Microsoft Research 2
FacultySummit

Beyond Behavior-

Preservation

Ralph E Johnson
rohnson@illinois.edu
University of lllinois at Urbana-Champaign

1 2031

FUTURE/ YWORLID

=209 *




Some of my PhD students

Bill Opdyke — Refactoring Object-Oriented Frameworks, 1992

Don Roberts — Practical Analysis for Refactoring, 1999 (The Smalltalk
Refactoring Browser)

Alejandra Garrido — Program Refactoring in the Presence of
Preprocessor Directives, 2002

Danny Dig — Automated Upgrading of Component-based
Applications, 2007

Munawar Hafiz — Security on Demand, 2010
Jeff Overbey — A Toolkit for Constructing Refactorings, 2011 (Photran)



Importance of Refactoring

Emphasize how programs change

Step by step, keeping program running

Incremental development -- Evolution, not revolution
Integration with testing

Automation, but programmer is in charge



Behavior-Preservation

Refactorings change structure of program, not behavior
Programs keep running, old tests still work, no new bugs
Refactoring tools supposed to preserve behavior

Reality
® No tool can guarantee behavior-preservation
® Programmers want to change behavior



Breaking Behavior-Preservation

® Rename not safe in reflective languages
® Not usually a problem to code owners

® |f you don't know the code well:

® Be conservative - warn of use of reflection
® Detect common uses, such as names in XML



® Many changes almost behavior preserving
® Parallelism — make faster, restrict how it is called
® Security — preserve wanted behavior, prevent breakins

® Reliability — preserve behavior when machines are perfect, recover
when machines fall

® Change from one DBMS to another
® Add a new Ul



Refactoring for parallelism

® Danny Dig — Concurrencer, Relooper, Immutator

® Introducing parallelism — Fork-join for divide-and-conquer,
parallel arrays

® Making parallelism safer — atomic integers, lock-free maps,
Immutable objects



Refactoring for parallelism

Similar to how programmers make programs more parallel

Neither safe nor complete, but faster and more accurate
than programmers

Incremental
Assist programmers,



Making immutable objects

Value Objects — objects whose value is important, not their
identity

® Money, date, color, ...

Only assign instance variables in constructor

Replace methods that modify instance variables with methods
that return a new object

Replace uses of object that need side-effects with a "holder”



Refactoring for security

Munawar Hafiz — “Security on Demand”
Describes 37 program transformations

Eliminate buffer overrun by replacing unsafe string library
with safe string library

Eliminate injection attack by cleaning data
Partitioning (Compartmentalization)
Add access control



Security transformations

® Change behavior when system is attacked
® Preserve behavior when system is used as expected



Library Replacement

® char *strcpy (char *dst, const char *src) => gsize
g_strlcpy (gchar *dst, const gchar *src, gsize dst_size)

® char *strcat (char *dst, const char *src) => gsize
g_strlcat (gchar *dst, const gchar *src, gsize dst_size)



Partitioning

® Partition system so that breaking into one partition does
not give access to other partitions

® Partitions should be separate address spaces, protected by
operating system
® Must replace pointers with other IDs



Library Replacement in general

® Optimization — general-purpose library => special
purpose

® Reliability — use library that detects and recovers from
failure

® Software evolution — obsolete => modern



Partitioning

® Reasons to change module boundaries
® To promote reuse
® To make system more secure
® To make system easier to maintain
-

To make system more fault-tolerant
® One part of the system crashes, other part can recover



Enhancement

® Adding a feature requires changing API
® Authorization requires knowing the user
® Adding history to model requires knowing the effective date

® Changes
® Internal data structures
® |nterface to module (API)
® Tests



Example to enhance

® Teachers
® Teach courses
® Give grades to students in their courses

® Students
® Take courses

® Courses
® Students enroll in a course, and eventually get a grade



Teacher

name

rank 1-
n

Example to enhance

Course

number
semester
name

1-n

Enrollment

date
grade

—

Student

name
address

admitanceYear

18

cccccccccccc



Enhancement: Role based access control

® Return type of all methods is changed; each method can
fail
® Current user becomes part of API

® Choice 1 - set “current user” before using API
® Choice 2 - make “current user” be a parameter of all methods



Enhancement: history

Keep complete history of all name changes, creation of

courses, and assignment of grades
Change value at a particular time
Read value at a particular time

Time becomes part of AP!
® Choice 1 - make “time” be global variable
® Choice 2 - make “time” be parameter of each method

Microsoft Research

FacultySummit



<>

@: _
(e




o
Module'—-

(o)
(e




@ X
Module
(D




Module

0 client




e
e

Module




D—(dientd
©




How to make enhancement

® To enhance module M
® Create M’
® Move code from M to M’, making M call M’

« Change interface and internal data structures of M’
® Add tests for M’

® Add variables to M to provide default values for parameters, change
M to use new M’

® Rewrite other modules to use M’ instead of M




Behavior preservation

® The reason we change program is usually to change
behavior

® But we want to keep most of old behavior

® How can we change only the behavior we want?



Lessons from refactoring

® Focus on particular kind of change

® Transformation becomes simpler — analysis becomes more
shallow

® Keep programmer in control
® Support incrementalism



Challange

® "You can't add in XX, you have to build it in from the
beginning.”

® Show how to add on a particular software quality.

® Provide evidence for “It might be more expensive to do it
later, but if it is worth it, you can always fix your software”.



