106

EMBEDDED COMPUTING

SensorMap
for Wide-Area
Sensor Webs

Suman Nath, Jie Liu, and Feng Zhao
Microsoft Research

eocentric Web interfaces

such as Microsoft Virtual

Earth and Google Maps are

useful for visualizing spa-

tially and geographically
related data such as driving directions,
directory entries, and weather and
traffic conditions, to name a few. The
desire to add useful information to
these interfaces has led developers to
create custom applications that over-
lay housing prices, crime rates, bus
locations, and other data on top of
browsable maps. These applications
are possible due to useful APIs that
Google Maps and Microsoft Virtual
Earth publish to overlay location data
on maps.

We envision a new class of applica-
tions that relies on real-time sensor
data and its mash-up with the geocen-
tric Web to provide instantaneous envi-
ronmental visibility and timely decision
support. As an example, imagine want-
ing to find current waiting times at all
Thai restaurants in a university district.
This would require an infrastructure to
support publishing and querying real-

Computer

time data over interfaces such as the
geocentric Web.

EXISTING SOLUTIONS

Existing solutions are useful for
writing simple applications, but there
are impediments to using them for
more sophisticated purposes.

First, publishing even a single data
stream is not a trivial task. Much use-
ful data isn’t being published because
the data owners don’t have enough
programming expertise, and publish-
ing the data requires too much effort.

Second, existing applications are
mutually incompatible. A user can’t
bring up a single map that shows both
restaurant information and crime
rates in an area.

Third, existing solutions don’t pro-
vide useful primitives, such as query-
ing live sensors on demand based on
keywords or location and aggregating
the results in useful ways.

The SenseWeb Project (http://
research.microsoft.com/nec/sense\Web)
at Microsoft Research addresses these
challenges with a Web portal called

—

SensorMap (http://atom.research.
microsoft.com/sensormap) and a set
of tools that data owners can use to
easily publish their data. Users can
take advantage of the portal and tools
to make queries over live data sources.

SensorMap transparently provides
mechanisms to archive and index
data, process queries, and aggregate
and present results on geocentric Web
interfaces such as Microsoft Virtual
Earth. We believe that such a platform
will encourage the community to pub-
lish more live data on the Web and
enable people to build useful services
on top of it.

SENSORMAP ARCHITECTURE

As Figure 1 shows, the current
SensorMap prototype is a centralized
Web portal consisting of four compo-
nents: the GeoDB database, the
DataHub Web service, the Aggregator
for creating icons, and the SensorMap
(GUI).

GeoDB

GeoDB is a database housing sen-
sor metadata including the publisher’s
name; the sensor’s location, name, and
type; the data type; and freetext
descriptions. We envision users basing
their queries on sensor types, descrip-
tive keywords, and geographic loca-
tions, such as the list of cameras along
a route or the average temperature
that thermometers report inside a
geographic region. GeoDB uses geo-
indexing techniques to efficiently sup-
port these types of queries.

DataHub

DataHub provides two ways to
make real-time data available on
SensorMap. Sensors with public Web
interfaces can register their URL
directly to GeoDB. The SensorMap
client uses these URLSs to fetch real-
time data. For sensors with an Internet
connection but no URL (such as those
in mobile phones or behind firewalls),
DataHub provides a simple interface
to cache sensor data.

The sensors are clients for DataHub
and can send data in real time using
standard Web service calls. The Aggre-

gator or the SensorMap GUI directly
retrieves these cached data from
DataHub rather than try to contact
the sensors.

Aggregator

The Aggregator creates icons repre-
senting sensor data that users can
mash up with maps. Depending on the
sensor type, an aggregator can reside
on either the client or server side. It
accepts queries from the client and
redirects the geographic components
of the queries to GeoDB.

After obtaining the metadata of a
set of sensors that satisfies a client
query, the Aggregator contacts the
sensors and DataHub for their real-
time data. It then aggregates the data
accordingly (depending on sensor type
and the underlying map’s zoom level).
For example, for data collected from
thermometers, the Aggregator dis-
plays average and standard tempera-
ture deviations reported in a
neighborhood. By doing so,
SensorMap usefully summarizes data
to the client without clogging the map
with overlapping icons.

SensorMap GUI

The SensorMap GUI is based on
Windows Live Local and therefore
provides features such as zooming,
panning, street maps, satellite images,
and 3D views. In addition, it lets end
users pose queries on available sen-
sors. SensorMap currently supports
three types of queries:

e geographic queries that drawing
geometric shapes directly on the
map specifies (for example, within
aregion, near a route);

< type queries that sensor types spec-
ify within the viewport; and

» freetext queries that keywords
describing sensors specify.

The GUI overlays the results that
the Aggregator returns on Windows
Live Local maps. GeoDB and the
Aggregator are transparent to both
the data publishers and users. The
GUI lets users save views (geographi-
cal region or sensor-type filters) on the

Live
data

I
EAggreguan‘N

Figure 1.SensorMap architecture. The prototype calls for a centralized Web portal

consisting of four components.

s i i &

Hnjilet Yerms

Ve Sansars by Type
a3

3 s
o

L

T
Filter Sensars by
- Searmh

& Save Carvent View

Figure 2. SensorMap GUI. Based on Windows Live Local, the GUI provides zooming, pan-
ning, street maps, satellite images, and 3D views.

client machine as cookies for quick
retrieval. Figure 2 depicts an interface
showing street-parking data that
StreetlineNetworks published for a
section of San Francisco.

ADDRESSING KEY CHALLENGES

The challenges in building a Web
portal like SensorMap primarily
stem from the goal of collecting and
presenting continuously changing
and diverse types of data, which
pushes the limits of current Web
technologies.

Data publishing

Aggregating data from vastly dif-
ferent sensors and services on a
shared Web portal poses a few fun-
damental challenges. First, data
sources might have very different
interfaces such as intermittent links,
proprietary communication proto-
cols, and accessibility policies.
Moreover, networked sensors, even
the stationary and Internet-ready
ones, are typically behind firewalls
due to management boundaries and
security concerns.

July 2007

107

108

EMBEDDED COMPUTING

SensorMap uses Web services to
tunnel through firewalls with HTTP
ports and XML encoding. Before pub-
lishing data to SensorMap, a data
publisher must first register the sensor
by providing its static description
using the sensor description markup
language. Sensors behind firewalls can
push data to the DataHub Web ser-
vice to act as an external cache of
data. All these capabilities are sup-
ported by the MSRSense toolkit,
which data publishers can use to eas-
ily incorporate their sensors into
SensorMap.

Another data-publishing challenge
is interoperability and extensibility of
different sensor types. For example,
public Web sites like weather.com, as
well as weather stations from hobby-
ists’ backyards, can publish weather
data. To meaningfully aggregate data
from multiple sources, we need com-
mon representations of sensor types
and units.

Semantic Web technologies can
address many of these problems. For
example, using a standard ontology to
publish data will enable automation
of processing tasks within the portal.

Scalable data management

The large amount of data a portal
provides poses new data-management
problems. Consider a centralized solu-
tion where the portal itself collects
sensor data on demand, computes
clusters at required granularity, and
aggregates data within each cluster.
This offers a different model from the
traditional data warehouse where
underlying data changes infrequently,
or a traditional data stream where
data is continuously pushed and
queries are long running.

A more appropriate model is to
maintain an approximate view of the
database and to materialize the por-
tion of interest on demand. A user can
perform materialization by using
unexpired cached data and collecting
additional data from a carefully cho-
sen subset of sensors in the area of
interest.

SensorMap addresses these require-
ments with COLR-tree, a novel data

Computer

structure that provides an R-tree-like
interface and hides the materializa-
tion of sensor data from users. It
incorporates the cost of collecting
data from the sensors into query
planning, optimizations, and cache
management.

Moreover, to answer aggregate
queries over a large geographic
region, COLR-tree collects data from
a carefully chosen subset of sensors.
Finally, it performs spatiotemporal
caching of aggregate and raw sensor
data to allow queries to reuse data
even if queries overlap partially in
space and time and different sensors
have different expiry times.

The large amount
of dataa portal
provides poses new

data-management
problems.

Data visualization

The display must depict the variety
of sensor data on the portal in mean-
ingful ways. SensorMap’s current ver-
sion shows sensor data as points. An
icon whose shape and color encode
sensor type and current sensor value
represents each sensor or sensor type.

For much sensor data, such a sim-
ple display method is insufficient. For
example, the system could better dis-
play data from a dense deployment
of temperature sensors as contour
maps showing temperature gradi-
ents. The system could display a traf-
fic sensor’s archived data in a way
that highlights temporal congestion
patterns. SensorMap aims to identify
and provide a small set of simple
abstractions useful for composing a
variety of visualizations.

Sensor discovery

Many useful sensors already exist
on the Web. For example, many trans-
portation departments put traffic
cameras online, the US Geological
Survey puts real-time stream-gauge
information on the Web, and so on.

—_—-T;

Just as existing search engines auto-
matically crawl the Web to discover
new pages, a sensor portal needs sim-
ilar crawlers to automatically discover
and index live data sources online.

Although people can access most
existing sensors through their Web
pages, automatically discovering them
is challenging for a few reasons. First,
these pages aren’t easily identifiable as
sensor pages. Second, unlike typical
Web pages, sensors don’t link to each
other. Finally, even if you find a page
representing a sensor, it’s not easy to
extract the necessary metadata that
describes the sensor.

SensorMap’s current version in-
cludes a crawler that addresses the
problems in a narrow domain. It can
automatically discover traffic cam-
eras available on the Web and anno-
tate them with their latitude and
longitude.

Mash-up APls

To realize the full potential of a por-
tal like SensorMap, it should be eas-
ily extensible and mashed up with
other applications and service. As
example scenarios, a user should be
able to visualize real-time traffic data
from SensorMap and driving direc-
tions from MapPoint (www.microsoft.
com/mappoint) together or set a trig-
ger that sends a message when traffic
conditions are optimum.

Providing a general mash-up frame-
work is tricky since it might need to
deal with the semantics of the under-
lying data. In sending a trigger to
advise a user of optimum traffic con-
ditions, the mash-up code must parse
and understand the traffic data from
SensorMap. We are currently work-
ing on a set of modular and compos-
able APIs to facilitate mashing up
SensorMap with other services.

Other challenges

Privacy and data ownership are big
concerns for sharing physical, real-
time data. Sensor data might reveal
other information about publishers
and their surroundings. A publisher
might want to control how the data is
being used.

We’ve resolved these issues by using
an authentication framework and
allowing a publisher to decide his sen-
sors’ privacy levels. For example, just
the publisher, a designated group he
creates, or everyone might view the
Sensor.

However, this isn’t sufficient. A
much deeper social issue is data own-
ership. Just because someone can set
up a Web camera from his apartment
window to view a restaurant across
the street doesn’t give him the right to
publish that restaurant’s waiting time
on the Web. These social concerns are
beyond our current technical focus,
but they require further investigation
because they might have profound
implications for SensorMap’s success.

e released the first version of
W SensorMap in July 2006. In

addition to the data sources
we incorporated, a few projects
(Streetline Networks’ San Francisco
parking-spot availability and Johns
Hopkins University’s soil data) have
volunteered to publish data on
SensorMap. Currently, we’re work-
ing toward a new version that
addresses many of the challenges to
encourage publishing more data on
SensorMap.

Suman Nath and Jie Liu are researchers
and Feng Zhao is a principal researcher
in the Networked Embedded Comput-
ing Group of Microsoft Research. Con-
tact Nath at sumann@microsoft.com,
Liu at liuj@microsoft.com, and Zhao at
zhao@microsoft.com.

Editor: Wayne Wolf, School of Electrical
and Computer Engineering, Georgia
Institute of Technology, Atlanta;
wayne.wolf@ece.gatech.edu

July 2007

109

