�,z�) e

θ·φ(x,y�,z�) (1)

Section 7 defines the features used in the experi-
ments, which include, for example, lexical features
that indicate when specific lexical items in Λ are
used in the parse y. For parsing and parameter es-
timation, we use standard algorithms (Clark & Cur-
ran, 2007), as described below.

The parsing, or inference, problem is to find the
most likely logical form z given a sentence x, as-
suming the parameters θ and lexicon Λ are known:

f(x) = argmax
z

p(z|x; θ,Λ) (2)

where the probability of the logical form is found by
summing over all parses that produce it:

p(z|x; θ,Λ) =
�

y

p(y, z|x; θ,Λ) (3)

In this approach the distribution over parse trees y

is modeled as a hidden variable. The sum over
parses in Eq. 3 can be calculated efficiently using
the inside-outside algorithm with a CKY-style pars-
ing algorithm.

To estimate the parameters themselves, we
use stochastic gradient updates (LeCun et al.,
1998). Given a set of n sentence-meaning pairs
{(xi, zi) : i = 1...n}, we update the parameters θ it-
eratively, for each example i, by following the local
gradient of the conditional log-likelihood objective
Oi = logP (zi|xi; θ,Λ). The local gradient of the
individual parameter θj associated with feature φj

and training instance (xi, zi) is given by:

∂Oi

∂θj
= Ep(y|xi,zi;θ,Λ)[φj(xi, y, zi)]

−Ep(y,z|xi;θ,Λ)[φj(xi, y, z)]

(4)

As with Eq. 3, all of the expectations in Eq. 4 are
calculated through the use of the inside-outside al-
gorithm on a pruned parse chart. In the experiments,
each chart cell was pruned to the top 200 entries.

4 Splitting Lexical Items

Before presenting a complete learning algorithm, we
first describe how to use higher-order unification to
define a procedure for splitting CCG lexical entries.
This splitting process is used to expand the lexicon
during learning. We seed the lexical induction with
a multi-word lexical item xi�S :zi for each training
example (xi, zi), consisting of the entire sentence xi
and its associated meaning representation zi. For ex-
ample, one initial lexical item might be:

New York borders Vermont �S:next to(ny, vt) (5)

Although these initial, sentential lexical items
can parse the training data, they will not generalize
well to unseen data. To learn effectively, we will
need to split overly specific entries of this type into
pairs of new, smaller, entries that generalize better.
For example, one possible split of the lexical entry
given in (5) would be the pair:

New York borders � S/NP : λx.next to(ny, x),
Vermont �NP : vt

where we broke the original logical expression into
two new ones λx.next to(ny, x) and vt, and paired
them with syntactic categories that allow the new
lexical entries to be recombined to produce the orig-
inal analysis. The next three subsections define the
set of possible splits for any given lexical item. The
process is driven by solving a higher-order unifica-
tion problem that defines all of the ways of splitting
the logical expression into two parts, as described in
Section 4.1. Section 4.2 describes how to construct

hangi eyaletin texas ye siniri vardir
S/NP NP/NP NP NP\NP

λx.answer(x) λx.state(x) tex λx.border(x)
<

NP
border(tex)

>
NP

state(border(tex))
>

S
answer(state(border(tex)))

what states border texas
S/(S|NP) S|NP/(S|NP) S\NP/NP NP
λfλx.f(x) λfλx.state(x)∧f(x) λyλx.next to(x, y) tex

>B
S|NP/NP

λyλx.state(x) ∧ next to(x, y)
>

S|NP
λx.state(x) ∧ next to(x, tex)

>
S

λx.state(x) ∧ next to(x, tex)

Figure 1: Two examples of CCG parses with different logical form representations.

defined as:

P (y, z|x; θ,Λ) = eθ·φ(x,y,z)�
(y�,z�) e

θ·φ(x,y�,z�) (1)

Section 7 defines the features used in the experi-
ments, which include, for example, lexical features
that indicate when specific lexical items in Λ are
used in the parse y. For parsing and parameter es-
timation, we use standard algorithms (Clark & Cur-
ran, 2007), as described below.

The parsing, or inference, problem is to find the
most likely logical form z given a sentence x, as-
suming the parameters θ and lexicon Λ are known:

f(x) = argmax
z

p(z|x; θ,Λ) (2)

where the probability of the logical form is found by
summing over all parses that produce it:

p(z|x; θ,Λ) =
�

y

p(y, z|x; θ,Λ) (3)

In this approach the distribution over parse trees y

is modeled as a hidden variable. The sum over
parses in Eq. 3 can be calculated efficiently using
the inside-outside algorithm with a CKY-style pars-
ing algorithm.

To estimate the parameters themselves, we
use stochastic gradient updates (LeCun et al.,
1998). Given a set of n sentence-meaning pairs
{(xi, zi) : i = 1...n}, we update the parameters θ it-
eratively, for each example i, by following the local
gradient of the conditional log-likelihood objective
Oi = logP (zi|xi; θ,Λ). The local gradient of the
individual parameter θj associated with feature φj

and training instance (xi, zi) is given by:

∂Oi

∂θj
= Ep(y|xi,zi;θ,Λ)[φj(xi, y, zi)]

−Ep(y,z|xi;θ,Λ)[φj(xi, y, z)]

(4)

As with Eq. 3, all of the expectations in Eq. 4 are
calculated through the use of the inside-outside al-
gorithm on a pruned parse chart. In the experiments,
each chart cell was pruned to the top 200 entries.

4 Splitting Lexical Items

Before presenting a complete learning algorithm, we
first describe how to use higher-order unification to
define a procedure for splitting CCG lexical entries.
This splitting process is used to expand the lexicon
during learning. We seed the lexical induction with
a multi-word lexical item xi�S :zi for each training
example (xi, zi), consisting of the entire sentence xi
and its associated meaning representation zi. For ex-
ample, one initial lexical item might be:

New York borders Vermont �S:next to(ny, vt) (5)

Although these initial, sentential lexical items
can parse the training data, they will not generalize
well to unseen data. To learn effectively, we will
need to split overly specific entries of this type into
pairs of new, smaller, entries that generalize better.
For example, one possible split of the lexical entry
given in (5) would be the pair:

New York borders � S/NP : λx.next to(ny, x),
Vermont �NP : vt

where we broke the original logical expression into
two new ones λx.next to(ny, x) and vt, and paired
them with syntactic categories that allow the new
lexical entries to be recombined to produce the orig-
inal analysis. The next three subsections define the
set of possible splits for any given lexical item. The
process is driven by solving a higher-order unifica-
tion problem that defines all of the ways of splitting
the logical expression into two parts, as described in
Section 4.1. Section 4.2 describes how to construct

Trace of Learning Algorithm

S\NP
a siniri olan eyaletler nelerdir
λy.λx.state(x) ∧ next-to(x,y)

NP
texas
tex

Iteration: 2
Training pair: (xn,zn)

1. Find highest scoring
 correct parse.

2. Find split, of any
 node, that most
 increases the score.

3. Add resultant items
 to lexicon.

4. Update parameters.

Trace of Learning Algorithm

S|NP
eyaletler nelerdir

λx.state(x)

S\NP/(S|NP)
a siniri olan

λf.λy.λx.f(x) ∧ next-to(x,y)

NP
texas
tex

Iteration: 2
Training pair: (xn,zn)

1. Find highest scoring
 correct parse.

2. Find split, of any
 node, that most
 increases the score.

3. Add resultant items
 to lexicon.

4. Update parameters.

Trace of Learning Algorithm

S|NP
eyaletler nelerdir

λx.state(x)

S\NP/(S|NP)
a siniri olan

λf.λy.λx.f(x) ∧ next-to(x,y)

NP
texas
tex

Iteration: 2
Training pair: (xn,zn)

1. Find highest scoring
 correct parse.

2. Find split, of any
 node, that most
 increases the score.

3. Add resultant items
 to lexicon.

4. Update parameters.

FOPLFOPL FunQLFunQL

UBL 87.9 UBL 84.3

λ-WASP 86.6 WASP 74.8

ZC05 79.3 Lu08 81.5

ZC07 86.1 KRISP 71.7

Results on an English Benchmark

Accuracy (% correct)

[Kwiatkowski et al. 2010]

FOPLFOPL FunQLFunQLFunQL

UBL λ-WASP UBL WASP Lu08

English 81.8 75.6 80.4 70.0 72.8

Spanish 81.4 80.0 79.7 72.4 79.2

Japanese 83.0 81.2 80.5 74.4 76.0

Turkish 71.8 68.8 74.2 62.4 66.8

Accuracy (% correct)

Results Across Languages

[Kwiatkowski et al. 2010]

Example Test Parses

which rivers run through states that border the state with the capital austin

Example Test Parses

which rivers run through states that border the state with the capital austin

NP
ιx.state(x) ∧ capital(x,aus)

Example Test Parses

which rivers run through states that border the state with the capital austin

NP
ιx.state(x) ∧ capital(x,aus)

NP
λy.state(y) ∧
 next-to(y,ιx.state(x) ∧ capital(x,aus))

Example Test Parses

which rivers run through states that border the state with the capital austin

NP
ιx.state(x) ∧ capital(x,aus)

NP
λy.state(y) ∧
 next-to(y,ιx.state(x) ∧ capital(x,aus))

S
λz.river(z)∧ ∃y.state(y) ∧ loc(z,y) ∧
 next-to(y,ιx.state(x) ∧ capital(x,aus))

Learning Summary

λx.flight(x) ∧ nonstop(x) ∧ (from(x,NEW) ∨ from(x,NYC)) ∧

 (to(x,SFO) ∨ to(x,OAK))

Show me flights from Newark and New York to San Francisco
or Oakland that are nonstop.

Challenges:

• Structured input and output, hidden structure not annotated

Learning Summary

Solution:

• Machine learning combined with a detailed linguistic formalism

• Key idea 1: an algorithm that generates lexical items with higher-
order unification

• Key idea 2: a learning method that estimates a probabilistic
model to select a sparse sub-set of the possible lexical entries

λx.flight(x) ∧ nonstop(x) ∧ (from(x,NEW) ∨ from(x,NYC)) ∧

 (to(x,SFO) ∨ to(x,OAK))

Show me flights from Newark and New York to San Francisco
or Oakland that are nonstop.

Challenges:

• Structured input and output, hidden structure not annotated

Previous Work: Spontaneous, Unedited Input

Boston to Seattle the latest on Friday.

argmax(λx.from(x,BOS) ∧ to(x,SEA) ∧ day(x,FRI),
 λy.time(y))

A challenge: grammar-based approaches may not be
robust to “real world” input

Key idea: learn a relaxed grammar that models
disfluencies

[Zettlemoyer & Collins, 2007; Kwiatkowski et al. 2011]

Previous Work: Context-dependent

Show me flights from New York to Singapore.

What about connecting?

Show me the cheapest one.

Which of those are nonstop?

λx.flight(x) ∧ from(x,NYC) ∧ to(x,SIN)

λx.flight(x) ∧ from(x,NYC) ∧ to(x,SIN) ∧ nonstop(x)

argmax(λx.flight(x) ∧ from(x,NYC) ∧ to(x,SIN) ∧ nonstop(x),
λy.cost(y))

argmax(λx.flight(x) ∧ from(x,NYC) ∧ to(x,SIN) ∧ connect(x),
λy.cost(y))

[Zettlemoyer & Collins, 2009]

Current Work: Self-learning dialog systems

[Artzi & Zettlemoyer, 2011]

USER:	
 i	
 would	
 like	
 to	
 fly	
 from	
 atlanta	
 georgia	
 to	
 london	
 england	
 on	

september	
 twenty	
 fourth	
 in	
 the	
 early	
 evening	
 I	
 would	
 like	
 to	
 return	

on	
 october	
 first	
 depar@ng	
 from	
 london	
 in	
 the	
 late	
 morning	

SYSTEM:	
 leaving	
 what	
 city?	
 (ASK:λx.from(fl,	
 x))	

USER:	
 atlanta	
 georgia.	

SYSTEM:	
 leaving	
 atlanta.	
 (CONF:from(fl,ATL))	
 going	
 to	
 which	
 city	
 ?	

(ASK:λx.to(fl,	
 x))	

USER	
 london
SYSTEM:	
 arriving	
 in	
 (CONF:to(fl,	
 LON))	
 what	
 date	
 would	
 to	
 depart	

Atlanta?	
 (ASK:λx.from(fl,	
 ATL)	
 ∧	
 depart-­‐	
 date(fl,	
 x))
USER	
 september	
 twenty	
 fourth	
 in	
 the	
 early	
 evening	

[conversa@on	
 con@nues]

Challenge: system must learn from its mistakes

Future: Mapping Speech to Logical From

Uh, flights New York to Singapore, sure

ACCEPT: λx.flight(x) ∧ from(x,NYC) ∧ to(x,SIN)

Instructions:
step-by-step
descriptions of actions

Target environment:
where actions
need to be executed

Previous Work: Mapping Instructions to Actions

Action sequence
executable in the
environment

O
utput

Input

[Branavan et al, 2009]

Current Work: Leaning Grounded Language

Challenge: Learn to sportscast,
given only text and the game log

Purple10 is rushing down the
field with only three
defenders

Purple10 passes out front to
Purple9 near the side

Purple9 passes back to Purple10
in the middle

Purple10 again has a good chance
to score a goal here

Purple10 dribbles toward the
goal

Pink3 tries to stay in front of
Purple10

Purple10 passes to Purple9 on
the side while getting open

....

Conversational interaction in
simulated environments:

• Can gather user input:
Which printer do you want to
use?

• Can help with learning: Can
you show me how to X?

Future: General language use in grounded settings

Learning through explanation in
robotic environments:

Can we teach the robot to play?
• This is a pawn.
• Pawns can move forward one
square at a time.
• unless it is the first move, then
they can ...

Learning Map Sentences to Meaning

special thanks to
Yoav Artzi, Regina Barzilay, Branavan, Michael Collins,

Sharon Goldwater, Raphael Hoffman, Tom Kwiatkowski,
Mark Steedman, Dan Weld, Adrienne Wang, Mark Yatskar

for more info:
http://www.cs.washington.edu/homes/lsz/

http://www.cs.washington.edu/homes/lsz/
http://www.cs.washington.edu/homes/lsz/

