
A Flexible Semantic Framework for Effects

Ross Tate1 and Daan Leijen2

1 University of California, San Diego
2 Microsoft Research, Redmond

Abstract. Effects are a powerful and convenient component of programming.
They enable programmers to interact with the user, take advantage of efficient
stateful memory, throw exceptions, and non-deterministically execute programs
in parallel. However, they also complicate every aspect of reasoning about a pro-
gram or language, and as a result it is crucially important to have a good under-
standing of what effects are and how they work. In this paper we present a new
framework for formalizing the semantics of effects that is more general and thor-
ough than previous techniques while clarifying many of the important concepts.
By returning to the category-theoretic roots of monads, our framework is rich
enough to describe the semantics of effects for a large class of languages includ-
ing common imperative and functional languages. It is also capable of capturing
more expressive, precise, and practical effect systems than previous approaches.
Finally, our framework enables one to reason about effects abstractly, and so can
be applied to many stages of language design and implementation in order to
create more broadly applicable tools for programming languages.

1 Introduction

Like mathematical functions, program procedures take inputs and produce outputs. Un-
like mathematical functions, program procedures may also read from and write to state-
ful memory, interact with a user or the outside world in general, throw exceptions, fail
to terminate, or terminate with a non-deterministic result. We call all these differences
effects. Effects are an integral component of programming languages. For one, they pro-
vide the programmer convenient access to the powerful and efficient capabilities of the
machine such as interrupts, stateful memory, the file system, and the monitor. Even sup-
posedly pure languages such as Haskell use implicit non-termination, and Haskell even
provides a means for users to define and use their own effects via monads and impera-
tive functional programming [9]. Other languages such as in parsing tools use implicit
enumerable non-determinism so that programmers may specify search problems in a
concise manner.

Since effects are so integral to programming languages, it is important to have a
formalization of their usage and semantics. This formalization should be thorough, ad-
dressing all ways in which effects impact the semantics of a language. Furthermore,
this formalization should be general, making only minimal assumptions so that it can
be applied to as many languages as possible.

Here we present a framework for formalizing the denotational semantics of effects.
Our framework is thorough, identifying many of the roles that effects play in languages,

some of which have not been addressed before. For each role we present both a nomi-
nal component for naming effects (the space in which type-and-effect analyses [14, 16,
19, 22, 23, 25] work) and a semantic component for defining the denotational seman-
tics of effects (the space in which monadic techniques typically work). Our framework
is also general, making only the assumptions necessary for semantics to be coherent,
meaning that all sensible ways to insert implicit semantic operators lead to equivalent
semantics. Examples of coherence requirements are Reynolds’ requirements for im-
plicit coercions [20] and the monad laws for imperative functional programming [9].

Our framework is both more general and more thorough than the predominant tech-
niques for formalizing the semantics of effects, namely monadic techniques [2, 9, 17,
18, 26]. As evidence of our framework’s generality, in this paper we provide two effect
systems whose semantics our framework can formalize but which cannot be formal-
ized using monadic techniques, contrary to the claim made by Wadler and Thiemann
that the semantics of any effect system can be formalized using a hierarchy of monads
and monad morphisms [28]. Our framework is more general because it emphasizes the
interaction of effects whereas monadic techniques typically treat each effect individ-
ually. Using our framework, we are able to classify and prove precisely which effect
systems satisfy Wadler and Thiemann’s claim, and what kinds of interactions monadic
techniques are able to formalize.

Furthermore, our framework is more thorough than monadic techniques, addressing
many roles of effects which cannot be properly formalized using monads. We introduce
lateral composition for combining effectful arguments; monads are only able to for-
malize left-to-right or right-to-left evaluation, but not all languages use one semantics
or the other. We also introduce flexible semantics for effects meant to give the com-
piler some freedom of choice; monads are not capable of formalizing semantics which,
for example, allow the compiler to choose which order to evaluate effectful arguments.
Thus, although monads were a key inspiration, our framework is much more thorough
and general in its treatment of effects.

Our framework is also useful beyond formalizing semantics. To demonstrate this,
we apply our framework to three problems across the spectrum of language design and
implementation. We show that the value restriction [29] can be relaxed in the pres-
ence of effects satisfying an abstract property phrased in terms of our framework. We
also specify the abstract properties of an effect which allow computations in separate
threads to be interwoven arbitrarily per the requirements of parallelization, significantly
relaxing the requirements of commutative monads [8]. Since each solution specifies its
requirements in terms of our abstract framework for effects, these solutions can be ap-
plied to any language in any circumstance satisfying those abstract requirements.

To summarize, this paper makes the following contributions:

Section 2 A definition of nominal effect systems for naming effects, a specific class of
which includes the many type-and-effect systems used in analyses

Section 3 A framework for formalizing the denotational semantics of effect systems
Section 4 A classification of the nominal effect systems whose semantics can be for-

malized using monads, and examples of systems for which this is not possible
Section 5 Extensions for effect systems with lateral composition and flexible semantics
Section 6 Applications of our framework to type generalization and to parallelism

2 Nominal Effect Systems

Effects have become a somewhat overloaded concept. For some people, effects are like
types, and can be used in a programming language’s type system or in an optimization’s
analytical framework. For others, effects are a semantic impurity of procedures. These
two perspectives are indeed related in that the former essentially names effects while
the latter gives meaning to effects. In this section we present nominal effect systems,
i.e. systems for naming effects. In Section 3, we present semantic effect systems, i.e.
systems which give semantics to nominal effect systems. In these two sections, we focus
on nominal and semantic effect systems for only sequential programs of the form

{x← e; y ← e′; return e′′}

In Section 5, we will show how to add more components to the systems we present
here in order to formalize effect systems for more realistic languages, such as those in
which subexpressions as well as lines of code have effects. But for now we focus on just
sequential programs because these are what existing systems for formalizing semantics
of effects have focused on. In Section 4, we will show how these existing systems fit
within our framework, and how our framework is more general.

2.1 Nominal Effects, Subeffects, and Sequential Composition
Procedures, unlike mathematical functions, are effectful, and a nominal effect system
is a classification of these effects. There are already many nominal effect systems in
existence. Most of these are static systems, such as the type-and-effect systems used by
optimizing compilers, or the instances of the Monad type class in Haskell. However, in
the same way that there are dynamic counterparts to static types, there are also dynamic
nominal effect systems particularly useful for defining the semantics of a language.

Nominal effect systems, like type systems, often have a notion of subeffects. A
procedure with nominal effect ε also has nominal effect ε′ when ε is a subeffect of ε′.
As with types, a subeffect is typically more precise or restrictive than a supereffect. Thus
nominal effect systems are essentially (static or dynamic) type systems for procedures.

Sequential nominal effect systems have a modular method for naming the effect of
a sequence of processes. That is, if line1 has effect ε1 and line2 has effect ε2, then the
effect of the sequence {line1; line2} is some function of ε1 and ε2. For example, if the
first line reads from the heap and the second line updates the heap, then the combination
reads-and-updates the heap.

We formalize nominal effect systems using the following definition.

Definition 1. A nominal effect system is a set EFF of nominal effects (i.e. effect names)
and a distinguished basic effect � given non-exclusively to effectless processes. A nom-
inal subeffect system additionally has a preorder (reflexive transitive binary relation)
≤ on the set EFF. Alternatively, a sequential nominal effect system additionally has an
associative binary operator ; with � as the identity element, such that if a procedure has
effect ε1 and another procedure has effect ε2, then the composition of those procedures
has effect ε1 ; ε2. Should a nominal effect system have both subeffects and sequential
composition, then sequential composition must preserve subeffects:

ε1 ≤ ε
′
1 ∧ ε2 ≤ ε′2 =⇒ ε1 ; ε2 ≤ ε

′
1 ; ε
′
2

� ≤ read(S)
≤ ≤

set(S)≤ update(S)≤ state(S)

↓ ;→ read(S) set(S) update(S) state(S)

read(S) read(S) state(S) state(S) state(S)
set(S) set(S) set(S) set(S) set(S)

update(S) state(S) set(S) update(S) state(S)
state(S) state(S) state(S) state(S) state(S)

Fig. 1. Nominal Effect System for State Machines

2.2 Example Nominal Effect Systems

Analytical effect systems are nominal effect systems with a static analysis that exam-
ines a program and determines the nominal effect of each operation in the program.
These are often used by compilers in order to check whether certain optimizations
would be sound, or by a verifier in order to understand the implicit operations in the
program. They typically follow Talpin and Jouvelot’s type-and-effect discipline [23]
and fall within Marino and Millstein’s generic type-and-effect system [16]. Due to their
analytical nature, the subeffect system forms a join semi-lattice and sequential compo-
sition ; is simply the join operator t on this semi-lattice [10, 14, 25]. In particular, there
is usually a set of primitive effects, and EFF is simply all finite sets of primitive ef-
fects [2, 16, 19, 22, 23]. The basic effect � is the bottom of this join semi-lattice (e.g. the
empty set) and embodies all effects which are not being tracked by the analytical effect
system. In Section 4 we will see that the unification of the subeffect structure and the
sequential composition structure has a significant impact on the denotational semantics
of these effect systems. However, this unification does not hold for all nominal effect
systems, as we will demonstrate shortly.

A typed effect system is a nominal effect system which is actually integrated into
the programming language’s type system. Because of this integration, typed effect sys-
tems have the special privilege of having sequential composition be a partial operation,
rejecting programs whenever ; is not defined on the effects of two lines of code. In par-
ticular, in Haskell where each non-basic effect is a Monad instance, ε ; ε′ is defined only
when ε equals ε′, meaning only lines belonging to the exact same Monad instance can
be used together. Even ε ; � is undefined so that any effectless value must be explicitly
coerced to an effectful value via the return operator. Having sequential composition be
partial allows an interesting degree of flexibility in designing a nominal effect system,
but for sake of simplicity we will treat sequential composition as total.

Another example of a nominal effect system is shown in Figure 1. This system
captures the effects of a language for state machines, where S is the set of states of
the machine. The basic effect � is for procedures which neither depend on nor change
the current state. The effect read(S) is for procedures which depend on the current state.
The effect set(S) is for procedures which set the current state. The effect update(S) is for
procedures which update the current state. The effect state(S) is for procedures which
depend on and update the current state. Intuitively, the subtle difference between the
set(S) and update(S) effects is that set(S) procedures replace the entire state, whereas
update(S) procedures only change part of the state. The primitive effectful operations
for using and changing the state are the following:

EFF = {nd(n) | n ∈ N ∧ n ≥ 1} nd(m) ≤ nd(n) = m ≤ n
� = nd(1) nd(m) ; nd(n) = nd(m ∗ n)

Fig. 2. Nominal Effect System for Bounded Non-Determinism

get : unit
read(S)−−−−→ S put : S

set(S)−−−→ unit modify : (S
�−→ S)

update(S)−−−−−→ unit

(gets the current state) (sets the current state) (updates the current state)

These three operations are how the read(S), set(S), and update(S) effects get introduced.
The state(S) effect only results from these effects interacting, such as from a set(S)
procedure occurring after a read(S) procedure. Note that a read(S) procedure occurring
after a set(S) procedure, on the other hand, results in a set(S) procedure rather than
a state(S) procedure. This may seem odd, and shortly we will formalize why, but in
Section 3 we will use denotational semantics to prove that it is sound. We should also
note that Haskell has the same get , put , and modify in its library, but all these functions
are given the same effect state(S), which is a significant loss of precision.

In Figure 2 we present a nominal effect system for bounding non-determinism; that
is, a non-deterministic language in which the degree of non-determinism is tracked by
the effect system. The effect nd(n) indicates that the procedure non-deterministically
results in up to n different values. Primitive operations for a language with such an

effect system would be arbn : τn
nd(n)−−−→ τ for each positive integer n. These oper-

ations non-deterministically select one argument to return. Sequential composition is
particularly interesting because, although the subeffect system forms a lattice, sequen-
tial composition does not coincide with the join operation on this lattice as it did with
analytical effect systems. To demonstrate why, consider the following program:

{x← arb2(1, 5); y ← arb2(x+ 1, x− 1); return y ∗ 2}

Even though each individual line non-deterministically selects between 2 values (nd(2)),
the combined result can return 4 different values (nd(4)), whereas the join of nd(2) and
nd(2) is nd(2) instead. This pattern is typical of effect systems which attempt to track
or bound the imprecision in a program. A more practical such effect system would
monitor the imprecision due to floating-point operations, but we present the bounded
non-determinism effect system instead because its formal semantics is much simpler.

2.3 Classifying Nominal Effect Systems

One goal of our framework is to enable other tools to phrase their assumptions in terms
of abstract properties of effects and effect systems. We have just presented a number of
nominal effect systems each of which with very different properties. Here we identify
some of the more significant properties that characterize the behavior of these systems;
the technical report [24] provides additional characterizations. In Section 3, we will
illustrate how these properties also impact the semantics of these systems, but for now
we focus on the nominal level. In particular, the triple 〈EFF, �, ;〉 forms a mathematical
structure known as a monoid, and ≤ forms a congruence relation for that monoid, so we
can apply concepts from monoid theory to classify nominal effect systems.

Insertable Effects A nominal effect ε is insertable if it is a supereffect of the basic
effect �. Recall that � is the effect given to effectless procedures, and so an effectless
procedure can also be viewed as having any insertable effect ε by nature of supereffects.
Since the identity function is effectless and can be inserted anywhere in a program
without changing its semantics, any insertable effect can likewise be inserted anywhere
in the program (although at a loss of precision). All the effects presented above are or
can be made insertable except for one: the set(S) effect. An effectless procedure cannot
be made into one which sets the state, at least not without significantly impacting the
semantics of the program. Another more practical example of an uninsertable effect
is the memory initialization effect; it is important to know whether memory has been
initialized and a procedure which does not initialize memory cannot be safely treated as
one which does. Thus it is important to acknowledge the effects which are uninsertable
and explicitly state when one assumes the effects being used are insertable.

Compressive Effects A nominal effect ε is sequentially compressive if ε ; ε equals ε; in
monoid theory this is known as an idempotent element. This means that the procedures
with effect ε are closed under composition, and so there is a subspace of ε procedures.
In analytical effect systems, Haskell’s effect system, and the state machine effect sys-
tem, all effects are sequentially compressive; these are known as idempotent monoids.
However, the bounded non-determinism effect system has no sequentially compressive
effects (except for the basic effect � which is always sequentially compressive). So al-
though sequentially compressive effects are common, they are by no means necessary.

Increasing Systems A sequential nominal subeffect system is sequentially increasing
if ε and ε′ are always subeffects of ε ; ε′. This means that when we sequence two effects
they are always contained within the combined result. Again this holds for all the nom-
inal effect systems presented above except for the state machine effect system. This is
what is so peculiar about the fact that set(S) followed by read(S) is set(S), which is not
a supereffect of read(S), rather than state(S), which is a supereffect both. However, we
believe that not requiring sequential composition to be increasing is a powerful aspect
of our framework because it enables effects to interact in a way besides containment,
discussed more in Section 4. Nonetheless, many uses of effect systems implicitly as-
sume that the nominal effect system is increasing.

3 Semantic Effect Systems

We have provided a number of nominal effect systems and interesting ways to classify
nominal effect systems. However, it is important to realize that these are just naming
schemes for effects and that they provide no evidence that the names actually mean
what we expect them to mean. We could have just as easily specified get as having
the set(S) effect, put as having the read(S) effect, and read(S) ; read(S) as being �. In
this section we formalize semantic effect systems for nominal effect systems. Semantic
effect systems give a denotational semantics to nominal effect systems, demonstrating
that they act the way we think they should and that they are sound abstractions of the
underlying computational effects.

Here we present sequential semantic effect systems which are a generalization of
monads, the predominant technique for formalizing the semantics of effects. In 1958,
Godement invented standard constructions [4], which became known as (Kleisli) triples,
which became known as monads. In 1988, Moggi migrated the concept of monads
from the category theory community to the programming languages semantics commu-
nity [17]. In 1990, Wadler carried this concept over to the functional languages commu-
nity [26, 27], and in 1993 these concepts were realized as monadic programming and
added to Haskell to make I/O more convenient and to incorporate imperative functional
programming [9]. Now, we show how to generalize monads capable of formalizing se-
quential programs with a single effect, to sequential semantic effect systems capable of
formalizing multiple interacting effects.

3.1 The Semantics of Effects

Here we give semantics to nominal effect systems using concepts from category theory.
We present the various components of sequential semantic effect systems through two
running examples. The first example uses a very simple nominal effect system with only
one effect: � = partial. The second example, shown in Figure 3, is the semantic effect
system for the bounded non-determinism nominal effect system from Figure 2. Because
the first example has only one effect, its semantics using our framework is formalized
by a traditional monad. However, using the second example we will also show how to
generalize to arbitrarily complex nominal effect systems. Thus our sequential semantic
effect systems essentially generalize monads from one effect to multiple effects.

Effects as Functors Consider the expression (64 ÷ x) + 1 (using integer division).
Forget that we all know what this expression means due to our years of experience with
advanced arithmetic, and instead focus on the problem that + expects its first argument
to be an integer, but the ÷ in the first argument may fail to produce one because ÷ is
a partial operation. In other words, ÷ has the partial effect. We might represent this by

saying÷ has type Z× Z
partial−−→ Z. We want to formalize what it means to have the partial

effect. The observation made by Moggi [17] is that we can do this by modifying the
return type of ÷. In particular, we can view ÷ as a function which returns an integer or
a failure code. We can define an algebraic data type Partial to represent these two cases:

Partial(τ) = success(τ) | failure

Then ÷ can be given the type Z× Z→ Partial(Z).
The next step is to define what to do should a failure occur. In particular, should

64 ÷ x fail, one expects (64 ÷ x) + 1 to fail as well. Thus, (64 ÷ x) + 1 also has the
partial effect. In a sense, what we need to define is how an effect should be propagated
through computations, in this case λd.d+ 1. We can do this by using a map operation:

mappartial : (τ → τ ′)→ (Partial(τ)→ Partial(τ ′))

mappartial(f) = λpx. case px

{
success(x) 7→ success(f(x))
failure 7→ failure

Tnd(n)(τ) = {S ⊆ τ | 1 ≤ |S| ≤ n}
mapnd(n)(f) = λS.{f(x) | x ∈ S}

unit(x) = {x}
convertnd(m)≤nd(n)(S) = S

joinnd(m),nd(n)(S) =
⋃

S∈S S

Fig. 3. Semantic Effect System for Bounded Non-Determinism

Thus map turns a normal computation into one which takes an effectful argument and
propagates the effect. In this case, mappartial indicates that if a failure condition is present
then all computation should be bypassed and the failure propagated. Using this function,
we can formalize the semantics of (64÷x)+1 as mappartial(λd.d+ 1)(64÷ x). We map
the computation after the effectful operation so that it can take an effectful argument,
then pass the effectful result to this mapped computation which propagates the effect.
Thus if 64÷ x fails so will the entire expression.

This pair of a type constructor T : TYPE → TYPE and a function on computations
map : (τ → τ ′) → (T (τ) → T (τ ′)) is called a functor (on the category of types),
provided it satisfies a few additional equalities [1]. In the setting of effects, the type
constructor T indicates how the effect can be described as data, and the function on
computations map defines how to propagate the effect through normal computations.

Definition 2. A semantic effect system for a nominal effect system 〈EFF, �〉 specifies
for each effect ε in EFF a functor 〈Tε,mapε〉 indicating how to describe the effect and
propagate it through computations, and also specifies an operation unit : τ → T�(τ)
(specifically a natural transformation [1]) indicating how to give constants a trivial
form of the basic effect.

In the above definition we introduced one more operation: unit . The unit operation
specifies how to bring effectless values into this effectful world of computations by giv-
ing them the basic effect �. This operation is related to monadic units, but it is required
only for the basic effect �. For our running example with only the single effect partial,
the unit operation is defined as follows:

unit : τ → Partial(τ)
unit(x) = success(x)

Essentially unit turns an effectless value into a successful value with the partial effect.
Now consider the semantic effect system in Figure 3. We define elements of Tnd(n)(τ)

as nonempty finite sets of up to n elements of τ , indicating that a procedure with effect
nd(n) does in fact produce at most n different values (and always produces at least one

value). The primitive effectful operators arbn : τn
nd(n)−−−→ τ can be defined in terms of

these functors via the following:

arbn(x1, . . . , xn) = {x1, . . . , xn}

The operations mapnd(n)(f) simply apply f to each of the elements of a set in Tnd(n)(τ).
The unit operation gives constants the nd(1) effect by mapping them to the computation
non-deterministically producing only that constant.

Compressing Effects Going back to the partial effect, consider a slightly more complex
example: (64÷x)÷y. Once again we can use the functor representation of the partial ef-
fect in order to formalize the semantics of this expression as mappartial(λd.d÷y)(64÷x).
The type of this formalization, though, is Partial(Partial(Z)), since the computation we
mapped, namely λd.d ÷ y, also has the partial effect. Although having a doubly par-
tial value allows us to determine which ÷ failed, typically we are only concerned with
whether any ÷ failed. Thus we want a way to compress the doubly partial value into a
singly partial value. In this example we have a single sequentially compressive effect,
so we can apply the category-theoretic concept of monadic joins:

joinpartial : Partial(Partial(τ))→ Partial(τ)

joinpartial(ppx) = case ppx

success(success(x)) 7→ success(x)
success(failure) 7→ failure
failure 7→ failure

Essentially joinpartial compresses a doubly partial effect by failing if either operation fails
and otherwise forwarding the successful result. There is some loss of information, but
typically this is information that would be more cumbersome to propagate and reason
about than it is worth.

In a more complex nominal effect system, we need to give a semantics to sequences
of procedures with different effects. Using the above techniques, if the first effectful
procedure has effect ε and the second has effect ε′, then mapping the second procedure
to handle the first’s effect results in an expression with type Tε(Tε′(τ)). So we need a
way to compress this doubly effectful value into a value with a single effect ε ; ε′. For
this, we use a sequential semantic effect system.

Definition 3. A sequential semantic effect system for a sequential nominal effect sys-
tem 〈EFF, �, ;〉 additionally specifies for each pair of effects ε and ε′ a join operation
describing how to compress these effects when used sequentially:

joinε,ε′ : Tε(Tε′(τ))→ Tε ; ε′(τ)

This family of join operations must satisfy equational requirements, described in the
technical report [24], that are necessary and sufficient for the semantics to be coherent,
meaning all possible ways of inserting implicit operations lead to equivalent semantics.

Now once again consider the semantic effect system in Figure 3 for bounded non-
determinism. The nominal sequential composition for this effect system says that if
one line non-deterministically produces up to m values, and the next line up to n,
then the combination produces up to m ∗ n values. The result of sequencing two lines
without compression in this semantic effect system produces a value with semantic
type Tnd(m)(Tnd(n)(τ)), i.e. up to m sets each containing up to n elements of τ . The
joinnd(m),nd(n) operation simply takes the union of the m sets, resulting in a set with up
to m ∗ n elements of τ (i.e. an element of Tnd(m∗n)(τ)). Note that, for n ≥ 2, it is im-
possible to define a natural transformation of the form Tnd(n)(Tnd(n)(τ)) → Tnd(n)(τ)
should we prefer a more traditional sequentially compressive nominal effect system.
Thus, the fact that bounded non-determinism can be captured by our framework relies
on our framework’s flexibility of not requiring effects to be sequentially compressive.

Using the structure we have so far we can give a semantics to simple imperative
programs such as the following generic program:

x← e; (has effect ε)
y← f(x); (has no effect)
return g(x, y) (has effect ε′)

We can use unit to incorporate the second line into our effectful system, map to prop-
agate the effects, and join to compress the effects. There are multiple ways to translate
this program depending on how we choose to compress the effects and which variables
the expressions f and g actually use. All of these translations are equivalent, though,
due to the equational requirements of our framework, even though multiple effects are
present. We following is the most naı̈ve of these translations.

joinε,� ; ε′(mapε(λx.join�,ε′(map
�
(λy.g(x, y))(unit(f(x)))))(e))

Converting Effects Lastly we formalize the semantics of subeffects, which is done in
a manner very similar to formalizing the semantics of subtypes.

Definition 4. A semantic subeffect system for a nominal subeffect system 〈EFF, �,≤〉
additionally specifies for each subeffect pair ε ≤ ε′ a convert operation describing how
to convert procedures with effect ε to procedures with effect ε′:

convertε≤ε′ : Tε(τ)→ Tε′(τ)

This family of convert operations must satisfy equational requirements, described in our
technical report [24], that are necessary and sufficient for the semantics to be coherent.

The convert operations for the bounded non-determinism semantic effect system
in Figure 3 are trivial since every set containing up to m elements is already a set
containing up to n elements when m is less than n. So at this point we present in
Figure 4 the semantic effect system for the nominal effect system for state machines that
we presented in Figure 1. This semantic effect system is much more intricate than that
for bounded non-determinism because the effects vary much more in their meaning. In
particular the convert functions, although simple, are not trivial, and they provide some
sense of how the pieces of this effect system fit together. One can also see that a read(S)
after a set(S) can actually be combined into just the set(S) effect, demonstrating that
the nominal sequential composition we defined for this effect system is in fact a sound
approximation. Demonstrating soundness of an abstraction is one use of denotational
semantics, but next we see how it can allow one to classify and analyze nominal and
semantic effect systems.

3.2 Classifying Semantic Effect Systems

As part of our goal towards improving the understanding of effects, here we identify
some abstract properties of semantic effect systems that we find interesting. In Sec-
tion 5 we will identify valuable properties of individual effects, but here we focus on
properties which provide a means for evaluating nominal effect systems.

ε Tε(τ) mapε(f)

� τ f
read(S) S → τ λr.λs.f(r(s))
set(S) τ × S λ〈x, s〉.〈f(x), s〉

update(S) τ × (S → S) λ〈x, u〉.〈f(x), u〉
state(S) S → (τ × S) λm.λs.let 〈x, s′〉=m(s) in 〈f(x), s′〉

unit = identity

Convert Operations: ε
convertε≤ε′−−−−−−−→ ε′

� read(S)

set(S) update(S) state(S)

...
λx.λs.x

...
..λx.〈x, λs.s〉

...
..

λr.λs.〈r(s), s〉

..

λ〈x, s′〉.〈x, λs.s′〉
..

λ〈x, u〉.λs.〈x, u(s)〉
Table of Join Operations

ε ε′ Tε(Tε′(τ)) joinε,ε′

read(S) read(S) S → (S → τ) λr.λs.r(s)(s)
read(S) set(S) S → (τ × S) identity
set(S) read(S) (S → τ)× S λ〈r, s〉.〈r(s), s〉
set(S) set(S) (τ × S)× S λ〈〈x, s′〉, s〉.〈x, s′〉
set(S) update(S) (τ × (S → S))× S λ〈〈x, u〉, s〉.〈x, u(s)〉
set(S) state(S) (S → (τ × S))× S λ〈m, s〉.m(s)

update(S) update(S) (τ × (S → S))× (S → S) λ〈〈x, u′〉, u〉.〈x, λs.u′(u(s))〉
state(S) state(S) S → ((S → (τ × S))× S) λm.λs.let 〈m′, s′〉 = m(s) inm′(s′)
the remaining join operations are uniquely determined by effect containment (see Section 4)

Fig. 4. Semantic Effect System for State Machines

Tightness We define a notion of tightness, which provides a way to evaluate the pre-
cision of effect systems. We say an operation in a nominal effect system is tight if it
has a semantic effect system such that the corresponding semantic operation is sur-

jective in some sense. For example, the primitive operation put : S
set(S)−−−→ unit is

tight because each element in Tset(S)(unit) can directly result from a use of put . How-
ever, Haskell gives put the state(S) effect, but no non-constant semantic function in
Tstate(S)(unit) = S → unit × S can directly arise from a use of put , so put is not
tight/surjective in this system. In fact, there is no tight sound monadic formalization of
put , so our framework is strictly necessary for more precise abstractions of effects.

As for subeffects, a subeffect system has tight joins if, whenever ε and ε′ have a join
ε t ε′ in the subeffect preorder, the pair of operations 〈convertε≤εtε′ , convertε′≤εtε′〉
forms what is known as an extremal epi-sink [1]; that is, every element of Tεtε′(τ)
is in the image of at least one of the two convert operations. If a nominal subeffect
system has tight joins, then there is no significant loss of information at merge points
such as if-then-else statements or pattern-match expressions since, loosely speaking,
each effectful value with the merged effect can occur from one of the branches/cases.
The bounded non-determinism effect system has this property, but the state machine

effect system does not: the join of read(S) and set(S) is state(S), yet there are many
procedures with the state(S) effect which do more than just read or just set the state.

Sequential composition is tight if each join operator is surjective (specifically an
extremal epimorphism [1]), so that there is no significant loss of information due to se-
quencing effects. Both the bounded non-determinism and state machine effect systems
have this property. However, this would not be the case had we defined set(S) ; read(S)
as state(S) instead in order to make sequential composition increasing, illustrating the
precision we enable by not requiring sequential composition to be increasing.

Losslessness We say an operation in a semantic effect system is lossless if it is undoable
(specifically a section [1]). For example, the compressing join for the read(S) effect fol-
lowed by the set(S) effect resulting in the state(S) effect is lossless. More significantly,
a semantic subeffect system is lossless if each convert operation is lossless. Both the
bounded non-determinism and state machine effect systems have this property; however
it need not always hold. Consider an effect system with two kinds of exception effects:
deterministic exceptions exc(E) and non-deterministic exceptions nd-exc(E) (where E
is the set of possible exceptions). It is quite reasonable to have exc(E) be a subeffect of
nd-exc(E). However, this conversion is lossy, as arbitrary non-deterministic processes
cannot be made deterministic in a way that undoes the conversion. Nonetheless, it is
good to take losslessness into consideration when reasoning about effect system.

3.3 Category-Theoretic Formalization

Coincidentally, our various operations and equational requirements for nominal and se-
mantic effect systems form what is known as a lax functor [6, 21] from a one-object
locally thin 2-category to the 2-category of categories. The 2-category of effectful com-
putations for an effect system turns out to be what is known as the lax colimit [6, 21]
of this lax functor. This demonstrates that our framework is a natural formalization
of effects, neither being too relaxed nor too restrictive. The structure of a lax functor
also provides ways to compare effect systems. However, we leave discussion of these
higher-level concepts to our technical report [24].

4 Monadic Semantics

Monads have been the traditional approach for formalizing the denotational semantics
of effects. In our framework, a monad arises from the special case when the system has
only one effect (using the category-theoretic perspective of map, unit , and join rather
than the functional-languages perspective of bind and return). Thus our framework
generalizes monads from a single effect to multiple effects. However, there have been
other approaches to formalizing multiple effects by using multiple monads. Again, these
arise as special cases in our framework, but we have also seen effect systems which do
not fall within these special cases. Here we classify which nominal effect systems have
their semantics formalized using a hierarchy of monads, then illustrate why the coun-
terexamples do not fall within this classification and how this can actually be a benefit.
In Section 5, we will present extensions to our framework for handling additional roles
effects play in a language that are not addressed by traditional monadic techniques.

4.1 The Marriage of Analytical Effects and Monads

Not only does the semantic effect system reflect upon the nominal effect system, but
the nominal effect system significantly impacts the semantic effect system. Wadler and
Thiemann proposed, but did not prove, a marriage between effect systems and hier-
archies of monads and monad morphisms [28], demonstrating that the semantics of a
specific type-and-effect system [22] can be formalized using a hierarchy of monads, and
claiming “it seems clear that any effect system can be adapted to monads in a similar
way”. However, as we have shown, not all nominal effects have a natural and efficient
semantic definition that can be represented by a monad. In particular, the bounded non-
determinism effects have no monadic join, and the set(S) effect has no monadic unit.
However, there are still many effect systems for which Wadler and Thiemann’s claim
holds. Using our framework we can classify precisely which nominal effect systems are
represented by a hierarchy of monads and monad morphisms. First we classify precisely
which individual nominal effects are represented by a monad.

Lemma 1. The denotational semantics of a nominal effect is formalized by a monad if
and only if it is sequentially compressive and can soundly be made insertable. [24]

Additionally, one can easily prove that a convert operation between two insertable se-
quentially compressive effects satisfies the equality requirements of semantic effect sys-
tems if and only if it forms what is known as a colax map of monads in the category the-
ory community [12] or a monad morphism in the functional languages community [2,
17, 26]. This fact, combined with the above lemma, entails the following corollary.

Corollary 1. The denotational semantics of a sequential nominal effect system with
subeffects is formalized by a hierarchy of monads and monad morphisms if and only if
it is sequentially compressive and � can soundly be made a subeffect of all effects.

Analytical effect systems typically use a join semi-lattice of effects. As such, using
the join operator t as sequential composition ; is a trademark of these systems. Rec-
ognizing this, we can use Corollary 1 to prove that Wadler and Thiemann’s claimed
marriage between effects and monads holds particularly for analytical effect systems.

Theorem 1. The denotational semantics of any analytical effect system is formalized
by a hierarchy of monads and monad morphisms because they use the join operator t
on their join semi-lattice of nominal effects for nominal sequential composition ;. [24]

4.2 Non-Monadic Semantic Effect Systems

Using our framework we have demonstrated the significant impact the structure of a
nominal effect system has on the structure of its semantics. Because they use a join
semi-lattice for nominal sequential composition, the denotational semantics of analyt-
ical effect systems are always formalized using monads. However, the semantic ef-
fect systems in Figures 3 and 4 are not monads. This is because the bounded non-
determinism nominal effects are not sequentially compressive, and the set(S) nominal
effect is not insertable. In particular, ε1 ; ε2 is not ε1 t ε2 for these systems.

Interestingly, not only does the flexibility of our framework allow us to express
more effects than monads, it also allows us to formalize more complex interactions
between effects. In analytical effect systems, nominal sequential composition is always
increasing and sequentially compressive due to the nature of joins on preorders. Because
of this, the interactions of distinct effects is completely determined by their containment
in some larger effect, as formalized by the following theorem.

Theorem 2. Semantic sequential composition for different effects in increasing sequen-
tially compressive nominal effect systems is uniquely determined by the convert opera-
tions and semantic sequential composition of effects with themselves. [24]

joinε,ε′ = joinε ; ε′,ε ; ε′ ◦ convertε≤ε ; ε′ ◦mapε(convertε′≤ε ; ε′)

This means that interaction of distinct effects in these systems is very restricted.
In fact, the multitude of monadic techniques for building effect systems all handle in-
teraction of distinct effects by packing their monads into one larger monad [5, 7, 11,
13, 15]. On the other hand, the bounded non-determinism system is not sequentially
compressive, and the state machine system is not increasing, so they can define more
interesting interactions between distinct effects, such as that for read(S) after set(S).
Thus, not only is our framework able to formalize more complex effect systems, but it
can also formalize more complex interactions of effects.

5 Extending Effect Systems

So far we have focused on the role of effects in simple imperative languages using
subeffects and sequential effects since these are the roles traditional monadic tech-
niques have addressed. In this section, we identify other important roles effects play in
realistic languages and extend our semantic framework to account for these additional
roles. First, we add a lateral form of composition, as opposed to sequential composition,
which is particularly important for languages in which subexpressions can be effectful.
Second, we recognize that certain effects have some degree of flexibility in their seman-
tics which is important to properly understanding these effects, with non-determinism
being the primary example. The technical report contains an additional extension iden-
tifying the additional structure necessary for effects to be used in infinite processes such
as unbounded loops and recursion [24]. These additions make our framework capable
of formalizing the semantics of effects in a large class of imperative and functional lan-
guages. In Section 6, we will apply these extensions to many stages of the language
design and implementation process.

5.1 Lateral Composition

Consider the two effectful integer expressions (128÷x)÷y and (128÷ x) + (128÷ y)
which both have two effectful operations. In the first expression, the effectful operations
occur in sequence and we have already shown how to give this a semantics. In the sec-
ond expression however, the effectful operations occur side-by-side; neither ÷ depends
on the result of the other and so there is no need to restrict ourselves to applying them
sequentially. To address this, we introduce what we call lateral composition.

Definition 5. Nominal lateral composition specifies an associative binary operator
, : EFF × EFF → EFF with � as the identity element. For typed nominal effect systems,
, can be a partial operator. Should a nominal effect system have both subeffects and
lateral composition, then lateral composition must preserve subeffects.

Semantic lateral composition specifies merge operations describing how to combine
ordered pairs of effectful values into an effectful pair of values:

mergeε,ε′ : Tε(τ)× Tε′(τ ′)→ Tε , ε′(τ × τ ′)

This family of merge operations must satisfy equational requirements, described in the
technical report [24], that are necessary and sufficient for the semantics to be coherent.

In the same way semantic sequential composition generalizes monads from one
effect to multiple effects, semantic lateral composition generalizes lax monoidal func-
tors [12] from one effect to multiple effects.

There are some very common forms of lateral composition for a sequential effect
system. For any two effectful expressions, we can do a left-to-right evaluation:

ltorε,ε′(e, e
′) = joinε,ε′(mapε(λx.mapε′(λy.〈x, y〉)(e′))(e))

A language has left-to-right evaluation of arguments when , equals ; and merge equals
ltor . Similarly a language has right-to-left evaluation of arguments when ε , ε′ equals
ε′ ; ε (note the reversed order) and merge equals rtol (the reverse of ltor).

Not all languages will have , coincide with ; (or its reverse), although often the two
will be related. Consider our earlier example of deterministic exceptions exc(E) and
non-deterministic exceptions nd-exc(E). A language may decide to have exc(E) ; exc(E)
be exc(E), since when sequencing exception-throwing procedures the exceptional be-
havior is clear. However, it may decide to have exc(E) , exc(E) be nd-exc(E) because,
if two side-by-side processes both throw an exception, it is not clear which of the two
exceptions should be propagated. Thus this language purposely has , and ; differ so that
the programmer can express when they actually care that exceptions are deterministic.
Note that in this example ε ; ε′ is always a subeffect of ε , ε′.

Lateral composition can also be useful for effects which may not have an intuitive
sequential composition. For example, we can consider n-length vectors as a laterally
compressive effect (ε , ε = ε). This has obvious merge operations: given a pair of vec-
tors simply construct a vector of pairs componentwise, and given an effectless value and
a vector simply construct a vector of pairs whose first component is always that effect-
less value. This lateral effect system produces the vector semantics we are all familiar
with for expressions such as 5 ∗ x+ 10 ∗ y − 1. Furthermore this lateral effect system
is symmetric: ε , ε′ always equals ε′ , ε and

mergeε′,ε(e
′, e) = mapε , ε′(λ〈x, y〉.〈y, x〉)(mergeε,ε′(e, e

′))

That is, the order of arguments does not matter effectwise. A similar symmetric lateral
effect system can also be made for databases, and it is this structure that makes these
domains so amenable to data parallelism. Later we will show how semantic lateral
composition and flexible effects can be applied to thread parallelism as well.

5.2 Flexible Effects

Consider once again the effect system with deterministic and non-deterministic ex-
ceptions. We specified exc(E) , exc(E) as nd-exc(E) so that the user could inform the
compiler when any order of evaluation is valid. However, transforming the program
so that these ambiguous cases evaluate left-to-right is not strictly semantics-preserving
since doing so actually makes the program more deterministic. In settings which use
enumerable non-determinism, such as in parsers, it is important to strictly preserve
non-determinism. However in our intended setting of non-deterministic exceptions, we
introduced this non-determinism to give the compiler the flexibility to choose in which
order to evaluate the arguments. We call this flexible non-determinism.

Thus, we introduce a notion of flexible semantic effects in order to formalize the
difference between effects such as flexible non-determinism and enumerable non-de-
terminism, and to formalize when transformations need not strictly preserve semantics.
A flexible effect ε essentially specifies a preorder 4ε on Tε(τ); the technical report
contains the details [24]. e 4ε e

′ essentially indicates that e is less flexible (e.g. more
deterministic) than e′. In this situation, the compiler is allowed to replace e′ with e (or
treat e as e′); thus 4 is a lot like subtypes but for expressions with the same effect. The
difference between flexible non-determinism and enumerable non-determinism, then, is
that 4 for flexible non-determinism is non-trivial (corresponding to the subset relation)
while 4 for enumerable non-determinism is simply equality of subsets.

Let us return to our effect system for exceptions. When we specified the lateral
composition structure, we did so with flexible non-determinism in mind. So we say that
e 4nd-exc(E) e

′ holds when the exceptional behavior of e is more deterministic than that
of e′ and otherwise they are identical. Using this notion of flexibility we can see that
convert ◦ ltor 4 merge and convert ◦ rtol 4 merge always hold. This shows why in
this effect system the compiler may choose any argument-evaluation order.

6 Applications

So far we have shown various ways of understanding what effects are and their seman-
tics. In this section we illustrate how this improved understanding can be applied to a
variety of stages in the language design and implementation process besides semantics.
We apply our framework to enable sound type generalization in the presence of effects
and to formalize parallelism in the presence of effects. Applications to optimization can
be found in the technical report [24].

6.1 Type Generalization

Type generalization is not always sound in the presence of effects. Consider the follow-
ing classic example:

r← newRef(nil);
writeRef(r, cons("blah", nil));
return head(readRef(r)) + 1

If we used type generalization, then we could give r the type ∀α.Ref(List(α)), which
would allow the above code to type check. However, the above code is unsound using
the standard semantics since it ends up treating a string as an integer.

Type generalization is not always unsound though. For example, the value restric-
tion [29] allows type generalization when no effects are present. Furthermore, there
are techniques for occasionally relaxing the value restriction even in the presence of
effects [3]. These identify expressions that can be generalized regardless of the effect
present, such as the following program expression:

{x← newRef("ignore"); return (λx.x)}

With our framework we can see that the semantic type of this expression is specifically
Tε(∀α.α→ α), where the polymorphism is already inside the effect, which is why type
generalization is sound regardless of the effect.

Our framework can be used to identify effects for which type generalization is sound
regardless of the value, an approach orthogonal to prior techniques. This question boils
down to whether the effect ε has a function in the semantic domain mapping inhabitants
of ∀α.Tε(τ), where the polymorphism is outside the effect, to inhabitants of Tε(∀α.τ),
where the polymorphism is inside the effect, satisfying additional equalities discusses in
the technical report [24]. Determining whether such a function exists can be challeng-
ing. However, in languages with common parametric polymorphism, there is a simple
class of effects for which type generalization is always sound.

Suppose an expression has just the (deterministic) exception effect. Repeated eval-
uations of that expression will repeatedly produce the same value or exception. Infor-
mally, the following two programs are equivalent when e has the exception effect:

{return 〈e, e〉} = {x← e; return 〈x, x〉}

This is not the case for effects such as update(S), and particularly not for the memory
allocation effect: evaluating newRef(nil) twice produces two distinct references.

This concept is similar to that of idempotent monads in the functional languages
community [11], but the term idempotent is overloaded and particularly idempotent
monad means something else in the category theory community [6], so instead we say
the exception effect preserves diagonals. The diagonal function ∆ : τ → τ × τ simply
duplicates a value: λx.〈x, x〉. A laterally compressive effect ε preserves diagonals if the
following two paths are equivalent:

Tε(τ)
Tε(τ)× Tε(τ)

Tε(τ × τ)...
...

.......∆
mergeε,ε

..

mapε(∆)

That is, making two copies of an effectful expression and then evaluating both copies
(top path) is equivalent to evaluating once and duplicating the value (bottom path).

In languages with common parametric polymorphism, type generalization is always
sound for expressions with an effect which preserves diagonals. The intuition is that,
if we evaluated the expression once for each type, the result would be the same for
each type since the effect preserves diagonals. Thus the value resulting from a single
evaluation does in fact belong to every type.

In fact, we can weaken our restriction by incorporating our concept of flexibility. A
laterally compressive effect ε laxly preserves diagonals if mapε(∆) 4ε mergeε,ε ◦∆,
meaning it is valid to replace a program which evaluates the same expression twice
with a program that only evaluates it once and then duplicates the value. For example,
the flexible non-determinism effect laxly preserves diagonals because evaluating a non-
deterministic expression once and then duplicating the value is more deterministic than
evaluating the same non-deterministic expression twice. Now we can state our type
generalization theorem using concepts from our framework.

Theorem 3. In a language with a common form of parametric polymorphism, type
generalization is always sound for expressions with a laterally compressive effect that
laxly preserves diagonals. [24]

Thus type generalization is always sound when the expression just might throw excep-
tions, might not terminate, is flexibly non-deterministic, only reads from the heap, or
even only writes to the heap.

6.2 Thread Parallelism

Parallelism is becoming exceedingly important in modern programming languages. As
such, it is also important to understand the semantics of parallelism. Here we identify
properties of effects for which steps of effectful computations in different threads can
be interleaved arbitrarily, a key prerequisite to parallelism.

There is already some research along this line, specifically commutative monads [8].
A commutative monad is a monad in which left-to-right evaluation (ltor) is equivalent
to right-to-left evaluation (rtol). This allows two lines of code to be reordered pro-
vided the value produced by the first line is not needed by the second line (i.e. they are
value-independent). Thus even within a thread value-independent computations can be
reordered arbitrarily, so computations in separate threads can be interleaved arbitrarily.

However, we have determined that commutativity is too strong a requirement; there
are many parallelizable effects which are not commutative. The key reason is that com-
mutativity makes no distinction between computations in the same thread and compu-
tations in separate threads. Consider an effect for logging (formalized in the technical
report [24]). It is important that logs in the same thread be printed in order; thus the
logging effect is not commutative. However, logs in separate threads can be interleaved
arbitrarily. This semantics does not correspond to either running thread 1 then thread 2
nor the other way around, so an effect can have a separate non-sequential semantics for
multiple threads. In order to parallelize separate threads the semantics must allow the
computations in these threads to be interleaved arbitrarily. Here we formalize properties
which guarantee this requirement.

For simplicity, assume we have only one effect ε represented by a monad (it is easy
to extend the properties below to a full effect system). Say we have two threads of lines
of code, denoted by lines ‖ lines ′, where each line has effect ε. Suppose we have a
merge operation pmerge formalizing execution of both threads. Our first property is
that pmerge must laxly preserve the join operation of the monad. This means that the
bottom path must be less flexible than the top path in the first diagram of Figure 5.

Requirement Enabled
Transformation

Tε(Tε(τ))× Tε(Tε(τ
′))

Tε(τ)× Tε(τ
′)

Tε(τ × τ ′)

Tε(Tε(τ)× Tε(τ
′)) Tε(Tε(τ × τ ′))

pmerge joinε

......................................
....................
.......

joinε × joinε
.

pmerge

...............................
.....

..

mapε(pmerge)

........
........
...............
............

< {`1; `2} ‖ {`′1; `′2}
Z⇒

(`1 ‖ `′1); (`2 ‖ `′2)

τ × Tε(τ
′)

Tε(τ)× Tε(τ
′)

Tε(τ × τ ′)
..............................

..............................
..............................

.................
............unitε × Tε(τ

′)
.

pmerge

..

λ〈x, e〉.mapε(λy.〈x, y〉)(e)

<

(skip ‖ `) Z⇒ `

Fig. 5. Necessary requirements for parallelizing effectful computations

This requirement essentially means two threads of sequences can be replaced with a
sequence of two threads. Intuitively, threads can be run together step by step.

Our other requirement is that we can discard a thread that essentially does nothing.
This is formalized by requiring the bottom path to be less flexible than the top path
in the second diagram of Figure 5. This must also hold should we swap left and right.
This requirement and its swapped version essentially allow us to remove empty code
running in parallel with other code. Note that a monad is commutative precisely when
the requirements in Figure 5 use equality rather than flexibility; thus we are applying
our new concept of flexibility to generalize commutative monads.

Theorem 4. If threads of sequential computations with effect ε are combined with a
merge operation which laxly preserves joins and disregards units (Figure 5), then the
computations in these threads can be interleaved arbitrarily as required by parallelism.

For example, we can easily show that left-to-right execution is valid for parallel threads:

(line ‖ line ′) =
{
line;
skip

}∥∥∥∥{skip;line ′

}
Z⇒ (line ‖ skip);

(skip ‖ line ′) Z⇒
{
line;
line ′

}

7 Conclusion

We have presented a framework for formalizing the denotational semantics of effects.
Not only does our framework generalize traditional monadic techniques, but it clas-
sifies precisely which effects systems can be formalized using traditional techniques.
Furthermore, our framework formalizes the semantics of many roles of effects which
have previously been disregarded for the most part. Our framework separates effect
systems into a nominal component, for naming effects, and a semantic component, for
giving denotational semantics to effects. This separation makes it easy to express prop-
erties of effect systems abstractly, and we have shown that the requirements of many
stages in language design and implementation can be stated in the abstract terminol-
ogy enabled by our framework. Thus, by improving the understanding of effects our
framework helps one formally reason about languages at a higher level.

References

1. J. Adámek, H. Herrlich, and G. E. Strecker. Abstract and Concrete Categories. Wiley-
Interscience, 1990.

2. N. Benton, J. Hughes, and E. Moggi. Monads and effects. In International Summer School
on Applied Semantics, 2000.

3. J. Garrigue. Relaxing the value restriction. In FLOPS, 2003.
4. R. Godement. Topologie Algébrique et Théorie des Faisceaux. Hermann, 1958.
5. M. Hyland, G. Plotkin, and J. Power. Combining effects: Sum and tensor. Theoretical

Computer Science, 357(1):70–99, 2006.
6. P. T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium, volume 1. Oxford

University Press, 2002.
7. M. P. Jones and L. Duponcheel. Composing monads. Technical report, Yale University, New

Haven, CT, USA, Dec. 1993.
8. M. P. Jones and P. Hudak. Implicit and explicit parallel programming in Haskell. Technical

report, Yale University, New Haven, CT, USA, Aug. 1993.
9. S. P. Jones and P. Wadler. Imperative functional programming. In POPL, 1993.

10. R. B. Kieburtz. Taming effects with monadic typing. In ICFP, 1998.
11. D. J. King and P. Wadler. Combining monads. In ETAPS, 1992.
12. T. Leinster. Higher Operads, Higher Categories. Cambridge University Press, 2004.
13. S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters. In POPL,

1995.
14. J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In POPL, 1988.
15. C. Lüth and N. Ghani. Composing monads using coproducts. ACM SIGPLAN Notices,

37(9):133–144, 2002.
16. D. Marino and T. Millstein. A generic type-and-effect system. In TLDI, 2009.
17. E. Moggi. Computational lambda-calculus and monads. Technical Report ECS-LFCS-90-

113, Edinburgh University, 1988.
18. E. Moggi. Notions of computation and monads. Information and Computation, 93(1):55–92,

1991.
19. F. Nielson and H. R. Nielson. Type and effect systems. In ACM Computing Surveys, 1999.
20. J. C. Reynolds. Using category theory to design implicit conversions and generic operators.

LNCS, 94:211–258, 1980.
21. R. Street. Two constructions on lax functors. Cahiers de Topologie et Géométrie

Différentielle Catégoriques, 13(3):217–264, 1972.
22. J.-P. Talpin and P. Jouvelot. Polymorphic type, region and effect inference. Journal of

Functional Programming, 2:245–271, 1992.
23. J.-P. Talpin and P. Jouvelot. The type and effect discipline. Information and Computation,

111(2):245–296, 1994.
24. R. Tate, D. Leijen, and S. Lerner. A flexible semantic framework for effects. Technical

report, University of California, San Diego and Microsoft Research, Redmond, Available at
http://cseweb.ucsd.edu/~rtate/effectstr.pdf, 2010.

25. A. P. Tolmach. Optimizing ML using a hierarchy of monadic types. In Types in Compilation,
1998.

26. P. Wadler. Comprehending monads. In LISP and Functional Programming, 1990.
27. P. Wadler. The essence of functional programming. In POPL, 1992.
28. P. Wadler and P. Thiemann. The marriage of effects and monads. Transactions on Compu-

tational Logic, 4(1):1–32, 2003.
29. A. K. Wright. Simple imperative polymorphism. Lisp and Symbolic Computation, 8(4):343–

355, 1995.

