hléigséﬁaeie’acrc);Su mmit
leaching Using Spec#
In Europe

An Experience Report from University
Teaching and Various Verification Tutorials

Dr Rosemary Monahan

Lecturer
National University of Ireland, Maynooth

=203

FUTURE/WORLD

=201 *

Structure of Presentation

Third Level Education in Europe

Teaching Software Verification at NUIM/in Europe
The Spec# Programming System

Teaching Software Verification using Spec#
Conference Tutorials

Software Verification Developments at NUIM

Third Level Education in Europe

Bologna Declaration 1999: a pledge by 29 European countries to reform the
structures of their higher education systems in a convergent way. Objectives
include:

® the introduction of undergraduate and postgraduate levels in all countries,
with first degrees no shorter than 3 years and relevant to the labour market;

® ECTS-compatible credit systems also covering lifelong learning activities;

Bachelors and Masters Degree

® Typically achieved in 5 years (3+2, 4+1, 60 ECTS per year)

Doctoral Degree

® Typically achieved in 4 years full time research (may include some course work)

Teaching Software Verification at NUIM

BSc Computer Science Degree Students: 5 ECTS in Year 3

Learning Outcomes:

Explain the limitations of testing as a means to ensure correctness.

Evaluate the role of verification in software engineering.

Create mathematically precise specifications and designs using logic-based specification languages.
Prove the correctness of programs with respect to a specification using Hoare logic.

Analyse the properties of formal specifications and designs.

Use tools to verify properties of specifications and designs.

Teaching & Learning Methods:
24 Lecture hours, 24 Laboratory hours, 32 Tutorial and Independent Study hours.

Timetable: Over 12 weeks from September — December each year

Teaching Software Verification at NUIM

MSc in Computer Science Degree Students: 7.5 ECTS in Year 1

Learning Outcomes:

® Reason about why software projects fail.

Identify the role of rigor in the software process in improving the chances of success.

Create mathematically precise specifications and designs.

Analyse the properties of formal specifications and designs, performing proofs of correctness.
Analyse the correctness of object-oriented programs (e.g. static analysis, simulation, model
chec{ing).

Describe how tools that assist in this analysis are designed and implemented.

Teaching & Learning Methods:
One week of full-time lectures followed by one week for the completion of marked assignments

Timetable: During 2 weeks each November

Typical Student Background

Object Oriented Programming
First Order Logic

Compilers

Algorithms and Data Structures
Testing

Software Metrics

Hoare Logic

ﬁgzﬁﬁﬁ%ummit

Problems Encountered

Limited tool support

Limited automation of tool support

Tools change rapidly and don't build on previous versions
Consistency of tool support

Mathematics upfront intimidates (some) students

Feedback to students is limited

Correcting homework is time consuming and labour intensive
Few motivated tutors

Student effort drained on the wrong focus points

Teaching Software Verification in Europe

® http://resources.cost-ic0701.org/teaching-materials

Microsoft Research

FacultySummit

http://resources.cost-ic0701.org/teaching-materials
http://resources.cost-ic0701.org/teaching-materials
http://resources.cost-ic0701.org/teaching-materials
http://resources.cost-ic0701.org/teaching-materials
http://resources.cost-ic0701.org/teaching-materials
http://resources.cost-ic0701.org/teaching-materials

The Spec# Programming System

The Spec# programming language is an extension of C# 2.0 with non-null
types, checked exceptions and throws clauses, method contracts and object
Invariants.

The Spec# compiler statically enforces non-null types, emits run-time
checks for method contracts and invariants and records the contracts
as metadata for consumption by downstream tools

The Spec# static program verifier (SscBoogie) :
® generates logical verification conditions from a Spec# program

® uses an automatic reasoning engine 1(Zﬁ) to analyse thF verification . |
conditions proving the correctness of the program or finding errors in it

I Microsoft Research b

Static Verification

® Static verification checks all executions
® Spec# characteristics
® sound modular verification

® focus on automation of verification rather than full
functional correctness of specifications

® No termination verification
® No verification of temporal properties
® No arithmetic overflow checks

Spec# verifier architecture

Spec# /\

Spec# compiler

static verifier (Boogie tool)

MSIL (\'bytecoag”)

Translator

I e

V.C. generator

verification c\ond|t|on
SMT solver Z3) |

| .M of errors

cccccccccc

FacultySummlt

How do we use Spec#?

The programmer writes each class containing methods and their
specification together in a Spec# source file (similar to Eiffel,
similar to Java + JML)

Invariants that constrain the data fields of objects may also be
included

We then run the verifier

The verifier is run like the compiler—either from the IDE or the
command line.

® In either case, this involves just pushing a button, waiting, and then
getting a list of compilation/verification error messages, if they exist.

® Interaction with the verifier is done by modifying the source file.

A Microsoft Research b

Spec# codeplex.specsharp.com

m Downloads Discussions Issue Tracker Source Code People License

VMiew All Comments | Print View | Page Info | Change History (all pages)

Horme

Spec#
Spec# ("speck-sharp") is an object-oriented .NET programming language with design-by-contract features for method pre- and postconditions and object invar

» Frequently asked guestions
w» External Dependencies

» How to install the binaries
» How to install and build the sources

» How to contribute

Spec# @ MSR (@
Spec# tutorial

¥

This project is sponsared by the Research in Software Engineering Group (RISE] |3 based in the Microsoft Research Redmond Laboratory.

Last edited Aug 14 2009 at 2:28 AM by rustanleino, version 13

want to leave feedback?
Please use Discussions or Reviews instead.

Using Spec#

Option 1: Visual Studio (VS)

® Using Visual Studio in interactive mode means that we
can get immediate feedback from the verifier

® ssc file must be part of a VS project

Option 2: Spec# at the command line
® Use your favorite editor
® ssc file need not be part of a VS project

Option 3: RISE4fun.com
® Interact online - No tool installation necessary

RiSE4fun

ave 114,692 answers!
Click on g tool to lood g sample then ask! g !

(281} bec l boogie] cose contracts | concarrent: revisioas I datay J aia1 } esn J = | rormuta J heapats | poiror | pex J rex § stayer | spece R vec J 22

class Example {
int x;

void Inc(int y)
ensures old(x) < =:
{
x += vy;
H
}

Is this program correct? Click 'ask spec#'! Read more or watch the video.

explare projects Live permalink developer about

® 2811 Microsoft Corporation - Terms of Use - Privacy

Microsoft’

> 114,692 answers! Research

No installation needed:
Run it from an Internet café or from your phone

Microsoft Research b

The Swap Contract

static void Swap(int[] a, int i, int j)
requires

modifies
ensures

{

int temp;

temp = ali];
ali] = alj];
alj] = temp;

}

http://risedfun.com/Sp0

The Swap Contract

static void Swap(int[]! a, int i, int j)
requires 0 <= 1 && 1 < a.Length;
requires 0 <= j && j < a.Length;

int temp;

temp = al[1]; Requires clauses
ali] = aljl; denote preconditions
alj] = temp;

}
http://rised4fun.com/Sp0

The Swap Contract

static void Swap(int[]! a, int i, int j)

modifies alil, aljl;

int temp;

temp = afli];
ali] = al3jl; Modifies clauses limit the
alj] = temp; part of the program state that

a method is allowed to modify

}
http://risedfun.com/SpecSharp/0

The Swap Contract

static void Swap(int[]! a, int i, int 7J)
ensures a[i] == old(al[j]);
ensures al[j] == old(al[il]):;

{

int temp;

temp = ali];
ali] = alj]l; Ensures clauses
alj] = temp; denote postconditions

}

http://risedfun.com/SpecSharp/0

The Swap Contract

static void Swap(int[]! a, int i, int j)
requires 0 <=1 && 1 < a.Length;
requires 0 <= j && j < a.Length;

modifies al[i], aljl:
ensures a[i] == old(al[j]);
ensures al[j] == old(al[il]):;

{

int temp;

temp = ali];
ali] = alj];
alj] = temp;

}
http://risedfun.com/SpecSharp/sl6cX

Mc Carthys Contract

static int F(int p)
ensures 100 < p ==> result == p - 10;
ensures p <= 100 ==> result == 91;
{
if (100 < p)
return p - 10;
else
return F(F(p+11l));

}

http://rised4fun.com/SpecSharp/o

Microsoft’ Research

FacultySummit

Collaboration with Microsoft Research

® K. R. M. Leino and R. Monahan, Automatic verification of
textbook programs that use comprehensions. In Formal
Techniques for Java-like Programs, ECOOP Workshop (FTfJP'07:

July 2007, Germany)

® K. R. M. Leino and R. Monahan, Reasoning about
Comprehensions with First-Order SMT Solvers, (SAC'09: March
2009, Hawaii, U.S.A))

Loops In Spec#

public static int SegSum(int[]! a, i int i, int 7J)
requires 0 <=1 §&& 1 <= 3 && J <= a.Length;

ensures result == sum{int k in (i: J); alk]}:
{

int s = 0;

for (int n = 1i; n < Jj; n++)

{

s += al[n];

}

return s;

Microsoft’ Research

FacultySummit

Loops In Spec#

public static int SegSum(int[]! a, int 1, int 7J)
requires 0 <= 1 && 1 <= j && J <= a.Length;
ensures result == sum{int k in (i: 3J); alk]l};
{

int s = 0;

for (int n = i; n < J; nt+) When we try to verify

{ - -

e ang; this program using Spec#

} we get an Error:

return s; Array index possibly below lower
/ bound as the verifier needs more

information

4 Microsoft Research iy

Adding Loop Invariants

Postcondition:
ensures result == sum{int k in (i: j); a[k]};

Loop Initialisation: n == |
Introduce the loop
Loop Guard: n < j variable & provide
its range.
Loop invariant:
invariant s == sum{int k in (i: n); a[k]};
invarianti <=n && n <=j;

Microsoft Research

L —— FacultySummit

Adding Loop Invariants

public static int SegSum(int[]! a, int i, int 7)
requires 0 <=1 && 1 <= j && J <= a.Length;
ensures result == sum{int k in (i:3); alk]};
{

int s = 0;

for (int n = i; n < J; nt+)

invariant i<= n && n <= 7J;

invariant s == sum{int k in (i:n); alk]}

{
s += al[n];

} .)

return s; Venﬁer OUtpUt.

Spec# Program Verifier
finished with 3 verified,
0 errors

Variant Functions

public static int SegSum(int[]! a,

int i, int 7J)

requires 0 <= i && 1 <= j && J <= a.Length;
ensures result == sum{int k in (i: j); alkl};
{
int s = 0; int n=i;
while (n < 7)
invariant i < = n && n < =j;
invariant s == sum{int k in (i:n); alk]};
invariant 0 < = J - n;
{
int vf = j - n; //variant function
s + = al[n];
n++;
sssere 5 -0 < vi; Y@ can use assert

}

return s;

}

http://rise4fun.com/SpecSharp/q

statements to determine
information about the
variant functions.

cccccccccc

Object Invariants

class Counter{ -~
oot len The invariant may be
invariont oven o> ¢ % 2 == 0; | broken in the constructor}
public Counter (4™ " The invariant must be
| — established & checked
| after construction

public void Inc ()
modifies c;

ensures ¢ == old(c)+1;
{ sxpose (Hhis) The object invariant
} sven = teven may be broken within an
} } expose block

Microsoft' Research

FacultySummit

Using Spec# Iin Teaching since 2007

® (CS357 Software Verification (5 ECTS, BSc Level)

® Focus on programming in the small (writing contracts for methods and classes)
® Using the Spec# Programming System to verify code

® (CS603 Rigorous Software Process (7.5 ECTS, MSc Level)
® Focus on programming in the large (Inheritance, Ownership, Aggregation)
® Details of how the implementation is statically checked against the specification

Interfaces Used:
Command Line
Visual Studio
www.rised4fun.com

http://www.rise4fun.com/

Other Courses using Spec#

NUIM International Summer School

Practical Program Analysis (4 course for undergraduate students)
This course covers the practical elements of analysing and verifying object-oriented programs, which
forms the basis of the research being carried out by the Principles of Programming research group at
NUIM.

Universite Henri Poincare 1, Nancy, France
Erasmus Teaching Exchange (4 hour introduction to Spec#)

Sample Project Work

University Marks and Standards

Poker hand comparisons

Verification Benchmarks (VSTTE 2008)
Verification Competition Problems (VSTTE 2010)

Verify-this Benchmark Collection
® http://verifythis.cost-ic0701.org

VACID-O0: Verification of Ample Correctness of Invariants of
Data-structures (VSTTE 2010)

http://verifythis.cost-ic0701.org/
http://verifythis.cost-ic0701.org/
http://verifythis.cost-ic0701.org/
http://verifythis.cost-ic0701.org/
http://verifythis.cost-ic0701.org/

Student Feedback

Tool usage motivates students to verify their software
Students are motivated to learn how the tools work
Students are using Spec# outside of their course work
Main difficulty is in understanding error messages

Interest in internships and projects concerning program
verification has increased

Interest in PhD work concerning verification related topics

4 Microsoft Research iy

Conference Tutorials

ETAPS 2008

ECOOP 2009

IFM 2010

SBMF 2010

Cost Action IC0701 PhD Training School 2011

Participant Feedback

Researchers and Lecturers

Interested in using Spec# in teaching
Visual Studio environment
www.Rise4fun.com

Supports typical classroom examples
“makes it look so easy”

Microsoft Research

FacultySummit

http://www.rise4fun.com/

Software Verification Developments at NUIM

® PhD Scholarships funded involving Software Verification
® Student Internships

® A renewed interest from students in Software Verification
® Erasmus Mundus MSc in Dependable Software Systems

Spec# Teaching Resources

Spec# Tutorial Paper:
Using the Spec# Language, Methodology, and Tools to Write
Bug-Free Programs. K. Rustan M. Leino and Peter Muller at
http://specsharp.codeplex.com/

Spec# Tutorial and Exercises:

Spec# examples and course notes available by emailing
rosemary (rosemary@cs.nuim.ie) or at http://limerick.cost-
1Ic0701.org/

D Faculfysummit

http://specsharp.codeplex.com/
mailto:rosemary@cs.nuim.ie
http://limerick.cost-ic0701.org/
http://limerick.cost-ic0701.org/
http://limerick.cost-ic0701.org/
http://limerick.cost-ic0701.org/

Questions?

~ Microsoft Research

~ FacultySummit

Microsoft’ Research

FacultySummit

© 2011 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may
be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the
date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the
date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

1 2031

FUTURE/ YWORLID

=209 *

Microsoft’ Research il =
FacultySummit

| 2003

FUTURE/WORLD

=011 ¢

