

Collaborators

Mukta Prasad ETH Zurich

Tom Cashman TranscenData Europe

Pushmeet KohliMicrosoft Research

Alex Rav-AchaSightEra Technologies

- 1998: we computed a decent
 3D reconstruction of a 36-frame sequence
- Giving 3D super-resolution
- And set ourselves the goal of solving a 1500-frame sequence
- Leading to...

[FCZ98] Fitzgibbon, Cross & Zisserman, SMILE 1998

Input: Standard video

Processing:

- 1. Detect high-contrast points
- 2. Track from frame to frame
- 3. Compute most likely 3D structure

Usage: augmented reality

EARLY WORK

Microsoft*

Input: Standard video

Processing:

- 1. Detect high-contrast points
- 2. Track from frame to frame
- 3. Compute most likely 3D structure

Usage: augmented reality

EARLY WORK

Microsoft

Input: Standard video

Processing:

- 1. Detect high-contrast points
- 2. Track from frame to frame
- 3. Compute most likely 3D structure

Usage: augmented reality

EARLY WORK

Microsoft

Input: Standard video

Processing:

- L. Detect high-contrast points
- 2. Track from frame to frame
- 3. Compute most likely 3D structure

Usage: augmented reality

EARLY WORK

Microsoft[®]

Input: Standard video

Processing:

- 1. Detect high-contrast points
- 2. Track from frame to frame
- 3. Compute most likely 3D structure

Usage: augmented reality

EARLY WORK

Microsoft

Input: Standard video

Processing:

- 1. Detect high-contrast points
- 2. Track from frame to frame
- 3. Compute most likely 3D structure

Usage: augmented reality

EARLY WORK

Microsoft

Input: Standard video

Processing:

- 1. Detect high-contrast points
- 2. Track from frame to frame
- 3. Compute most likely 3D structure

Usage: augmented reality

EARLY WORK

Microsoft®

But... so flat, so dull...

How do I do it?

Non-Rigid Structure from Motion

C Bregler, L Torresani, A Hertzmann, H Biermann CVPR 2000 – PAMI 2008

(311, 308)

(204, 285)

(142, 296)

*

*

2T

*

*

(For this example: ntracks = 1135, T = 227)

Measurement Matrix: M

Derive M = P X, and factorize

(For this example: ntracks = 1135, T = 227)

Embedding

$$M_{::i} = \pi(X_i)$$
 $\pi: \mathbb{R}^r \mapsto \mathbb{R}^{2T}$

Orthographic: linear (in X) embedding in \mathbb{R}^4

Perspective: (slightly) nonlinear embedding in \mathbb{R}^3

Previous work on nonrigid case: embed into \mathbb{R}^{3K}

Our big idea: surfaces are mappings $\mathbb{R}^2 \mapsto \mathbb{R}^3$

So embed (nonlinearly) into \mathbb{R}^2

Nonlinear embedding into \mathbb{R}^2

dolphins

$$\mathcal{X}_n = \alpha_{n0} \mathcal{B}_0 + \alpha_{n1} \mathcal{B}_1 + \alpha_{n2} \mathcal{B}_2$$

$$\mathcal{X}_n = \sum_{k=0}^{N} \alpha_{nk} \mathcal{B}_k$$

$$X_n =$$

$$\mathcal{B}_0 + \alpha_{n1} \mathcal{B}_1 + \alpha_{n2} \mathcal{B}_2$$

$$\mathcal{X}_n = \sum_{k=0}^{K} \alpha_{nk} \mathcal{B}_k$$

So I want a morphable model. What can I do?

[Prasad, Fitzgibbon, Zisserman]

3D from Single Images

- Automatic approaches not [yet] robust for curved surfaces
- Manual approaches require detailed annotation of many images
- And still need work for inter-model registration

3D Class Models from Images

1. Wireframe models

2. Subdivision surface models

Wireframe "Armature" Models

- Model class defined by 3D wireframe curves:
 - Sharp silhouettes
 - Internal edges

Wireframe "Armature" Models

[Prasad, Fitzgibbon, Zisserman, CVPR 2010]

Training images

3D Representation

3D Model:

 $\boldsymbol{\mathcal{X}} = U \times V \times 3$ array, elements $\boldsymbol{X}_{uv} \in \mathbb{R}^3$

If we knew correspondences $\widetilde{\boldsymbol{w}}_{nuv}$, we would solve missing data problem

$$\min_{\substack{\alpha_{1..n} \\ B_{1..N}}} \sum_{n} \sum_{u} \sum_{v} \phi_{nuv} \left\| \widetilde{\boldsymbol{w}}_{nuv} - \pi(P_n, \sum_{k} \alpha_{nk} \boldsymbol{B}_{kuv}) \right\|_{P_{1..N}}$$

If we knew correspondences $\widetilde{\boldsymbol{w}}_{nuv}$, we would solve missing data problem

$$\min_{\theta} \sum_{n} \sum_{u} \sum_{v} \phi_{nuv} \|\widetilde{\boldsymbol{w}}_{nuv} - \boldsymbol{w}_{nuv}(\theta)\|$$

Without correspondences, image curve is $\widetilde{\boldsymbol{w}}_{nu}(t)$, so solve

$$\min_{\theta} \sum_{n} \sum_{u} \sum_{v} \phi_{nuv} \min_{t} \|\widetilde{\boldsymbol{w}}_{nu}(t) - \boldsymbol{w}_{nuv}(\theta)\|$$

To solve this problem:

$$\min_{\theta} \sum_{n} \sum_{u} \sum_{v} \phi_{nuv} \min_{t} ||\widetilde{\boldsymbol{w}}_{nu}(t) - \boldsymbol{w}_{nuv}(\theta)||$$

Do this:

$$\min_{\substack{\theta \\ t_{1,NIIV}}} \sum_{n} \sum_{u} \sum_{v} \phi_{nuv} \|\widetilde{\boldsymbol{w}}_{nu}(t_{nuv}) - \boldsymbol{w}_{nuv}(\theta)\|$$

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \sum_{n=1}^{N} \min_{t} f_n(t, \theta)$$

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \sum_{n=1}^{N} \min_{t} f_{n}(t, \theta)$$

$$= \underset{\theta}{\operatorname{argmin}} \sum_{n=1}^{N} \min_{t} f_{n}(t_{n}, \theta)$$

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \sum_{n=1}^{N} \min_{t} f_n(t, \theta)$$

$$= \underset{\theta}{\operatorname{argmin}} \sum_{n=1}^{N} \min_{t_n} f_n(t_n, \theta)$$

$$= \underset{\theta}{\operatorname{argmin}} \min_{t_{1...N}} \sum_{n=1}^{N} f_n(t_n, \theta)$$

[Recall that:
$$\min_{x} f(x) + \min_{y} g(y) = \min_{x,y} f(x) + g(y)$$
]

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \sum_{n=1}^{N} \min_{t} f_n(t, \theta)$$

$$= \underset{\theta}{\operatorname{argmin}} \sum_{n=1}^{N} \min_{t} f_n(t_n, \theta)$$

So solve

$$\min_{\theta,t_1,\dots,t_N} \sum_{n=1}^N f_n(t_n,\theta)$$

And throw away the t's

An old favourite

"Closed form" solution...

"Gold standard" solution...

Attempt 1: alternate t and θ

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \sum_{n=1}^{N} \min_{t} f_n(t, \theta)$$

$$= \underset{\theta}{\operatorname{argmin}} \sum_{n=1}^{N} \min_{t_n} f_n(t_n, \theta)$$

- 1. Fix θ , find all t_n
- 2. Fix t_n , find θ

Attempt 2: All at once

$$(\hat{\theta}, \sim) = \underset{\theta, t_1, \dots, t_N}{\operatorname{argmin}} \sum_{n=1}^{N} f_n(t_n, \theta)$$

- 1. Call 1sqnonlin
- 2. Throw away *t*s

Convergence curves, one instance

Convergence curves, one instance

Training images

Training images

Partial occlusion

Partial occlusion

NRSfM

Our method

NRSfM

Our method

Back to dolphins: Input images

Input 1: Segmentation

Input 2: Keypoints (if available)

Input 2: Keypoints (if available)

- Far too few points for nonrigid SfM
- Not all points selected in each image
- Could in principle be learned

Image i

Data terms

Silhouette:

$$E_i^{\text{sil}} = \frac{1}{2} \sigma_{\text{sil}}^{-2} \sum_{j=1}^{S_i} \|s_{ij} - \pi_i \left(M(\mathring{u}_{ij} | X_i) \right)\|^2$$

Normal:

$$E_i^{\text{norm}} = \frac{1}{2} \sigma_{\text{norm}}^{-2} \sum_{j=1}^{S_i} \left\| \begin{bmatrix} n_{ij} \\ 0 \end{bmatrix} - \nu \left(\mathbf{R}_i N(\mathring{u}_{ij} | \mathbf{X}_i) \right) \right\|^2$$

$$E_i^{\text{sil}} = \frac{1}{2} \sigma_{\text{sil}}^{-2} \sum_{j=1}^{S_i} \|s_{ij} - \pi_i \left(M(\mathring{u}_{ij} | X_i) \right)\|^2$$

$$E_i^{\text{norm}} = \frac{1}{2} \sigma_{\text{norm}}^{-2} \sum_{j=1}^{S_i} \left\| \begin{bmatrix} n_{ij} \\ 0 \end{bmatrix} - \nu \left(\mathbf{R}_i N(\mathring{u}_{ij} | \mathbf{X}_i) \right) \right\|^2$$

$$E_m^{\text{tp}} = \frac{\lambda^2}{2} \int_{\Omega} ||M_{xx}(\mathring{u}|\mathbf{B}_m)||^2 + 2 ||M_{xy}(\mathring{u}|\mathbf{B}_m)||^2 + ||M_{yy}(\mathring{u}|\mathbf{B}_m)||^2 \, \mathrm{d}\mathring{u}$$

"Technical" terms

$$E_i^{\text{reg}} = \beta \sum_{m=1}^{D} \alpha_{im}^2 \qquad X_i = \sum_{m=0}^{D} \alpha_{im} B_m$$

$$E_i^{\text{cg}} = \gamma \sum_{j=1}^{S_i} \tau(d(\mathring{u}_{ij}, \mathring{u}_{i,j+1}))$$

Initialization: Rough dolphin model

Initialization: Rough dolphin model

Initialization: Rough dolphin model

True template model

Also true but cheeky template

Morphable model parameters: I

Optimization

(a) Initial estimate.

tion, as described in Sec. 4.1.

(b) Only continuous local optimiza- (c) As (b), but including iterations of our global search (Sec. 4.2).

(d) As (c), but with reparametrization around extraordinary vertices.

Parameter sensitivity

$$E = \sum_{i=1}^{n} (E_i^{\text{sil}} + E_i^{\text{norm}} + E_i^{\text{con}}) + \sum_{i=1}^{n} (E_i^{\text{cg}} + E_i^{\text{reg}}) + \xi_0^2 E_0^{\text{tp}} + \xi_{\text{def}}^2 \sum_{i=1}^{n} E_m^{\text{tp}}$$

"Dimensionless" terms

$$\sum_{i=1}^{n} \left(E_i^{\text{cg}} + E_i^{\text{reg}} \right)$$

"Smoothness" terms

$$\xi_0^2 E_0^{\text{tp}} + \xi_{\text{def}}^2 \sum_{i=1}^n E_m^{\text{tp}}$$

ξ_0 ξ_{def}	0.05	0.25	0.5	0.05	0.25	0.5	0.05	0.25	0.5
0.05		A						P	
0.25				1					
0.5									

Reconstruction of *classes* from silhouettes

- With non-planar contour generators
- New results on subdivision surfaces
- And on rigid recovery from silhouettes

But room for improvement

- Better-than Gaussian model
- Discrete/continuous optimization
- Topology change, including sphere initialization
- Automation...
 - 1. Pose estimation
 - 2. Topology estimation

[All the above are the same problem]

Conclusions

 Yes, it requires manual input, but none of this was possible before.

• We need to understand what "automatic" means. We could implement an "automatic" version of this system, to no advantage.

