Microsoft
Research

Programming Proofs
and
Proving Programs

Nick Benton
Microsoft Research, Cambridge



Microsoft

Coffee Research

ar->unit
“bool->unit
tting optiori*object aption array option- >urit




Microsoft’

Research

Greek

4. That all right angles are equal to one another. A
5. That, if a straight line falling on two straight lines
make the interior angles on the same side less
than two right angles, the two straight lines, if
produced indefinitely, meet on that side on which
are the angles less than the two right angles.

* Nobody is despised who can manage a crocodile.
* lllogical persons are despised.




Microsoft’

Research

Leibniz

Mathematicians, so that we can find our error
at a glance, and when there are disputes
among persons, we can simply say:
calculemus, without further ado, to see who
IS right.




Microsoft’

Research

Boole

“Mathematical Analysis of Logic” (1847)

“An Investigation into the Laws of Thought, on
Which are Founded the Mathematical Theories
of Logic and Probabilities” (1854)

Prorosirtion 1V,

That aziom of metaphysicians which is termed the principle of
contradiction, and which affirms that it is impaessible for any being to
possess @ quality, and at the same time not o possess ity 1s a conse-
quence of the fundamental law of thought, whose expression is x%= &,

Let us write this equation in the form
x—2*=0,
z(l —a)=10; (1)

both these transformiations being justified by the axiomatic laws
of combination and transpesition (1. 13). Let us, for simplicity

whence we have



Frege

« “Begriffsschrift” Concept Script (1879)
— introduced quantifiers, V, 3
— notation for inferences: :
I'—[:I-}l

-
—a.

« “Grundgesetze der Arithmetik” Basic Laws
Arithmetic (1893,1903)

— Logicism: arithmetic reduced to logic

foundations of his edifice shaken after the
work is finished. This was the position | was
placed in by a letter of Mr. Bertrand Russell,
just when the printing of this volume was
nearing its completion."

Microsoft’

Research

»

BEGRIFFSSCHRIFT,

l'llﬁ-"}:_;_--ll_:li\ﬁ'lfx'-Iii'l'HlIE'I'IS(JlIEN NACHGEBILDETE
sl )

DES REINEN DENKENS.

I B0TTLOB FREGE,

PEEVATIHOWENTHS MEK MATHEMATIE AN BEX CNIVRSITAT B3

HALLE 48,
VERLAG VON LOUIS NEBERT,
1874,



Microsoft’

Research

Russell

PRINCIPIA
MATHEMATICA

: TO 56

ALFRED NORTH WHITEHEAD

BERTRAND RUSSELL, FRS.

* Russell's paradox showed inconsistency of naive foundations such as Frege's:
{X| XeX}

*"The set of sets which are not members of themselves"
* Theory of Types and Principia Mathematica (1910,1912,1913)
» following the logicist programme, got as far as sets, cardinals, ordinals, reals

» other fix: Zermelo’s set theory (Foundation, von Neumann (1925))



Microsoft’

Research

¥56443. F:a, Bel.dDianB=A.=.avfBe2

Dem.
F.%5426. b a=tz.B=1y.D:avBe2.=.2%y.
[%51'231] =.t'znity=A.
[%13'12] =.anfB=A (1)

F.o(1). 111185 . D
Fiu(qe,y).a=tz.B=ty. diavBe2.
Fo(2).%11'54.%52'1. D F . Prop
From this proposition 1t will follow, when arithmetical addition has been
defined, that 1 +1 =2,

anB=A (2)

it

(page 379 with proof completed on p86 of volume 2)



Microsoft’

Research

Hilbert

pure reason, for in mathematics there is no ignorabimus.

Wir miussen wissen, wir werden wissen

Infinite has become necessary, not merely for
the special interests of the individual sciences
but for the honour of human understanding
itself.”

* Aimed to reconstitute infinitistic mathematics in
terms of a formal system which could be proved
(finitistically):

 Consistent: It should be impossible to derive a contradiction (such as 1=2).

» Complete: All true statements should be provabile.

» Decidable: There should be a (definite, finitary, terminating) procedure for
deciding whether or not an arbitrary statement is provable. (The
Entscheidungsproblem)



Microsoft’
Research

Godel

“On formally undecidable propositions of Principia
Mathematica and related systems” (1931)

One can encode the propositions and rules of
iInference of a formal system as natural numbers, so
that statements about the system become statements
about arithmetic.

Thus, if the system is sufficiently powerful to prove
things about arithmetic, it can talk (indirectly) about
itself.

The key idea is then to construct a proposition P
which, under this interpretation, asserts

P is not provable

Then P must be true (for if P were false, P would be
provable and hence, by consistency, true - a
contradiction!)

So P is true and unprovable, i.e. the system is
Incomplete



Microsoft’

Turi ng Research

* “On computable numbers with an application
to the Entscheidungsproblem” (1936)

» Introduced the Turing machine, showed
undecidability of halting problem

— By a diagonal argument very like that used by
Godel

* Church-Turing thesis
» Fixed point combinator (1937)

« Breaking Enigma at Bletchley (Bombe) | e
-« ACE and Manchester Mk.1 P B oy X e W e

| | S s l‘ 8 =
In order that the man who checks may not have too difficult a e | "B e e e ) »
task the programmer should make a number of definite o i e
assertions which can be checked individually, and from which : : | |
the correctness of the whole programme easily follows. O e kg ' OR® [ 0o |

- Checking a Large Routine (1949) | | BY



Microsoft’
Research

Church

“A Set of Postulates for the Foundation of Logic”
(1932,1933)

Aimed at foundation for logic more natural than
Russell’'s type theory or Zermelo’s set theory, taking
functions as the basis

— M\N:=x|MN | AX.M

— (AX.M) N — M[N/X]

Eschewed excluded middle
Showed how A-terms could encode arithmetic

“An unsolvable problem of elementary arithmetic”
(1936) showed A-convertibility undecidable (resolving

Entscheidungsproblem and just pipping Turing)

Church’s logic found inconsistent, but the calculus of
functions and binding turned out to be rather important

...H:ere may |naeea Be USEeS |or H:e

system other than as a logic.”




Microsoft’

Research

Typed Lambda Calculus

« goes back to e.g. Church “A Formulation of the Simple Theory
of Types” (1940)

« Dbut this is a modern, programming language-centric version
INz:AFx: A

Fz:A-M:B '-M:A—-B I'FN:A
F'-M:AM): A— B '-MN:B

''-M:A '"EN:B THFM:AxB 'FM:AxB

'-(M,N): Ax B 'FmiM: A I'-mM: B
'-M:A '-M:B
'-inyM: A+ B 'FingM : A+ B

'-M:A+B T,z1:AFN;:C T,z9: BFNy:C

[t case M of inyzy = Ny | ingxy = Ny : C



Gentzen

« Natural deduction (1935)

B ¢)
AAB AAB
1 (Ag) B (Ag)
4B
AVB C C
(Ve)

Microsoft’

Research




Microsoft’

L Research
turn It sideways...

I, AF A

I, Ar B I'H A>DB TF A
'k ADB = B

I'- AT+ B Tk ANB I' = ANB

I'- ANB '+ A I'= B
I' = A I'- B
' AV B '~ AV B

r'- AvB T, A C T, BF C
Tk C




Microsoft’

_ Research
change notation...

I, A- A

., AF B ' A—-B T'F A
| A— B T+ B

'+ AT+ B TH Ax B I' - Ax B

I' - Ax B '+ A I'= B
I'= A I' - B
'k A+ B '+ A+ B

' A+B T, A+ C T, BF C
Tk C




Microsoft’

. Research
add terms, et voilal

I'z:AFzxz: A

'z:A-M:B '-mMm:A—-B T'FN:A
'-(A:AM):A— B '-MN:B

'-M:A TTEN:B THM:AxB 'FM:AxB

'-(M,N): Ax B 'FmM: A I'-mM: B
'EM: A I'-M:B
'inyM:A+ B I'FinaM : A+ B

'-M:A+B T'xz1:AFN;:C T ,20: BFNy:C

[t case M of injzy = Ny | ingxy = Ny : C



Curry - Howard

« S0 we get a correspondence

Propositions
Proofs
Conjunction A
Disjunction V
Implication D

(Proof normalization)

Microsoft’
Research

a b

Types

Programs

Pairing X

Disjoint union +
Function space —»

(Operational semantics)



Girard - Reynolds

Impredicative second order
propositional intuitionistic logic
aka System F (1971)
Polymorphic Lambda Calculus
(1974)

Haskell, C# generics,...

Can encode inductive
datatypes using polymorphism

Second-order existential
guantification models abstract
datatypes (Mitchell, Plotkin)

Microsoft’

Research




Microsoft’

Research
Hoare

{A}skip{A} {Alie/ X]} X :=ie{A}

{A}YC{A"} {A"YCo{ A"} {ANbe}C1{A"} {A A —be}Cr{A"}
{A}C; ; Cy{A"} {A}if be then C else Cr{A'}

[A Abe}C{A} — (A= 4) {AYC{BY |=(B' = B)

{A}while be do C{A A —be} {A}C{B}



Microsoft’

Research

Coquand, Huet

Calculus of ((co)inductive)
constructions (1986)

Types and terms in a single syntactic &
structure

Dependently typed
— Types can express arbitrary specifications

Hierarchy of sorts: Prop, Set, Type(i)

Remarkably simple (though subtle)
typing and conversion rules

Implemented in Coqg, a system that is
simultaneously

— A pure functional programming language
with an extremely expressive type system

— Arich place in which to do mathematics
(interactively)




Gonthier, Hales

e

l.

L

i
f HH

e <t e
- o s e o
- — s, . - o
iy~ i ——— - sominon o~ —
e " S B £ e e
won

Frerreitis

Microsoft’

Research

Foyal Paaft 1)
Four-Col The:;?%)
page 1382 L}

Formal Préa’—
Theory and Practice

page 1395

D Formal Proof—
Getting Started

. dzge 1408

o
;

Four-color hypermaps
(see page 1427)



Microsoft’

Explosion of formal Rerch
verification in PL

« Operating system kernel (sel4, Klein)
« Compiler for C-like language (Leroy)

e Just in our group:
— Compilers for functional languages
— Domain theory, concurrency
— Dimension types for F#
— Computational cryptography
— Module systems
— Refinement type systems
— Separation logics
— Foundation of termination analysis

— and Simon adds ever more Coqg-like features to Haskell



Generating & Proving x86 Code in a Proof Assistant

Specification

Language

Definition allecImp (heapinfo:DWORD) Definition allocS8pec n fail inv code := Lemma spec_at or and S R1 R2

(bytes:inat) (fail:DWORD) := Forall i, Forall j, ( {HNeg: AtContra S}:
Definition § MoV ESI, heapinfo;; safe @ fail ** EDI?) //\\ S @ (RL \\// R2) |-- S @ RL //\\ S @ R2.
(proc (r mov EDI, [ESI];: safe @ j ** Exists p, Proof.
const a add EDI, bytes;; EDT ~= p +# n ** rewrite ->land_is_forall, lor_is_exists.
const b = Je failg; (* wrap-around *) memAny p (p +# n)) transitivity (Forall b,
block k ( cmp [EST+4], EDI;; -=>> S @ (if b then Rl else R2)); last first.
(var ¢ = je fail:: (* no memory *) safe @ (EIP ~= i ** EDI?)) - apply: lforallR => [[|]1].
if (a==b) mov [ESI], EDI. @ (ESI? ** OSZCP_Any ** inv) - by apply lforallL with true.
then goto k (a,a) r <@ (i - 3§ :-> code). - by apply lforalll with false.
else goto k (b,b))%twiddle. apply: at_ex'.
Qed.
SHIFTOP dword op dst ShiftCountCL => (* mov [ESI], EDI *)
encodeOpcode dword #x"D2" $% specintro. move/eqP => Hcarry0.

subst carry0.

specapply MOV_MOR_rule.

- by ssimpl.

sl rewrite <-spec_reads frame.

apply limplvalid.
‘ autorewrite with push_at.
apply: landL2. cancell.

rewrite /OSZCP_Any /flaghny /regAny
/allocInv. ssplits.

| COND % ¢ writeNext (inj op, dst)
let:
let: IMUL dst src =>
et writeNext #x"0F" $%

: writeNext #x"AF" $$
ov writeNext (inj dst, src

(makeLocalMemSpec frameReg vy);
CC cc cv (nth #0 cmap (size yesblocks).-1
)i
jmp (nth #0 cmap (size noblocks) .-1)

00 80 0B 00 E9 0B 00 00

’ ™
01 4F FF C3 FF C3 81 FB Coq is an interactive proof assistant: one can formalize, and have
E9 FF FF FF BE 00 80 OB the computer check, arbitrary mathematics (see Georges
B9 10 00 00 00 BB 06 89 Gonthier’s lecture). It is also a programming language, with a ve:
00 81 C7 04 00 00 00 &1 ! : prog g language, v
82 E4 FF FF FF B9 14 00 kexpresswe type system. Y
00 BF D1 06 30 00 Cl1 E2
03 FA C1 EA 07 C6 04 4F e
00 OF 84 07 00 00D 00 FF ) X . ) X
B9 00 00 00 00 81 FA 31 Starting with operations on bits and words, we build a Cog model
00 00 00 FF C2 E9 05 00 of a subset of the x86 ISA, including decoding and execution.
Tnductive NonSPReg := | EAX | EBX | ECX ||l MUL src => L S
EDX | ESI | EDI | EBP. let! vl = getRegFromProcState EAX; 7
(* General purpose registers, let! vz evalRegMem src; 2 q
including ESP *) let res := fullmulB vl v2 in On top of that, we define languages and compilers, such as a
Inductive Reg := let cfof := high 32 res == #0 in macro-assembler. These execute within Coq and the resulting
| nonSPReg :> NonSPReg -> Reg do! setRegInProcState EAX (low 32 res); binaries boot on real hardware
| ESP. do! setRegInProcState EDX (high 32 res) \_ Y.
(* All registers, including EIP de! updateFlagInProcState CF cfof; )
but excluding EFL *) do! updateFlagInProcState OF cfof; © o
Inductive AnyReg := do! forgetFlagInProcState SF; We. als.o def”:le EsicEResication Ia.nguages gadipiczia
| regToAnyReg :> Reg -> AnyReg do! forgetFlaglnProcState PE; logics in Cog; here a form of Hoare logic for heap data and code
| EIP. forgetFlagInProcState ZF pointers. The meaning and correctness of the logics are formally
proved right down to the machine model.
L >y
X86 A C h Ite Ct u re X8 6 Se m a nt | Cs The correctness of particular programs can then be proved within
Coq. This yields end-to-end correctness with the very highest
level of assurance.

L ~




Microsoft’

Research

Conclusion

* We're making significant progress towards
realizing the dreams of

— Leibniz, Frege & Russell: Fully formalized
mathematics

— Hoare, Scott: Formally specified and verified
software

— and getting powerful, expressive programming
languages



Microsoft

Research

Mathematicians think like machines for perfect proofs

y Updated 10:30 26 June 2013 by Jacob Aron

191 | W Tweet < 98 k{+1 74

y Read full article Continue reading page |1 | 2 FiLike
© Share M=) M ©

It's difficult to get computers to think like humans, so mathematicians are trying
the opposite. A proposed mathematical framework forces humans to think
more like machines in order to harness the remarkable ability of computers to
rapidly check proofs.

The framework provides the possibility of proofs that can't be wrong — and so
wouldn't need to be laboriously checked by humans. It could also be the first
step towards computers carrying out mathematics by themselves, and perhaps
even more advanced forms of artificial intelligence.

Mathematical proofs are becoming so complex that even other mathematicians
have a hard time following them.

One solution is to use computer-verified proofs, in which software double-
checks each logical step in a proof to ensure its correctness. There's just one
problem — the current foundations of mathematics, laid down around a hundred
years ago, make it difficult to translate human-written proofs into ones that
machines can follow. ADVERTISEMENT

Now a team of mathematicians led by Vladimir Voevodsky of the Institute for
Advanced Study in Princeton say they have a new, 21st century way to do



