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= Leading to...

[FCZ98] Fitzgibbon, Cross & Zisserman, SMILE 1998

EARLY WORK

1998: we computed a decent
3D reconstruction of a 36-frame

Giving 3D super-resolution

= And set ourselves the goal of
solving a 1500-frame sequence

Microesoft



3D from Monocular RGB video

Input: Standard video

Processing:

1. Detect high-contrast points

2. Track from frame to frame

3. Compute most likely 3D structure

..............

Usage: augmented reality
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3D from Monocular RGB video

Input: Standard video

Processing:

1. Detect high-contrast points

2. Track from frame to frame

3. Compute most likely 3D structure

Usage: augmented reality
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Non-Rigid Structure from Motion
C Bregler, L Torresani, A Hertzmann, H Biermann
CVPR 2000 — PAMI 2008
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ou aweld

track no. n = ntracks

(For this example: ntracks = 1135, T = 227)

Measurement Matrix; M



2T
Derive M = P X, and factorize (For this example: ntracks = 1135, T = 227)







Embedding

M:,i — T[(Xi) m: R - RZT

Orthographic: linear (in X) embedding in R*
Perspective: (slightly) nonlinear embedding in R3
Previous work on nonrigid case: embed into R3%
Our big idea: surfaces are mappings R? —» R3

So embed (nonlinearly) into R?



Nonlinear embedding into R?
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So | want a morphable model. What can | do?

[Prasad, Fitzgibbon, Zisserman]

3D from Single Images
— Automatic approaches not [yet] robust

for curved surfaces
— Manual approaches require detailed
annotation of many images
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— And still need work for
inter-model registration
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3D Class Models from Images

1. Wireframe models

2. Subdivision surface models



Wireframe “Armature” Models

* Model class defined by 3D
wireframe curves:

— Sharp silhouettes
— Internal edges

Calder, Alexander - "Cow" - (1929)



Wireframe “Armature” Models

[Prasad, Fitzgibbon, Zisserman, CVPR 2010]
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3D Representation

3D Model:
X = U XV X 3array,
elements X, € R’
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If we knew correspondences w,,,,,,, we would solve
missing data problem
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If we knew correspondences w,,,,,,, we would solve
missing data problem

) | ) |
mein Z Z‘ 2 Dnuv ”Wnuv — Wnuv (6)”
n u v
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Without correspondences, image curve is W, (t),
so solve

mgin 2 Z‘ Z‘ Prnuv mgnllwnu (t) — W (O)
n u v
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To solve this problem:
min > ) ) Gy MWy (6) = W (0)]
n u D

Do this:

min ) Z Z Brs W (i) — Wi (O]

t¢.NUVY N

[Berthilsson & Kahl 01]
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More simply . | |
6 = argmin Z min fn(t, 0)
0
n=1
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More simply . | |

6 = argmin z min fn(t, 0)
0

n=1

= argmin E rrgin fn(t,, 0)
0 n
n



More simply

[Recall that:

= argmin Z min f,,(t,, 8)

H = argmln z min f,, (¢t, 6)
n=1

— argmln min

min f (x)

mir Z fa(tn, 6)

min g(y) = min f(x)
Yy X,y

162]
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More simply . | |

6 = argmin Z min fn(t, 0)
0

n=1

= argmin E rrtlin fn(t,, 0)
0 n
n

So solve

N
min > fo(tn, 0)
n=1

0,t1,...tn

And throw away the t’s
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“Closed form” solution...
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“Gold standard” solution...
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[Gander, Golub, Strebel, BIT 34(1994)]



14

IR -

08}
06}
04}

0.2}

-0.2
0

Attempt 1: alternate t and O

N
f = argmin z mtin fn(t,0)
6

n=1

= argmin Z ngin fn(t,, 0)
0 n
n

Fix 8, find all t,,
Fix t,,, find 6
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Attempt 2: All at once

0.5 1 |

0,~) = al‘gmm z fn(tn, 6)

0,t1,...

1. Call 1sgnonlin
2. Throw away ts



Error

Convergence curves, one instance
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Training images




Partial occlusion




Partial occlusion




NRSfM Our method



NRSM Our method



NRSfM Our method






Back to dolphins: Input images




Input 1: Segmentation




Input 2: Keypoints (if available)




Input 2: Keypoints (if available)

* Far too few points for nonrigid SfM
* Not all points selected in each image
* Could in principle be learned



—— contour generator \
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T (part of) (i)
w; \ b— contour
O preimage silhouette




Data terms

Image 1
Silhouette:
T
bl —
E; 92 511E Z 1835 — mi (M (5| X; ))H
=1
Normal:
] P E
JFnorm 5‘51:{:3111 [n{;j‘ ] — IV (HTN(ﬂzﬂxz})

i=1




Data fidelity

sil
terms | B3 = oy, Znsw — i (M (i | X)) ||
S; 2
J[norm 1 —2 Ni; | N (11 X
lemrm 0 ”(R"z (utj| 1))
71=1
K;
E{_Ill"l_l —2 _ M| X 2
i ngnz lcix — i (M (frir| X)) ||
k=1
Smoothing ¢ 12/ , 5 ,
F'P — j',(sz . M., . 2 M 2 7
forms m= 3 ﬂ|| (| B ||* + 2 || May (4| By ) || "+ [[ My (2] By, ) |~ di
I

“Technical”
terms

reg 2
Ez 5 = '8 E Xim X; = Z Vim Bm
m=1 m=~0
Si




Initialization : Rough dolphin model

Note: this is not the “mean shape”,
but might be viewed as an initial
estimate for it.




Initialization : Rough dolphin model

FiberMesh [Nealen et al] Mesh model



Initialization : Rough dolphin model

True template model Also true but cheeky template



Morphable model parameters: |



Optimization

(a) Initial estimate. {b) Only continuous local optimiza- (c) As (b). but including iterations (d) As (c), but with reparametriza-
tion, as described in Sec. 4.1. of our global search {Sec. 4.2). tion around extraordinary vertices.













Parameter sensitivity

“Pixel” terms: noise level params “Dimensionless” terms “Smoothness” terms

E = (B + EPOT™ + EP™) +| DIy (B + E[%®) [ §0Eg + Eher D1 Enm
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Reconstruction of classes from
silhouettes

With non-planar contour
generators

New results on subdivision surfaces

And on rigid recovery from
silhouettes

But room for improvement
- Better-than Gaussian model

- Discrete/continuous optimization

- Topology change, including sphere
initialization

- Automation...

1. Pose estimation
2. Topology estimation

[All the above are the same problem]



Conclusions

* Yes, it requires manual input, but none of this
was possible before.

* We need to understand what “automatic”
means. We could implement an “automatic”
version of this system, to no advantage.
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