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What Is COSMOS? 

• Petabyte Store and Computation System 

– About 62 physical petabytes stored (~275 logical petabytes stored) 

– Tens of thousands of computers across many datacenters 

• Massively parallel processing based on Dryad 

– Similar to MapReduce but can represent arbitrary DAGs of computation 

– Automatic computation placement with data 

• SCOPE (Structured Computation Optimized for Parallel Execution) 

– SQL-like language with set-oriented record and column manipulation 

– Automatically compiled and optimized for execution over Dryad 

• Management of hundreds of “Virtual Clusters” for computation allocation 

– Buy your machines and give them to COSMOS 

– Guaranteed that many compute resources 

– May use more when they are not in use 

• Ubiquitous access to OSD’s data 

– Combining knowledge from different datasets is today’s secret sauce 
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Cosmos and OSD Computation 

• OSD Applications fall into two broad categories: 

– Back-end:  Massive batch processing creates new datasets 

– Front-end: Online request processing serves up and captures information 

• Cosmos provides storage and computation for Back-End Batch  
data analysis 

– It does not support storage and computation needs for the Front-End 

Cosmos! 



COSMOS: The Service 
• Data drives search and advertising 

– Web pages: Links, text, titles, etc 

– Search logs: What people searched for, what they clicked, etc 

– IE logs: What sites people visit, the browsing order, etc 

– Advertising logs: What ads do people click on, what was shown, etc 

• We generate about 2 PB every day 
– SearchUX is hundreds of TB 

– Toolbar is many 10s of TB 

– Search is hundreds of TB 

– Web snapshots are many 10s of TB 

– MSN, Hotmail, IE, web, etc… 

• COSMOS is the backbone for Bing analysis and relevance 
– Click-stream information is imported from many sources and “cooked” 

– Queries analyzing user context, click commands, and success are processed 

• COSMOS is a service 
– We run the code ourselves (on many tens of thousands of servers) 

– Users simply feed in data, submit jobs, and extract the results 
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Store Layer: 
-- Many Extent Nodes store and 
    compress replicated extents on disk 
-- Extents are combined to make 
    unstructured streams 
-- CSM (COSMOS Store Manager)  
   handles names, streams, & replication 
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Execution Layer: 
-- Jobs queues up per Virtual Cluster 
-- When a job starts, it gets a Job Mgr to 
   deploy work in parallel close to its data 
-- Many Processing Nodes (PNs) host  
   execution vertices running SCOPE code 
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Cosmos Architecture from 100,000 Feet 
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SCOPE Layer: 
-- SCOPE Code is submitted to the 
    SCOPE Compiler 
-- The optimizer make decisions about 
    execution plan and parallelism 
-- Algebra (describing the job) is built to  
    run on the SCOPE Runtime 
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The Store Layer 
• Extent Nodes: 

– Implement a file system holding extents 

– Each extent is up to 2GB 

– Compression and fault detection are important parts of the EN 

• CSM: COSMOS Store Manager 
– Instructs replication across 3 different ENs per extent 

– Manages composition of streams out of extents 

– Manages the namespace of streams 
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The Execution Engine 
• Execution Engine: 

– Takes the plan for the parallel execution of a SCOPE job and finds computers 
to perform the work 

– Responsible for the placement of the computation close to the data it reads 

– Ensures all the inputs for the computation are available before firing it up 

– Responsible for failures and restarts 

• Dryad is similar to Map-Reduce 
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The SCOPE Language 
• SCOPE (Structured Computation Optimized for Parallel Execution) 

– Heavily influenced by SQL and relational algebra 

– Changed to deal with input and output streams 
 
 
 
 
 
 
 
 
 
 
 
 
 

• SCOPE is a high level declarative language for data manipulation 
– It translates very naturally into parallel computation 
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The SCOPE Compiler and Optimizer 

• The SCOPE Compiler and Optimizer take SCOPE programs and create: 

– The algebra describing the computation 

– The breakdown of the work into processing units 

– The description of the inputs and outputs from the processing units 

•  Many decisions about compiling and optimizing are driven by data size 
and minimizing data movement 

11 

SCOPE  
Layer 

Data = SELECT * FROM S 

       WHERE Col-1 > 10 

SCOPE 
Optimizer 

SCOPE 
Run/T 

SCOPE 
Run/T 

SCOPE 
Run/T 

SCOPE 
Compiler 



The Virtual Cluster 
• Virtual Cluster:  a management tool 

– Allocates resources across groups within OSD 

– Cost model captured in a queue of work (with priority) within the VC 

• Each Virtual Cluster has a guaranteed capacity 

– We will bump other users of the VC’s capacity if necessary 

– The VC can use other idle capacity  
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Introducing Structured Streams 
• Cosmos currently supports streams 

– An unstructured byte stream of data 

– Created by append-only writing to the end of the stream 

• Structured streams are streams with metadata 
– Metadata defines column structure and affinity/clustering information 

• Structured streams simplify extractors and outputters 
– A structured stream may be imported into scope without an extractor 

• Structured streams offer performance improvements 
– Column features allow for processing optimizations 

– Affinity management can dramatically improve performance 

– Key-oriented features offer  
(sometimes very significant) 
 access performance improvements 
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Today’s Use of Extractors and Outputters 
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• Extractors 
– Programs to input data and 

supply metadata 

• Outputters 
– Take Scope data and create a 

bytestream for storage 

– Discards metadata known  
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source = EXTRACT col1, col2 FROM “A” 

Data = SELECT * FROM source 
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Metadata, Streams, Extractors, & Outputters 

• Scope has metadata for the data it is 
processing 

– Extractors provide metadata info as 
they suck up unstructured streams 

• Processing the Scope queries 
ensures metadata is preserved 

– The new results may have different 
metadata than the old 

– Scope knows the new metadata 

• Scope writes structured streams 

– The internal information used by 
Scope is written out as metadata 

• Scope reads structured streams 

– Reading a structured stream allows 
later jobs to see the metadata 
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• By adding metadata (describing the stream) into the stream, we can 
provide performance improvements: 

– Cluster-Key access:  random reads of records identified by key 

– Partitioning and affinity: data to be processed together (sometimes across 
multiple streams), can be placed together for faster processing 

• Metadata for a structured stream  
is kept inside the stream 
– The stream is a self-contained unit 

– The structured stream is still an  
unstructured stream  
(plus some stuff) 

Streams, Metadata, and Increased Performance 

Stream “A” Metadata 

Cluster-Key 
 Access 

Partitioning and Affinity 



Cluster-Key Lookup 

• Cluster-Key Indices make a huge performance improvement 
– Today: If you want a few records, you must process the whole stream 

– Structured Streams:  Directly access the records by cluster-key index 

• How  it works: 
– Cluster-Key lookup is implemented by having indexing information 

contained in the metadata inside the stream 

• The records must be stored in cluster-key order to use cluster-key lookup 

• Cosmos managed index generated at structured stream creation 

Stream “Foo” 
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Implementing Partitioning and Affinity 

• Joins across streams can be very expensive 

– Network traffic is a major expense when joining large datasets together 

– Placing related data together can dramatically reduce processing cost 

• We affinitize data when we believe it is likely to be processed together 

– Affinitization places the data close together  

– If we want affinity, we create a “partition” as we create a structured stream 

– A partition is a subset of the stream intended to be affinitized together 

… 

Scope 
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Case Study 1: Aggregation 

SELECT GetDomain(URL) AS Domain,  
             SUM((MyNewScoreFunction(A, B, …)) AS TotalScore 
FROM Web-Table 
GROUP BY Domain; 
 
SELECT TOP 100 Domain ORDER BY TotalScore; 

Expensive 

Super 
Expensive 

Unstructured Datasets 

Structured Datasets (Sstream) 
(partitioned by URL, sorted by URL) 

Much more efficient w/o shuffling data  
across network 



Case Study 2: Selection 

SELECT URL, feature1, feature2 
FROM Web-Table 
WHERE URL == www.imdb.com; 
 

Unstructured Datasets 

Massive data reads 

Structured Datasets (Sstream) 
(partitioned by URL, sorted by URL) 

Partition Range Metadata 

… … … 

P100 www.imc.com  www.imovie.com 

P101 www.imz.com  www.inode.com  

… … … 

Partition 
Metadata 

• Judiciously choose partition 
• Push predicate close to data 



Case Study 3: Join Multiple Datasets 

SELECT URL, COUNT(*) AS TotalClicks 
FROM Web-Table AS W, Click-Stream AS C 
WHERE GetDomain(W.URL) == www.shopping.com 
    AND W.URL == C.URL AND W.Outlinks > 10 
GROUP BY URL; 
 
SELECT TOP 100 URL ORDER BY TotalClicks; 

Unstructured Datasets 

Expensive 

Super 
Expensive 

Massive  
data reads 

Structured Datasets (Sstream) 
(partitioned by URL, sorted by URL) 

Much more efficient w/o shuffling data  
across network 

• Targeted partitions 
• Affinitized location 

http://www.shopping.com/
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Reliable Pub-Sub Event Processing 

• Cosmos will add high performance pub-sub event processing 

– Publications receive append-only events 

– Subscriptions define the binding of publications to event processing app code  

• Publications and subscriptions are designed to handle many tens of 
thousands of events per second 

– Massively partitioned publications 

– Cosmos managed pools of event processors with automatic load balancing 

• Events may be appended to publications by other event processors or by 
external applications feeding work into Cosmos 
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High-Performance Event Processing 
• Event processors (user application code) may: 

– Read and update records within tables 

– Append to publications 

• Each event will be consumed in a transaction atomic with its table and 
publication changes 

– Transactions may touch any record(s) in the tables 

– These may be running on thousands of computers 
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Combining Random & Sequential Processing 

• Random Processing: 

– Event processor applications may be randomly reading and updating very large 
tables with extremely large throughput 

– Applications external to Cosmos may access tables for random reads & updates 

– Transactions control atomic updates by event processors 

– Changes are accumulated as deltas visible to other event processors as soon as 
the transaction commits 

• Sequential Processing: 

– Massively parallel SCOPE jobs may read consistent snapshots of the same 
tables being updated by event processors 

• Very interesting optimization tradeoffs in the storage, placement, and 
representation of data for sequential versus random access 

– The use of SSD offers very interesting opportunities 

– Of course, there’s not much SSD compared to the size of the data we manage 
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