
Efficient Query Refinement in Multimedia Databases�

Kaushik Chakrabarti
University of Illinois

kaushikc@cs.uiuc.edu

Kriengkrai Porkaew
University of Illinois

kporkaew@cs.uiuc.edu

Sharad Mehrotra
University of California

sharad@ics.uci.edu

Large repositories of multimedia objects containing digital
images, video, audio and text documents are becoming com-
mon. There is an increasing application need to search these
repositories based on their content. Examples include online
shopping (e.g., “Find me all shirts that look likethisone), med-
ical applications (e.g., “Find all tumors similar to a given pat-
tern”), face recognition, trademark searches, audio retrieval and
content-based video browsing/searching. To address this need,
we are building theMultimedia Analysis and Retrieval Sys-
tem (MARS), a system for effective and efficient content-based
searching and browsing of large scale multimedia repositories
[2]. MARS represents the content of multimedia objects by a
collection of features (e.g. color histograms, cooccurence tex-
ture, color layout and shape for images; keywords for text). The
user poses a query by submitting an example and requesting for
a few objects that are “most similar” to the submitted exam-
ple. The similarity between any two objects is computed by first
computing their similarities based on the individual features and
then combining them to obtain the overall similarity [2]. MARS
uses specialized indices and advanced query processing algo-
rithms to efficiently return the top matches to the user [1, 2].

An important aspect of multimedia similarity retrieval is that
of query refinement. Due to the subjective nature of multimedia
retrieval, rarely do the answers to the “starting” query satisfy the
user’s need right away. Rather, among the answers returned, the
user may find one or more objects that are closer to what she had
in mind than the original example which becomes the basis for
a second query (referred to as “refined” queries). The user may
also specify the relevance levels (e.g., very relevant, relevant) for
the new query objects. Not only does the query object(s) change,
but the function used to compute the similarity is also changed
(by the system) in order to better capture the user’s perception of
similarity and hence satisfy her information need better. The lat-
ter is achieved by usinginter-featureand intra-featureweights.
While inter-feature weights capture the relative importance of
the various features, intra-feature weights capture the relative
importance of various dimensions within each feature. The task
of the refinement model is to learn the weights that best capture
the user’s perception of similarity. The second task of the re-
finement model is to modify the query to reflect the new set of
query objects. There are two ways to modify the query, namely
represent the set of query objects by a single point (the weighted
centroid) or bymultiple representative points. We refer to the
former model as Query Point Movement (QPM) and the latter
as Query Expansion (QEX) model [3]. Recent work shows that
query refinement techniques significantly improve the quality of
answers and the answers get progressively better with more iter-
ations of feedback [3].

While there has been a lot of research showing the effective-

�This work was supported in part by the National Science Foundation under
Grant No. IIS-9734300, in part by the Army Research Laboratory under Coop-
erative Agreement No. DAAL01-96-2-0003and in part by NSF/DARPA/NASA
Digital Library Initiative Programunder Cooperative Agreement No. 94-11318.

ness of query refinement, there exists no work on how to imple-
ment query refinement efficiently in a multimedia database sys-
tem. We explore such approaches in this paper. The proposed
approaches are independent of the refinement model used (e.g.,
QPM or QEX) and hence work for all models. We assume that
each feature is indexed using a multidimensional index structure
(called the F-index). A similarity query can then be answered
by executing a k-NN query on each F-index and merging the
individual feature results to obtain the final results. Our first
contribution is to generalize the notion of similarity queries and
allow multiple query points in a query (referred to asmultipoint
queries). This generalization is necessary since refined queries
cannot be always expressed as single point queries. We develop
a k-NN algorithm that can handle multipoint queries and show
that it performs significantly better than the naive approach (i.e.
execute several single point queries using the ‘single-point’ k-
NN algorithm and merge results).

The second and the main problem we address is how to eval-
uate refined queries efficiently. A naive approach is to treat a re-
fined query just like a starting query and execute it from scratch.
We observe that the refined queries arenotmodified drastically
from one iteration to another. As a result, most of the execu-
tion cost can be saved by appropriately exploiting the informa-
tion generated during the previous iterations of the query. We
propose 3 techniques, namely Reuse (RU), Full Reconstruction
(FR) and Selective Reconstruction (SR), thatcachecertain in-
formation during the execution of the previous iterations of the
query and use that cached information to save the execution cost
(both I/O and CPU costs) during the subsequent iterations. We
define notions of I/O optimality and CPU optimality and eval-
uate the three schemes in terms of these criteria. We find that
although RU is significantly better than the naive approach, it is
not I/O optimal. So we propose FR and show that it is I/O op-
timal and is significantly more efficient compared to RU. How-
ever, FR is not CPU optimal. We finally propose SR and show
that SR, like FR, is I/O optimal, and, under certain conditions,
also CPU optimal. Even though SR is not always CPU optimal,
it is always better than FR in terms of CPU cost and is hence the
best technique. Our experiments show that the above techniques
speed up the execution of refined queries by several orders of
magnitude compared to the naive technique.

References

[1] K. Chakrabarti and S. Mehrotra. The hybrid tree: An index struc-
ture for indexing high dimensional feature spaces.Proc. of the 15th
International Conference on Data Engineering (ICDE), March
1999.

[2] M. Ortega, Y. Rui, K.Chakrabarti, S. Mehrotra, and T. Huang. Sup-
porting ranked boolean similarity queries in mars.IEEE Transac-
tions on Knowledge and Data Engineering (TKDE), 1998.

[3] K. Porkaew, K. Chakrabarti, and S. Mehrotra. Query refinement
for multimedia similarity retrieval in MARS. ACM Multimedia
Conference, 1999.

Authorized licensed use limited to: MICROSOFT. Downloaded on January 21, 2009 at 18:42 from IEEE Xplore. Restrictions apply.

