
Programming Proofs

and

Proving Programs

Nick Benton

Microsoft Research, Cambridge

“is” “does”

Coffee

Greek
1. To draw a straight line from any point to any point.

2. To produce a finite straight line continuously in a

straight line.

3. To describe a circle with any centre and distance.

4. That all right angles are equal to one another.

5. That, if a straight line falling on two straight lines

make the interior angles on the same side less

than two right angles, the two straight lines, if

produced indefinitely, meet on that side on which

are the angles less than the two right angles.

• All babies are illogical.

• Nobody is despised who can manage a crocodile.

• Illogical persons are despised.

Leibniz

• The only way to rectify our reasonings is to

make them as tangible as those of the

Mathematicians, so that we can find our error

at a glance, and when there are disputes

among persons, we can simply say:

calculemus, without further ado, to see who

is right.

Boole
• “Mathematical Analysis of Logic” (1847)

• “An Investigation into the Laws of Thought, on

Which are Founded the Mathematical Theories

of Logic and Probabilities” (1854)

Frege

• “Begriffsschrift” Concept Script (1879)

– introduced quantifiers, 8, 9

– notation for inferences:

• “Grundgesetze der Arithmetik” Basic Laws of

Arithmetic (1893,1903)

– Logicism: arithmetic reduced to logic

"Hardly anything more unfortunate can befall

a scientific writer than to have one of the

foundations of his edifice shaken after the

work is finished. This was the position I was

placed in by a letter of Mr. Bertrand Russell,

just when the printing of this volume was

nearing its completion."

• Russell's paradox showed inconsistency of naive foundations such as Frege's:

{X | XX}

•"The set of sets which are not members of themselves"

• Theory of Types and Principia Mathematica (1910,1912,1913)

• following the logicist programme, got as far as sets, cardinals, ordinals, reals

• other fix: Zermelo’s set theory (Foundation, von Neumann (1925))

Russell

(page 379 with proof completed on p86 of volume 2)

Hilbert's programme:

• To establish the foundations of mathematics, in

particular by clarifying and justifying use of the infinite:

“The definitive clarification of the nature of the

infinite has become necessary, not merely for

the special interests of the individual sciences

but for the honour of human understanding

itself.”

• Aimed to reconstitute infinitistic mathematics in

terms of a formal system which could be proved

(finitistically):

• Consistent: It should be impossible to derive a contradiction (such as 1=2).

• Complete: All true statements should be provable.

• Decidable: There should be a (definite, finitary, terminating) procedure for

deciding whether or not an arbitrary statement is provable. (The

Entscheidungsproblem)

Hilbert

There is the problem. Seek its solution. You can find it by

pure reason, for in mathematics there is no ignorabimus.

Wir müssen wissen, wir werden wissen

Gödel
• “On formally undecidable propositions of Principia

Mathematica and related systems” (1931)

• One can encode the propositions and rules of

inference of a formal system as natural numbers, so

that statements about the system become statements

about arithmetic.

• Thus, if the system is sufficiently powerful to prove

things about arithmetic, it can talk (indirectly) about

itself.

• The key idea is then to construct a proposition P

which, under this interpretation, asserts

• Then P must be true (for if P were false, P would be

provable and hence, by consistency, true - a

contradiction!)

• So P is true and unprovable, i.e. the system is

incomplete

P is not provable

Turing
• “On computable numbers with an application

to the Entscheidungsproblem” (1936)

• Introduced the Turing machine, showed

undecidability of halting problem

– By a diagonal argument very like that used by

Godel

• Church-Turing thesis

• Fixed point combinator (1937)

• Breaking Enigma at Bletchley (Bombe)

• ACE and Manchester Mk.1

How can one check a routine in the sense of making sure that it

is right?

In order that the man who checks may not have too difficult a

task the programmer should make a number of definite

assertions which can be checked individually, and from which

the correctness of the whole programme easily follows.

 - Checking a Large Routine (1949)

Church
• “A Set of Postulates for the Foundation of Logic”

(1932,1933)

• Aimed at foundation for logic more natural than

Russell’s type theory or Zermelo’s set theory, taking

functions as the basis

– M,N := x | M N | ¸x.M

– (¸x.M) N ! M[N/x]

• Eschewed excluded middle

• Showed how ¸-terms could encode arithmetic

• “An unsolvable problem of elementary arithmetic”
(1936) showed ¸-convertibility undecidable (resolving

Entscheidungsproblem and just pipping Turing)

• Church’s logic found inconsistent, but the calculus of

functions and binding turned out to be rather important

“...there may indeed be uses for the

system other than as a logic.”

Typed Lambda Calculus
• goes back to e.g. Church “A Formulation of the Simple Theory

of Types” (1940)

• but this is a modern, programming language-centric version

Gentzen

• Natural deduction (1935)

turn it sideways...

change notation...

add terms, et voila!

Curry - Howard

• So we get a correspondence

Constructive Logic Programming Languages

Propositions Types

Proofs Programs

Conjunction Æ Pairing £

Disjunction Ç Disjoint union +

Implication ¾ Function space 

(Proof normalization) (Operational semantics)

Girard - Reynolds
• Impredicative second order

propositional intuitionistic logic

aka System F (1971)

• Polymorphic Lambda Calculus

(1974)

• Haskell, C# generics,...

• Can encode inductive

datatypes using polymorphism

• Second-order existential

quantification models abstract

datatypes (Mitchell, Plotkin)

Hoare

Coquand, Huet
• Calculus of ((co)inductive)

constructions (1986)

• Types and terms in a single syntactic

structure

• Dependently typed

– Types can express arbitrary specifications

• Hierarchy of sorts: Prop, Set, Type(i)

• Remarkably simple (though subtle)

typing and conversion rules

• Implemented in Coq, a system that is

simultaneously

– A pure functional programming language

with an extremely expressive type system

– A rich place in which to do mathematics

(interactively)

Gonthier, Hales

Explosion of formal

verification in PL

• Operating system kernel (sel4, Klein)

• Compiler for C-like language (Leroy)

• Just in our group:

– Compilers for functional languages

– Domain theory, concurrency

– Dimension types for F#

– Computational cryptography

– Module systems

– Refinement type systems

– Separation logics

– Foundation of termination analysis

– …

– and Simon adds ever more Coq-like features to Haskell

Generating & Proving x86 Code in a Proof Assistant

Proof

Logic
Specification

Language

Compiler

Binary

x86 Architecture x86 Semantics

Coq
Coq is an interactive proof assistant: one can formalize, and have
the computer check, arbitrary mathematics (see Georges
Gonthier’s lecture). It is also a programming language, with a very
expressive type system.

Starting with operations on bits and words, we build a Coq model
of a subset of the x86 ISA, including decoding and execution.

On top of that, we define languages and compilers, such as a
macro-assembler. These execute within Coq and the resulting
binaries boot on real hardware.

We also define custom specification languages and program
logics in Coq; here a form of Hoare logic for heap data and code
pointers. The meaning and correctness of the logics are formally
proved right down to the machine model.

The correctness of particular programs can then be proved within
Coq. This yields end-to-end correctness with the very highest
level of assurance.

Conclusion

• We’re making significant progress towards

realizing the dreams of

– Leibniz, Frege & Russell: Fully formalized

mathematics

– Hoare, Scott: Formally specified and verified

software

– and getting powerful, expressive programming

languages

