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Greek 
1. To draw a straight line from any point to any point. 

2. To produce a finite straight line continuously in a 

straight line. 

3. To describe a circle with any centre and distance. 

4. That all right angles are equal to one another. 

5. That, if a straight line falling on two straight lines 

make the interior angles on the same side less 

than two right angles, the two straight lines, if 

produced indefinitely, meet on that side on which 

are the angles less than the two right angles. 

• All babies are illogical. 

• Nobody is despised who can manage a crocodile. 

• Illogical persons are despised. 



Leibniz 

• The only way to rectify our reasonings is to 

make them as tangible as those of the 

Mathematicians, so that we can find our error 

at a glance, and when there are disputes 

among persons, we can simply say: 

calculemus, without further ado, to see who 

is right. 



Boole 
• “Mathematical Analysis of Logic” (1847) 

• “An Investigation into the Laws of Thought, on 

Which are Founded the Mathematical Theories 

of Logic and Probabilities” (1854) 



Frege 

• “Begriffsschrift” Concept Script (1879) 

–  introduced quantifiers, 8, 9 

– notation for inferences: 

 

 

 

• “Grundgesetze der Arithmetik” Basic Laws of 

Arithmetic (1893,1903) 

– Logicism: arithmetic reduced to logic  

"Hardly anything more unfortunate can befall 

a scientific writer than to have one of the 

foundations of his edifice shaken after the 

work is finished. This was the position I was 

placed in by a letter of Mr. Bertrand Russell, 

just when the printing of this volume was 

nearing its completion." 



• Russell's paradox showed inconsistency of naive foundations such as Frege's: 

{X | XX} 

•"The set of sets which are not members of themselves" 

• Theory of Types and Principia Mathematica (1910,1912,1913) 

• following the logicist programme, got as far as sets, cardinals, ordinals, reals 

• other fix: Zermelo’s set theory (Foundation, von Neumann (1925))  

Russell 



(page 379 with proof completed on p86 of volume 2) 



Hilbert's programme: 

• To establish the foundations of mathematics, in 

particular by clarifying and justifying use of the infinite: 

“The definitive clarification of the nature of the 

infinite has become necessary, not merely for 

the special interests of the individual sciences 

but for the honour of human understanding 

itself.” 

• Aimed to reconstitute infinitistic mathematics in 

terms of a formal system which could be proved 

(finitistically): 

• Consistent: It should be impossible to derive a contradiction (such as 1=2). 

• Complete: All true statements should be provable. 

• Decidable: There should be a (definite, finitary, terminating) procedure for 

deciding whether or not an arbitrary statement is provable. (The 

Entscheidungsproblem) 

Hilbert 

There is the problem. Seek its solution. You can find it by 

pure reason, for in mathematics there is no ignorabimus. 

Wir müssen wissen, wir werden wissen  



Gödel 
• “On formally undecidable propositions of Principia 

Mathematica and related systems” (1931) 

• One can encode the propositions and rules of 

inference of a formal system as natural numbers, so 

that statements about the system become statements 

about arithmetic.  

• Thus, if the system is sufficiently powerful to prove 

things about arithmetic, it can talk (indirectly) about 

itself. 

• The key idea is then to construct a proposition P 

which, under this interpretation, asserts 

 

• Then P must be true (for if P were false, P would be 

provable and hence, by consistency, true - a 

contradiction!) 

• So P is true and unprovable, i.e. the system is 

incomplete 

 

P is not provable 



Turing 
• “On computable numbers with an application 

to the Entscheidungsproblem” (1936) 

• Introduced the Turing machine, showed 

undecidability of halting problem 

– By a diagonal argument very like that used by 

Godel 

• Church-Turing thesis 

• Fixed point combinator (1937) 

• Breaking Enigma at Bletchley (Bombe) 

• ACE and Manchester Mk.1 

 
How can one check a routine in the sense of making sure that it 

is right? 

 

In order that the man who checks may not have too difficult a 

task the programmer should make a number of definite 

assertions which can be checked individually, and from which 

the correctness of the whole programme easily follows. 

 - Checking a Large Routine (1949) 



Church 
• “A Set of Postulates for the Foundation of Logic” 

(1932,1933) 

• Aimed at foundation for logic more natural than 

Russell’s type theory or Zermelo’s set theory, taking 

functions as the basis 

– M,N := x | M N | ¸x.M 

– (¸x.M) N ! M[N/x] 

• Eschewed excluded middle  

• Showed how ¸-terms could encode arithmetic 

• “An unsolvable problem of elementary arithmetic” 
(1936) showed ¸-convertibility undecidable (resolving 

Entscheidungsproblem and just pipping Turing) 

• Church’s logic found inconsistent, but the calculus of 

functions and binding turned out to be rather important 

 

 

 

“...there may indeed be uses for the 

system other than as a logic.” 



Typed Lambda Calculus 
• goes back to e.g. Church “A Formulation of the Simple Theory 

of Types” (1940) 

• but this is a modern, programming language-centric version 

 

 



Gentzen 

• Natural deduction (1935) 



turn it sideways... 



change notation... 



add terms, et voila! 



Curry - Howard 

• So we get a correspondence 

Constructive Logic Programming Languages 

Propositions Types 

Proofs Programs 

Conjunction Æ  Pairing £  

Disjunction Ç Disjoint union + 

Implication ¾ Function space   

(Proof normalization) (Operational semantics) 



Girard - Reynolds 
• Impredicative second order 

propositional intuitionistic logic 

aka System F (1971) 

• Polymorphic Lambda Calculus 

(1974) 

• Haskell, C# generics,... 

• Can encode inductive 

datatypes using polymorphism 

• Second-order existential 

quantification models abstract 

datatypes (Mitchell, Plotkin) 

 



Hoare 



Coquand, Huet 
• Calculus of ((co)inductive) 

constructions (1986) 

• Types and terms in a single syntactic 

structure 

• Dependently typed 

– Types can express arbitrary specifications 

• Hierarchy of sorts: Prop, Set, Type(i) 

• Remarkably simple (though subtle) 

typing and conversion rules 

• Implemented in Coq, a system that is 

simultaneously 

– A pure functional programming language 

with an extremely expressive type system 

– A rich place in which to do mathematics 

(interactively) 

 

 



Gonthier, Hales 



Explosion of formal 

verification in PL 

• Operating system kernel (sel4, Klein) 

• Compiler for C-like language (Leroy) 

• Just in our group: 

– Compilers for functional languages  

– Domain theory, concurrency 

– Dimension types for F# 

– Computational cryptography 

– Module systems 

– Refinement type systems 

– Separation logics 

– Foundation of termination analysis 

– … 

– and Simon adds ever more Coq-like features to Haskell 

 

 



Generating & Proving x86 Code in a Proof Assistant 

Proof 

Logic 
Specification 

Language 

Compiler 

Binary 

x86 Architecture x86 Semantics 

Coq 
Coq is an interactive proof assistant:  one can formalize, and have 
the computer check, arbitrary mathematics (see Georges 
Gonthier’s lecture). It is also a programming language, with a very 
expressive type system. 

Starting with operations on bits and words, we build a Coq model 
of a subset of the x86 ISA, including decoding and execution. 

On top of that, we define languages and compilers, such as a 
macro-assembler. These execute within Coq and the resulting 
binaries boot on real hardware. 

We also define custom specification languages and program 
logics in Coq; here a form of Hoare logic for heap data and code 
pointers. The meaning and correctness of the logics are formally 
proved  right down to the machine model. 

The correctness of particular programs can then be proved within 
Coq. This yields end-to-end correctness with the very highest 
level of assurance. 



Conclusion 

• We’re making significant progress towards 

realizing the dreams of 

– Leibniz, Frege & Russell: Fully formalized 

mathematics 

–  Hoare, Scott: Formally specified and verified 

software 

– and getting powerful, expressive programming 

languages 




