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Transforming Data to Action

Data Knowledge Insight Action
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• Translating narrative text to structural text in 
medical domain (concepts extraction, assertion 
classification, and relation identification)

• Good test case of adopting NLP to a specific 
domain

Motivation

Structural 
representation

Narrative 
records



• Traditional natural language processing (NLP) 
tools
• Not designed for fragmented free text found in narrative clinical 

records

• Does not perform well on this type of EMR data

• Unique medical description of sentences and vocabularies

• Limited access to clinical records 
• Barrier to widespread development of medical language processing 

(MLP) technologies

• i2b2 research project
• Provides de-identified medical records from 4 hospitals

• Community work on different tasks annually

Challenges



Objective

For HTN patient was started on Norvasc 10 mg 
daily on 1/18 .



Our Work

Concept Extraction of medical 
problems, treatments and tests

Assertion Classification made on 
medical problems

Relation Identification of medical 
problems, treatments and tests



• Medical problems
• He had an angiogram which shows a severe stenosis in the 

right distal area with a thrombosing right limb of an aorto
femoral graft

• Treatments
• He was given Flagyl and had already apparently been on 

Levofloxacin outside the hospital since his recent discharge for 
questionable pneumonia.

• Tests
• an echocardiogram revealed a pericardial effusion and 

possible tamponade clinically 

Extraction

Medical Problems, Treatments and Tests



• Present

the tumor was growing

• Absent

patient denies pain

• Possible

Patient may have had a heart attack

• Conditional

Penicillin causes a rash

• Hypothetical

Ativan 0.25  to 0.5 mg IV q 4 to 6 hours prn anxiety

• Not associated with the patient

Brother had asthma

Assertions Made on Medical Problems



• Medical Problems & Treatments (TrP)

• Medical Problems & Tests (TeP)

• Medical Problems & Medical Problems 
(PP)

Relations 
Medical Problems, Treatments and Tests



• Treatment improves medical problem (TrIP)

at that time with anasarca and congestive heart failure , responsive to
diuretics and ACE inhibitors .

• Treatment worsens medical problem (TrWP)

the tumor was growing despite the available chemotherapeutic regimen 

• Treatment causes medical problem (TrCP)

Also the risk of ischemia or infarct from the internal carotid artery coil could 
lead to thromboembolism

• Treatment is administered for medical problem (TrAP)

He was given Flagyl and had already apparently been on Levofloxacin outside 
the hospital since his recent discharge for questionable pneumonia .

• Treatment is not administered because of medical problem (TrNAP)

The patient 's antibiotics were discontinued with the thought that prolonged  
antibiotics only put her at more risk for infection .

• None of the above defined treatment-problem relationships (NoneTrP)

In terms of his liver abnormalities, it was felt that viral hepatitis was in the 
differential as well as several opportunistic infections of the liver but also was 
felt that Bactrim could be a cause of these abnormalities  .

Medical Problems & Treatments



• Test reveals medical problem (TeRP)

an echocardiogram revealed a pericardial effusion and 
possible tamponade clinically

• Test conducted to investigate medical problem (TeCP)

an VQ scan was performed to investigate pulmonary 
embolus

• None of the above defined test-problem relationship 
(NoneTeP)

The patient has history of asthma and a new diagnosis 
of heart failure diagnosed by echocardiogram.

Medical Problems & Tests



• Medical problem indicates medical problem (PIP)

Azotemia presumed secondary to sepsis

• None of the above defined problem-problem 
relationship (NonePP)

Significant for hypertension, hyperlipidemia

Medical Problems & Medical Problems





Our Method

PreProcessor
Marking NPs 

and APs

Classification
Assertion

Extraction
Concept

Identification 
Relation

Free Text

Structural
Representation

• Pre-processing sentences

• Marking noun phrases (NPs) and adjective phrases (APs)

• Extracting concepts

• Classifying assertions

• Identifying relations



Syntax analysis

Relation Parsing
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• Determining types and models
• Adaptive dosage dictionary 

• Generating corresponding features
• Building dictionaries including UMLS, MESH, Drug-name, 

Head noun

• Features for “medication” Model

• Features for “other” Model

• Extracting concepts and matching types
• CRF++

• Obtaining correct boundaries for the concepts
• Longest common substring algorithm (LCS)

Extracting Concepts



Extracting Concepts
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• Generating dictionaries and rule-based 
patterns manually

• Classifying assertions by rule-based classifier

• Extracting features
• Lexical context features

• Syntactic context features

• Results from rule-based classifier

• Classifying assertions by statistical classifiers

• Voting

Classifying Assertions



Classifying Assertions
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• Normalizing sentences
• Replacing each concept with one word place holder

• Labeling current two concepts to be identified

• Simplify the sentence structures

• Stemming

• Extracting features
• Lexical context features

• Syntactic context features

• Identifying relations by statistical classifiers

• Voting

Identifying Relations



Identifying Relations
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Submitted Results for Three Tasks 

Micro precision recall F-measure 2010 
Workshop

F-measure max
Concept 0.7443 0.7905 0.7667 0.8523
Assertion 0.9210 0.9210 0.9210 0.9362
Relation 0.6198 0.6517 0.6354 0.7365

MSRA’s submitted results for 2010 i2b2/VA NLP Workshop



Latest Results for Three Tasks 

Micro precision recall F-measure 2010 
Workshop

F-measure max
Concept 0.8189 0.8589 0.8385 0.8523
Assertion 0.9403 0.9403 0.9403 0.9362
Relation 0.7227 0.7229 0.7228 0.7365



Submitted vs. Latest Results for Three 
Tasks 

Micro F-measure
Submitted

F-measure
Latest System

2010 
Workshop

F-measure max
Concept 0.7667 0.8385 0.8523
Assertion 0.9210 0.9403 0.9362
Relation 0.6354 0.7228 0.7365



• Carried out all 3 tasks of i2b2 2010 challenge
– Invited to present based on good results
– New work since July shows our system is among the 

top systems

• For assertion, rule based system worked well, 
with machine learning based system adding 
incrementally to final result

• Time consuming to craft rules and hard to scale
• Future work: explore active learning to help 

machine learning system take advantage of more 
data

Summary
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