
Cosmos

Big Data and Big Challenges

Pat Helland

July 2011

1

Outline

• Introduction

• Cosmos Overview

• The Structured Streams Project

• Some Other Exciting Projects

• Conclusion

2

What Is COSMOS?

• Petabyte Store and Computation System

– About 62 physical petabytes stored (~275 logical petabytes stored)

– Tens of thousands of computers across many datacenters

• Massively parallel processing based on Dryad

– Similar to MapReduce but can represent arbitrary DAGs of computation

– Automatic computation placement with data

• SCOPE (Structured Computation Optimized for Parallel Execution)

– SQL-like language with set-oriented record and column manipulation

– Automatically compiled and optimized for execution over Dryad

• Management of hundreds of “Virtual Clusters” for computation allocation

– Buy your machines and give them to COSMOS

– Guaranteed that many compute resources

– May use more when they are not in use

• Ubiquitous access to OSD’s data

– Combining knowledge from different datasets is today’s secret sauce

3

OSD Computing/Storage

Front-End On-
Line Web-

Serving

Back-End
Batch

Data Analysis

Crawling

Internet

Other Data

User & System Data

Data for
On-Line

Work

Results
Large

Read-Only
Datasets

OSD Computing/Storage

Front-End On-
Line Web-

Serving

Back-End
Batch

Data Analysis

Crawling

Internet

Other Data

User & System Data

Data for
On-Line

Work

Results
Large

Read-Only
Datasets

Cosmos and OSD Computation

• OSD Applications fall into two broad categories:

– Back-end: Massive batch processing creates new datasets

– Front-end: Online request processing serves up and captures information

• Cosmos provides storage and computation for Back-End Batch
data analysis

– It does not support storage and computation needs for the Front-End

Cosmos!

COSMOS: The Service
• Data drives search and advertising

– Web pages: Links, text, titles, etc

– Search logs: What people searched for, what they clicked, etc

– IE logs: What sites people visit, the browsing order, etc

– Advertising logs: What ads do people click on, what was shown, etc

• We generate about 2 PB every day
– SearchUX is hundreds of TB

– Toolbar is many 10s of TB

– Search is hundreds of TB

– Web snapshots are many 10s of TB

– MSN, Hotmail, IE, web, etc…

• COSMOS is the backbone for Bing analysis and relevance
– Click-stream information is imported from many sources and “cooked”

– Queries analyzing user context, click commands, and success are processed

• COSMOS is a service
– We run the code ourselves (on many tens of thousands of servers)

– Users simply feed in data, submit jobs, and extract the results

 5

Outline

• Introduction

• Cosmos Overview

• The Structured Streams Project

• Some Other Exciting Projects

• Conclusion

6

Store Layer:
-- Many Extent Nodes store and
 compress replicated extents on disk
-- Extents are combined to make
 unstructured streams
-- CSM (COSMOS Store Manager)
 handles names, streams, & replication

Store
Layer

EN EN EN EN …
Extent Extent Extent Extent …

Stream
“Foo”

Stream
“Bar”

Stream
“Zot”

Execution
Layer

Execution Layer:
-- Jobs queues up per Virtual Cluster
-- When a job starts, it gets a Job Mgr to
 deploy work in parallel close to its data
-- Many Processing Nodes (PNs) host
 execution vertices running SCOPE code

Job
Mgr

P
N

P
N

P
N

SCOPE
Run/T

SCOPE
Run/T

SCOPE
Run/T

Stream
“Foo”

Stream
“Bar”

Stream
“Zot”

Cosmos Architecture from 100,000 Feet

7

SCOPE Layer:
-- SCOPE Code is submitted to the
 SCOPE Compiler
-- The optimizer make decisions about
 execution plan and parallelism
-- Algebra (describing the job) is built to
 run on the SCOPE Runtime

SCOPE
Layer

Data = SELECT * FROM S

 WHERE Col-1 > 10

SCOPE
Optimizer

SCOPE
Run/T

SCOPE
Run/T

SCOPE
Run/T

SCOPE
Compiler

The Store Layer
• Extent Nodes:

– Implement a file system holding extents

– Each extent is up to 2GB

– Compression and fault detection are important parts of the EN

• CSM: COSMOS Store Manager
– Instructs replication across 3 different ENs per extent

– Manages composition of streams out of extents

– Manages the namespace of streams

8

Store
Layer

EN EN EN EN …
Extent Extent Extent Extent …

Stream
“Foo”

Stream
“Bar”

Stream
“Zot”

The Execution Engine
• Execution Engine:

– Takes the plan for the parallel execution of a SCOPE job and finds computers
to perform the work

– Responsible for the placement of the computation close to the data it reads

– Ensures all the inputs for the computation are available before firing it up

– Responsible for failures and restarts

• Dryad is similar to Map-Reduce

9

Execution
Layer

Job
Mgr

P
N

P
N

P
N

SCOPE
Run/T

SCOPE
Run/T

SCOPE
Run/T

Stream
“Foo”

Stream
“Bar”

Stream
“Zot”

The SCOPE Language
• SCOPE (Structured Computation Optimized for Parallel Execution)

– Heavily influenced by SQL and relational algebra

– Changed to deal with input and output streams

• SCOPE is a high level declarative language for data manipulation
– It translates very naturally into parallel computation

10

Scope
Job

Stream-1

Stream-2

Stream-3

Stream-A

Stream-B

Input Output

Input Arrives as
Sets of Records

Computation Occurs
as Sets of Records

Output Written as
Sets of Records

The SCOPE Compiler and Optimizer

• The SCOPE Compiler and Optimizer take SCOPE programs and create:

– The algebra describing the computation

– The breakdown of the work into processing units

– The description of the inputs and outputs from the processing units

• Many decisions about compiling and optimizing are driven by data size
and minimizing data movement

11

SCOPE
Layer

Data = SELECT * FROM S

 WHERE Col-1 > 10

SCOPE
Optimizer

SCOPE
Run/T

SCOPE
Run/T

SCOPE
Run/T

SCOPE
Compiler

The Virtual Cluster
• Virtual Cluster: a management tool

– Allocates resources across groups within OSD

– Cost model captured in a queue of work (with priority) within the VC

• Each Virtual Cluster has a guaranteed capacity

– We will bump other users of the VC’s capacity if necessary

– The VC can use other idle capacity

12

Work Queue

100 Hi-Pri PNs

VC-A

Work Queue

500 Hi-Pri PNs

VC-B

Work Queue

20 Hi-Pri PNs

VC-C

Work Queue

1000 Hi-Pri PNs

VC-D

Work Queue

350 Hi-Pri PNs

VC-E

Outline

• Introduction

• Cosmos Overview

• The Structured Streams Project

• Some Other Exciting Projects

• Conclusion

13

Introducing Structured Streams
• Cosmos currently supports streams

– An unstructured byte stream of data

– Created by append-only writing to the end of the stream

• Structured streams are streams with metadata
– Metadata defines column structure and affinity/clustering information

• Structured streams simplify extractors and outputters
– A structured stream may be imported into scope without an extractor

• Structured streams offer performance improvements
– Column features allow for processing optimizations

– Affinity management can dramatically improve performance

– Key-oriented features offer
(sometimes very significant)
 access performance improvements

Stream “A”

Sequence of Bytes

Today’s Streams
(unstructured streams)

Stream “A”

Sequence of Bytes

Metadata

…

Record-Oriented Access

New Structured
Streams

Today’s Use of Extractors and Outputters

Scope

Stream “A”

Unstructured
Stream

Extractor
Metadata

Scope Processing with Metadata,
Structure, and Relational Ops

Outputter

Stream “D”
Unstructured

Stream

• Extractors
– Programs to input data and

supply metadata

• Outputters
– Take Scope data and create a

bytestream for storage

– Discards metadata known
to the system

source = EXTRACT col1, col2 FROM “A”

Data = SELECT * FROM source

<process Data>

OUTPUT Data to “D”

Metadata, Streams, Extractors, & Outputters

• Scope has metadata for the data it is
processing

– Extractors provide metadata info as
they suck up unstructured streams

• Processing the Scope queries
ensures metadata is preserved

– The new results may have different
metadata than the old

– Scope knows the new metadata

• Scope writes structured streams

– The internal information used by
Scope is written out as metadata

• Scope reads structured streams

– Reading a structured stream allows
later jobs to see the metadata

16

Stream “C”
Metadata

Structured
Stream

Stream “B”
Metadata

Structured
Stream

Scope

Stream “A”

Unstructured
Stream

Extractor
Metadata

Outputter

Stream “D”
Unstructured

Stream

Scope Processing with Metadata,
Structure, and Relational Ops

Note: No Cosmos Notion of
Metadata for Stream “D” --
Only the Outputter Knows…

The Representation of a Structured
Stream on Disk Is Only Visible to Scope!

• By adding metadata (describing the stream) into the stream, we can
provide performance improvements:

– Cluster-Key access: random reads of records identified by key

– Partitioning and affinity: data to be processed together (sometimes across
multiple streams), can be placed together for faster processing

• Metadata for a structured stream
is kept inside the stream
– The stream is a self-contained unit

– The structured stream is still an
unstructured stream
(plus some stuff)

Streams, Metadata, and Increased Performance

Stream “A” Metadata

Cluster-Key
 Access

Partitioning and Affinity

Cluster-Key Lookup

• Cluster-Key Indices make a huge performance improvement
– Today: If you want a few records, you must process the whole stream

– Structured Streams: Directly access the records by cluster-key index

• How it works:
– Cluster-Key lookup is implemented by having indexing information

contained in the metadata inside the stream

• The records must be stored in cluster-key order to use cluster-key lookup

• Cosmos managed index generated at structured stream creation

Stream “Foo”
Metadata (including index)

A B C D E F G H I J K L M N O P Q Z Y X W …

A E J N Q W A

D

Lookup “D”

Implementing Partitioning and Affinity

• Joins across streams can be very expensive

– Network traffic is a major expense when joining large datasets together

– Placing related data together can dramatically reduce processing cost

• We affinitize data when we believe it is likely to be processed together

– Affinitization places the data close together

– If we want affinity, we create a “partition” as we create a structured stream

– A partition is a subset of the stream intended to be affinitized together

…

Scope

Affinitized
Data Is Stored
Close Together

Case Study 1: Aggregation

SELECT GetDomain(URL) AS Domain,
 SUM((MyNewScoreFunction(A, B, …)) AS TotalScore
FROM Web-Table
GROUP BY Domain;

SELECT TOP 100 Domain ORDER BY TotalScore;

Expensive

Super
Expensive

Unstructured Datasets

Structured Datasets (Sstream)
(partitioned by URL, sorted by URL)

Much more efficient w/o shuffling data
across network

Case Study 2: Selection

SELECT URL, feature1, feature2
FROM Web-Table
WHERE URL == www.imdb.com;

Unstructured Datasets

Massive data reads

Structured Datasets (Sstream)
(partitioned by URL, sorted by URL)

Partition Range Metadata

… … …

P100 www.imc.com  www.imovie.com

P101 www.imz.com  www.inode.com

… … …

Partition
Metadata

• Judiciously choose partition
• Push predicate close to data

Case Study 3: Join Multiple Datasets

SELECT URL, COUNT(*) AS TotalClicks
FROM Web-Table AS W, Click-Stream AS C
WHERE GetDomain(W.URL) == www.shopping.com
 AND W.URL == C.URL AND W.Outlinks > 10
GROUP BY URL;

SELECT TOP 100 URL ORDER BY TotalClicks;

Unstructured Datasets

Expensive

Super
Expensive

Massive
data reads

Structured Datasets (Sstream)
(partitioned by URL, sorted by URL)

Much more efficient w/o shuffling data
across network

• Targeted partitions
• Affinitized location

http://www.shopping.com/

Outline

• Introduction

• Cosmos Overview

• The Structured Streams Project

• Some Other Exciting Projects

• Conclusion

23

Reliable Pub-Sub Event Processing

• Cosmos will add high performance pub-sub event processing

– Publications receive append-only events

– Subscriptions define the binding of publications to event processing app code

• Publications and subscriptions are designed to handle many tens of
thousands of events per second

– Massively partitioned publications

– Cosmos managed pools of event processors with automatic load balancing

• Events may be appended to publications by other event processors or by
external applications feeding work into Cosmos

24

Publication . Subscription
Event Processor

App Code

High-Performance Event Processing
• Event processors (user application code) may:

– Read and update records within tables

– Append to publications

• Each event will be consumed in a transaction atomic with its table and
publication changes

– Transactions may touch any record(s) in the tables

– These may be running on thousands of computers

25

Sub-
scription

Table-B Table-C

Rec-B1 Rec-B2 Rec-C1 Rec-C2

Event-X Event-Y

Read
B1

Update
B2

Read
C1

Update
C2

Event-X Event-X
Pub-D

Pub-A

Atomic
Transaction
Boundary

Event Processor

Combining Random & Sequential Processing

• Random Processing:

– Event processor applications may be randomly reading and updating very large
tables with extremely large throughput

– Applications external to Cosmos may access tables for random reads & updates

– Transactions control atomic updates by event processors

– Changes are accumulated as deltas visible to other event processors as soon as
the transaction commits

• Sequential Processing:

– Massively parallel SCOPE jobs may read consistent snapshots of the same
tables being updated by event processors

• Very interesting optimization tradeoffs in the storage, placement, and
representation of data for sequential versus random access

– The use of SSD offers very interesting opportunities

– Of course, there’s not much SSD compared to the size of the data we manage

26

Outline

• Introduction

• Cosmos Overview

• The Structured Streams Project

• Some Other Exciting Projects

• Conclusion

27

