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Abstract

Isogenies of elliptic curves over finite fields have been well-studied, in
part because there are several cryptographic applications. Using Vélu’s
formula, isogenies can be constructed explicitly given their kernel. Vélu’s
formula applies to elliptic curves given by a Weierstrass equation. In this
paper we show how to similarly construct isogenies on Edwards curves and
Huff curves. Edwards and Huff curves are new normal forms for elliptic
curves, different than the traditional Weierstrass form.

1 Introduction

Isogenies are the structure preserving mappings between elliptic curves. As such,
isogenies are an important mathematical object. Isogenies are also present in
many different areas of elliptic curve cryptography. They have been used to
analyze the complexity of the elliptic curve discrete logarithm [20], are used
in the SEA point counting algorithm [13],[17], [29] and have been proposed as
a mathematical primitive in the construction of cryptographic one-way func-
tions such as hashes [8] and pseudo-random number generators [9]. Isogenies
also play key roles in determining the endomorphism ring of an elliptic curve
[4],[23], computing modular and Hilbert class polynomials [7], [31], and in the
construction of new public key cryptosystems [26],[30],[32].

Traditionally, elliptic curves have been specified by Weierstrass equations.
However, this is merely one possible way to describe an elliptic curve. There are
alternate models of elliptic curves which have been proposed for use in cryptog-
raphy. Edwards curves, and to a lesser extent Huff curves, have been proposed
as such alternative models. Expressing an elliptic curve with these models can
lead to more efficient and secure arithmetic. The more efficient arithmetic comes
from simpler point addition formulas which require less expensive operations like
multiplication and division. These curves can also lead to improved security be-
cause the point addition formulas can be implemented with fewer special cases,
reducing information leakage through side channels.
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In an abstract sense, isogenies of elliptic curves are no different if the curve
is specified with a Weierstrass equation, Edwards or Huff form. After all, these
forms are all birationally equivalent (with the caveat that this may be over
some extension of the field of definition.) However, in a computational sense,
the model for the curve is important. We have explicit formulas for isogenies,
derived from Vélu’s formulas [33]. However, these formulas are tied to the Weier-
strass equation of the curve. This paper presents explicit formulas for isogenies
for Edwards and Huff curves. This is convenient as it allows one to compute
isogenies directly on these alternate models, without converting back to Weier-
strass form. However, this is also interesting from a computational perspective.
Vélu’s formulas are based on point addition formulas, and as these alternate
models have more efficient addition formulas one may ask if the isogeny formu-
las for these models are also more efficient. For previous work on computing
isogenies efficiently for Weierstrass curves see [5], [6], [10]. The only work on
isogenies directly on Edwards curves we found in the literature is a recent ar-
ticle by Ahmadi and Granger where they find the number of isogeny classes of
Edwards curve over a finite field [1].

This paper is organized as follows. In section 2 we review basic facts about
elliptic curves, including isogenies and Vélu’s formula. Section 3 covers Edwards
curves and Huff curves. In sections 4 and 5, we present the analogue of Vélu’s
formula for Edwards and Huff curves respectively. We take a brief look at the
computational cost of computing our formulas in section 6. Finally, we conclude
in section 7 with directions for future study.

2 Elliptic Curves

2.1 Elliptic Curves

For the remainder of this paper, let K be a field with characteristic 6= 2. An
elliptic curve E is a smooth complete projective curve of genus one with a given
rational point. The curve can be written in Weierstrass form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with the ai ∈ K. If the characteristic of K is also not 3, then E can also be
written in short Weierstrass form,

E : y2 = x3 + ax+ b.

For a curve in Weierstrass form, the given rational point is the point at infinity,
denoted ∞. The condition that E be smooth means that there is no point of
E(K) where the partial derivatives simultaneously vanish.

The points of E with coordinates in K can be made into an abelian group
under a suitable addition law. The addition law is given by rational functions.
The identity element is the point ∞, and the inverse of a point (x, y) 6= ∞ is
(x,−y − a1x− a3).
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2.2 Isomorphisms and isogenies

We recall a few basic facts about isogenies. For a more complete reference, see
[28] or [34]. An isogeny is a nonconstant rational homomorphism (defined over
K) from the curve E to another elliptic curve. Clearly if φ is an isogeny, then it
must preserve the group identity. Conversely, it is known that any nonconstant
rational map φ from E to another elliptic curve which preserves the group
identity must be an isogeny. We will need this fact later on in sections 4 and
5. If the kernel of a (separable) isogeny φ is finite and has order l, then φ is
known as an l-isogeny, and l is the degree of the isogeny. Any l-isogeny with
l composite can be decomposed into a composition of prime degree isogenies,
hence for the purposes of this paper we will assume that l is prime.

Two elliptic curves are isomorphic if and only if they have the same j-
invariant. The j-invariant of the curve y2 = x3 + ax+ b is

j = 1728
4a3

4a3 + 27b2
.

If two elliptic curves in Weierstrass form are isomorphic, there is a change of
variables from one curve to the other of the form

(x, y)→ (u2x+ r, u3y + u2sx+ t).

2.3 Vélu’s formulae

For simplicity, we’ll assume the characteristic of K 6= 2, 3. Let E : y2 = x3 +
ax+b be an elliptic curve. In [33], Vélu showed how to find an isogeny explicitly,
given its kernel. Let ` be an odd prime. Let F be a subgroup of E of order `,
which we desire to be the kernel of our isogeny.

We define φ in the following way. For P = (xP , yP ) 6∈ F , let

φ(P ) =

xP +
∑

Q∈F−{∞}

(xP+Q − xQ), yP +
∑

Q∈F−{∞}

(yP+Q − yQ)

 .

The points of F cause some difficulty, as x∞ and y∞ don’t make sense. To get
around this, we could use projective coordinates. We omit the details, because
the basic idea is clear. For any point P ∈ F , we set φ(P ) = ∞. It is easy to
see that φ is invariant under translation by elements of F , and that the kernel
of φ is F . Using the group law on the curve, we also see that φ can be written
in terms of rational functions.

To compute φ, first remove the point ∞ from F . Notice that if a point P
is in F , then necessarily its inverse is also in F . Partition F into two sets F+

and F− such that F = F+ ∪ F−, and P ∈ F+ iff −P ∈ F−. For each point
P ∈ F+, define the following quantities

gxP = 3x2P + a, gyP = −2yP ,

vP = 2gxP , uP = (gyP )2,
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v =
∑
P∈F+

vP , w =
∑
P∈F+

uP + xP vP .

Then the `-isogeny φ : E → E′ is given by

φ(x, y)→

(
x+

∑
P∈F+

vP
x− xP

− uP
(x− xP )2

, y−
∑
P∈F+

2uP y

(x− xP )3
+vP

y − yP − gxP g
y
P

(x− xP )2

)
.

The equation for the image curve is E′ : y2 = x3 + (a− 5v)x+ (b− 7w).
D. Kohel also showed how the isogeny ψ can be written in terms of its kernel

polynomial [23]. The kernel polynomial is defined as

D(x) =
∏

Q∈F−{∞}

(x− xQ) = x`−1 − σx`−2 + σ2x
`−3 − σ3x`−4 + . . . .

Then

φ(x, y) =

(
N(x)

D(x)
, y

(
N(x)

D(x)

)′)
where N(x) is related to D(x) by

N(x)

D(x)
= `x− σ − (3x2 + a)

D′(x)

D(x)
− 2(x3 + ax+ b)

(
D′(x)

D(x)

)′
.

The polynomial N(x) has degree `. We can also determine the equation of the
image E′. Set v = a(` − 1) + 3(σ2 − 2σ2) and w = 3aσ + 2b(` − 1) + 5(σ3 −
3σσ2 + 3σ3). Then the isogenous curve is E′ : y2 = x3 + (a− 5v)x+ (b− 7w).

More generally, neither Vélu’s paper nor Kohel’s requires that l be odd
or prime, nor E be given by a simplified Weierstrass equation, although the
equations are easier in this case.

3 Edwards and Huff curves

3.1 Edwards curves

In 2007, H. Edwards introduced a new model for elliptic curves [12]. After a
simple change of variables, these Edwards curves can be written in the form

Ed : x2 + y2 = 1 + dx2y2,

with d 6= 1. Twisted Edwards curves are a generalization of Edwards curves,
proposed in [2]. These twisted curves are given by the equation

Ea,d : ax2 + y2 = 1 + dx2y2,

where a and d 6= 1 are distinct, non-zero elements of K . Edwards curves are
simply twisted Edwards curves with a = 1. The addition law for points on Ea,d
is given by:

(x1, y1) + (x2, y2) =

(
x1y2 + x2y1

1 + dx1x2y1y2
,
y1y2 − ax1x2
1− dx1x2y1y2

)
.
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If a is a square and d is not a square in K, then the addition law is complete.
This means that the addition formula is valid for all points, with no exceptions.
The addition law for Weierstrass curves is not complete, which is one of the ad-
vantages of Edwards curves. A complete addition law provides some resistance
to side-channel attacks. The addition law can also be implemented efficiently,
which is important for cryptography [3].

The additive identity on Ea,d is the point (0, 1), and the inverse of the point
(x, y) is (−x, y). Note that the curve Ed always has a subgroup of order 4,
namely {(0, 1), (0,−1), (1, 0), and (−1, 0)}.

We can perform a birational transformation from Ea,d to change its equation
to a curve in Weierstrass form. The map

φ1 : (x, y)→
(

(a− d)
1 + y

1− y
, (a− d)

2(1 + y)

x(1− y)

)
(1)

sends the curve Ea,d to the curve

E : y2 = x3 + 2(a+ d)x2 + (a− d)2x.

Two points of order 4 on E are (a − d,±2
√
a(a − d)), while (0, 0) has order 2.

The inverse transformation is the map

φ−11 : (x, y)→
(

2x

y
,
x− (a− d)

x+ (a− d)

)
.

3.2 Huff’s curves

Joye, Tibouchi, and Vergnaud re-introduced the Huff model for elliptic curves
in [21]. The model was used by Huff in 1948 to solve a certain diophantine
equation [19]. The authors of [21] showed how the addition law makes Huff
curves resistant to side-channel attacks, which is important in cryptographic
settings. They also showed how to compute pairings on Huff curves. The
equation for a curve given in Huff’s model is

ax(y2 − 1) = by(x2 − 1).

Wu and Feng in [16] generalized this form to curves given by

Ha,b : x(ay2 − 1) = y(bx2 − 1),

with ab(a − b) 6= 0, which includes the previous model as a special case. The
inverse of a point P = (x, y) is −P = (−x,−y), with the additive identity being
(0, 0). There are three points at infinity, and in projective coordinates these are
(1 : 0 : 0), (0 : 1 : 0), and (a : b : 0). These points at infinity are also
the three points of order two on the curve. Addition (for points which are not
these points at infinity) is given by

(x1, y1) + (x2, y2) =

(
(x1 + x2)(1 + ay1y2)

(1 + bx1x2)(1− ay1y2)
,

(y1 + y2)(1 + bx1x2)

(1− bx1x2)(1 + ay1y2)

)
.
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There is also a simple birational transformation from a curve in Huff form to a
curve in Weierstrass form [19]. The map is

(x, y)→
(
bx− ay
y − x

,
b− a
y − x

)
with the equation of the curve in Weierstrass form y2 = x3 + (a + b)x2 + abx.
The inverse transformation is given by

(x, y)→
(
x+ a

y
,
x+ b

y

)
.

4 Isogenies on Edwards curves

4.1 Isomorphisms

We begin by examining isomorphisms between Edwards curves. For some u 6= 0,
consider the map Iu(x, y) = (x/u, y) from the twisted Edwards curve Ea,d. The
image lies on the curve Eu2a,u2d, and it is easy to see this is an isomorphism.
We also consider the map I(x, y) = (x, 1/y), which takes a point on Ea,d to a
point on Ed,a. We now look for isomorphisms beyond these obvious ones.

Suppose Ψ is an isomorphism from Ed to some other Edwards curve Ed̂. Let
φ be the birational transformation from the curve Ed to a Weierstrass curve
E : y2 = x3 + 2(1 + d)x2 + (1 − d)2x and similarly let φ̂ be the birational
transformation from Ed̂ to a Weierstrass curve Ê. Then it follows that E and Ê
are isomorphic. From section 2.2, it is easy to check that the only isomorphisms
between curves of the form y2 = x3 +Ax2 +Bx have as a map

I ′(x, y) = (u2x+ r, u3y),

for some u 6= 0. The easiest case is when r = 0. Composing the maps I ′ ◦ φ we
have a map from Ed to y2 = x3 + 2(1 + d)u2x2 + (1− d)2u4x. This needs to be

the same as Ê : y2 = x3 + 2(1 + d̂)x2 + (1 − d̂)2x, from which we see that we
require

(1 + d)u2 = 1 + d̂,

(1− d)2u4 = (1− d̂)2.

Solving for d̂ in the first equation, and substituting this into the second equation
yields that u = ±1, or u2 = 1/d. When u = ±1 we get the identity or the

negation map and d̂ = d. When u2 = 1/d, then d̂ = 1/d and the isomorphism
is I1/

√
d : (x, y) → (±

√
dx, 1/y) which maps Ed to E1/d. Note that we define

I1/
√
d(±1, 0) = (±1, 0).

In the case r 6= 0, then it can be checked that we must have r2 + 2(1 + d)r+
(1− d)2 = 0, so r = −1− d±

√
d. We then have the equations

2(1 + d̂) = (−(d+ 1)± 6
√
d)u2,
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(1− d̂)2 = (8d∓ 4(d+ 1)
√
d)u4.

This system can be solved for u and d̂, but is more complicated than the above
case with r = 0. The solution shows that there are other non-trivial isomor-
phisms. Composing the above maps, it turns out these isomorphisms are of the
form

(x, y)→

(
x

(γ + r)y + γ − r
−uγ(y + 1)

,
(γ + r − 1 + d̂)y + γ − r + 1− d̂
(γ + r + 1− d̂)y + γ − r − 1 + d̂

)
,

where γ = u2(1− d).
We note that [1] also includes discusses explicit Edwards isomorphisms. The

number of Edwards curve isomorphism classes over finite fields has been studied
in [14], [15], [25].

4.2 Edwards 2-isogenies

We saw in section 3.1 there are birational maps from Edwards curves to Weier-
strass curves. An intuitive method to find explicit isogenies for Edwards curves
would be to use these maps, combined with Vélu’s formula. We show how to
do this for 2-isogenies.

Let φ1 be the transformation from the Edwards curve Ed to a Weierstrass
curve E1 given in (1). Let φ2 be an l-isogeny from E1 to the curve E2, given
by Vélu’s formula. The image under an isogeny computed by Vélu’s formula is
not likely to be in the form

y2 = x3 + 2(1 + d̂)x2 + (1− d̂)2x,

for some d̂, so we cannot use φ−11 to map this image curve to an Edwards curve.
The birational transformation which does work is described in [3]. Let P be a
point of order 2 on the image curve E′. Write P = (r2, s2). Then the change
of variables (x, y) → (x − r2, y2) maps P to (0, 0), and the new curve has its
equation of the form y2 = x3 + ax2 + bx. Let Q = (r1, s1) be a point of order

4 on this curve, and let d̂ = 1 − 4r31/s
2
1. Then in fact, we actually have that

a = 2 1+d̂
1−d̂

r1 and b = r21. The map

φ3 : (x, y)→

(
2

√
r1

1− d̂
x

y
,
x− r1
x+ r1

)

takes us to the Edwards curve

x2 + y2 = 1 + d̂x2y2.

If we compose the three maps φ1, φ2, and φ3, we get an explicit l-isogeny ψ from
Ed to Ed′ .
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Theorem 1 Let Ed be an Edwards curve, γ =
√

1− d, and i =
√
−1. Then

there are 2-isogenies from the curve Ed given by the maps ψ1, ψ2, and ψ3 below.
The first is

ψ1(x, y)→
(

(γ ∓ 1)xy,
(γ ∓ 1)y2 ± 1

(γ ± 1)y2 ∓ 1

)
.

The image of ψ1 is the curve Ed̂ : x2 + y2 = 1 + d′x2y2, with d̂ =
(
γ±1
γ∓1

)2
.

The second is

ψ2(x, y)→

(
(iγ ±

√
d)
x

y
,−
√
dy2 ∓ iγ −

√
d√

dy2 ± iγ −
√
d

)
.

The image of ψ2 is the curve Ed̂, with d̂ =
(
iγ∓
√
d

iγ±
√
d

)2
.

Finally, we have

ψ3(x, y)→
(√
−1(
√
d∓ 1)

x

y

1− dy2

1− d
,
d∓
√
d

d±
√
d

√
dy2 ± 1√
dy2 ∓ 1

)
,

with image curve Ed̂, where d̂ =
(√

d±1√
d∓1

)2
.

Proof For l = 2, the kernel of a 2-isogeny is the set {(0, 1), (0,−1)}. We prove
the theorem by explicitly finding the maps φ1, φ2, and φ3 as described above.
The map φ1 : Ed → E1 was already given in (1). Using Vélu’s formula, we find
a 2-isogeny φ2 : E1 → E2

φ2(x, y)→
(
x2 + (1− d)2

x
, y
x2 − (1− d)2

x2

)
.

The equation for E2 is the curve

E2 : y2 = x3 + 2(1 + d)x2 − 4(1− d)2x− 8(1 + d)(1− d)2.

The points (±2(1 − d), 0), and (−2(1 + d), 0) each have order 2. For the first
map we use the linear transformation (x, y)→ (x− 2(1− d), y). This maps the
curve E2 to the curve

E3 : y2 = x3 − 4(d− 2)x2 + 16(1− d)x.

As a = −4(d − 2) = 2 1+d̂
1−d̂

r1 and b = 16(1 − d) = r21, we easily find that the

x-coordinate of a point of order 4 is r1 = ±4γ, and d̂ =
(
γ±1
γ∓1

)2
. Then the map

φ3 is as explained above the statement of Theorem 1, with these values of r1 and
d̂. Composing the maps and simplifying the equations leads to the formula for
ψ1 shown in the theorem. We omit the algebraic details. The other 2-isogenies
are similarly obtained by using the other two points of order 2, (−2(1 − d), 0)
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and (−2(1 + d), 0). 2

Ahmadi and Granger independently obtained equivalent formulas for 2-
isogenies [1]. We remark that the 2-isogenies in Theorem 1 may not be defined
over the same field as Ed is. This is the case when d, d − 1, or 1 − d is not a
square in K. A simple argument shows that we cannot do any better.

Let ψ be a 2-isogeny on Ed. Then necessarily, we must have ψ(0,±1) =
(0, 1) and ψ(±1, 0) = (0,−1). It is easy to use the addition law to derive
the identities (x, y) + (0,−1) = (−x,−y), and (x, y) + (1, 0) = (y,−x). As
ψ is a homomorphism, this imposes the following conditions on ψ. Denoting
ψ(x, y) = (X,Y ), then

ψ(−x,−y) = (X,Y ),

ψ(y,−x) = (−X,−Y ),

ψ(−x, y) = (−X,Y ).

(2)

As functions on Ed, we can write (X,Y ) = (xR(y), S(y)) for some rational
functions R and S (see section 4 of [18] or [22]). Using (2), we conclude that
R(0) = 0, S(0) = −1, S(±1) = 1, and that R is an odd function, while S is
even. We must also have S(−x) = −S(y) for points (x, y) on Ed. As we are
looking for the simplest possible 2-isogenies, it can be checked that no rational
functions with smaller degrees than those in Theorem 1 will work. The simplest

of these rational functions is of the form ψ(x, y) =
(
cxy, ay

2+1
my2+n

)
. Imposing the

conditions on S(0) and S(±1), then this becomes ψ(x, y) =
(
cxy, ay2+1

(a+2)y2−1

)
.

Using S(−x) = −S(y), we can deduce a2 + 2a + d = 0, or a = −1 ±
√

1− d.

Some further algebra on the equation X2 + Y 2 − 1 − d̂X2Y 2 = 0 shows that
we must have c = ±a = ±(−1 ±

√
1− d). Thus, we cannot define ψ over the

ground field, unless 1 − d is a square. A similar analysis can be done for the
other isogenies in Theorem 1.

4.3 Edwards curve isogenies

For ` larger than 2, the approach in the last subsection of mapping to and from
a Weierstrass curve does not seem feasible. In this section we give a formula for
isogenies on Edwards curves analogous to Vélu’s formulas in section 2. Let F
be the kernel of the desired isogeny. The motivating idea is that we are seeking
to find rational functions which are invariant under translation by the points in
F , and map the point (0, 1) to itself.

Theorem 2 Suppose F is a subgroup of the Edwards curve Ed with odd order
` = 2s+ 1, and points

F = {(0, 1), (±α1, β1), . . . , (±αs, βs)}.
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Define

ψ(P ) =

∏
Q∈F

xP+Q

yQ
,
∏
Q∈F

yP+Q

yQ

 .

Then ψ is an `-isogeny, with kernel F , from the curve Ed to the curve Ed̂ where

d̂ = B8d` and B =
∏s
i=1 βi. The coordinate maps are given by:

ψ(x, y) =

(
x

B2

s∏
i=1

β2
i x

2 − α2
i y

2

1− d2α2
iβ

2
i x

2y2
,
y

B2

s∏
i=1

β2
i y

2 − α2
ix

2

1− d2α2
iβ

2
i x

2y2

)
. (3)

Proof It is easy to see that ψ(0, 1) = (0, 1), and that ψ is invariant under
translation by elements of F . So then F ⊆ ker(ψ). Conversely, if P ∈ ker(ψ),
then xP+Q = 0 for some Q ∈ F . This implies that P = ±Q ∈ F , so that
F = ker(ψ). Furthermore, it is straightforward to derive the coordinate maps
given by equation (3) from the Edwards curve addition law.

We now derive the formula for d̂ on the image curve:

X2 + Y 2 = 1 + d̂X2Y 2,

where X(P ) and Y (P ) are the coordinate maps of φ. In order to do this, we
look at the function

G(x, y) = X(x, y)2 + Y (x, y)2 − 1− dX(x, y)2Y (x, y)2,

and solve for the value of d̂ that makes G identically zero.
It is easy to see that the coordinate maps X and Y preserve the points

(0, 1) and (0,−1). Furthermore, these two points are the only points on the
domain curve with the x-coordinate equal to 0. Likewise, the only points on
the codomain curve with X = 0 are (0,±1). Hence G(x, y) has two zeros when
x = 0, specifically y = ±1. We can explicitly calculate the partial derivatives of
the codomain curve with respect to x and y at the points (0, 1) and (0,−1). This
shows that neither of these points are singular, and hence G has only simple
zeros at these points. Thus, the zeros of G(x, y) are also simple at the points
(0, 1) and (0,−1).

Now, we explicitly examine the zeros of G(x, y) at x = 0 by looking at this
function as a power series about x = 0. Note that y2 can be written as a rational
function in terms of x, and the square of the coordinate maps contain only even
powers of y. Hence the square of these maps can be written entirely in terms of
x. Specifically, from the Edwards curve equation we have y2 = (1−x2)/(1−dx2).
Expanding as power series, we see

X(x, y) =
x

B2

s∏
i=1

(−α2
i +O(x2)),

Y (x, y) =
y

B2

s∏
i=1

(β2
i + (dβ4

i − 1)x2 +O(x4)).
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Then with A =
∏s
i=1 αi,

X(x)2 =
A4

B4
x2 +O(x4),

Y (x)2 =
1− x2

1− dx2
s∏
i=1

(1 +
1

β2
i

(dβ4
i − 1)x2 +O(x4))2,

Y (x)2 = (1 + (d− 1)x2 +O(x4))

s∏
i=1

(1 +
2

β2
i

(dβ4
i − 1)x2 +O(x4)),

Y (x)2 = 1 +
(
d− 1 + 2

s∑
i=1

(dβ2
i −

1

β2
i

)
)
x2 +O(x4).

If we substitute these into the equation of the image of ψ, we find

G(x, y) = X(x)2 + Y (x)2 − 1− d̂X(x)2Y (x)2,

=
A4

B4
x2 + (d− 1 + 2

s∑
i=1

(dβ2
i −

1

β2
i

))x2 − d̂A
4

B4
x2 +O(x4),

=

(
A4

B4
− d̂A

4

B4
+ d− 1 + 2

s∑
i=1

(dβ2
i −

1

β2
i

)

)
x2 +O(x4).

Suppose that the coefficient of x2, in the above expansion is zero, then G has
a zero of order greater than 2 at x = 0. However, we showed above that that G
has a zero of order 2 at x = 0. So we conclude that either G is identically zero.
Setting the coefficient of x2 to zero and solving this for d̂ yields

d̂ = 1 +
B4

A4

(
d− 1 + 2

s∑
i=1

(dβ2
i −

1

β2
i

)

)
.

Thus with this choice for d̂, the function G is identically zero, and we conclude
that the codomain of this map is another Edwards curve. We have a rational
map from an Edwards curve to another which preserves the identity point, which
is necessarily an isogeny by Proposition 1.

By looking at the image of a specific point on the domain curve, we can
further simplify the formula for d̂, the coefficient of the codomain curve. Par-

ticularly, we choose the point P =
(

1
γ ,

i
γ

)
, where i2 = −1 and γ4 = d. This

point may not be defined over K, but rather over an extension of K.
First, we evaluate the value on the inside of the product on the x-coordinate

map at our point P :
1

γ2

(
α2
i + β2

i

1 + dα2
iβ

2
i

)
.

As (αi, βi) is a point on the domain curve x2+y2 = 1+dx2y2 this simplifies to 1
γ2 .

Hence, the X-coordinate of the image point is 1
B2γ` . A similar calculation for the

11



Y -coordinate shows that Y (P ) is (−1)si
B2γ` . Then, because we know

(
1

B2γ` ,
(−1)si
B2γ`

)
is on the curve X2 + Y 2 = 1 + d̂X2Y 2. We are able to calculate that d̂ = B8d`.
2

We note the formula for isogenies given in Theorem 1 also works for twisted
Edwards curves Ea,d. This is easiest to see by noting that the map (x, y) →
(x/
√
a, y) maps Ea,d to E1,d/a. We can then apply Theorem 2, which maps to

the curve E1,B8(d/a)` . Mapping back to the twisted Edwards form by sending

(X,Y ) → (
√
a`X,Y ) gives an isogeny from Ea,d to Ea`,B8d` This argument

establishes the following corollary.

Corollary 1 Suppose F is a subgroup of the twisted Edwards curve Ea,d with
odd order ` = 2s+ 1, and points

F = {(0, 1), (±α1, β1), . . . , (±αs, βs)}.

Define

ψ(P ) =

∏
Q∈F

xP+Q

yQ
,
∏
Q∈F

yP+Q

yQ

 .

Then ψ is an l-isogeny, with kernel F , from the curve Ea,d to the curve Eâ,d̂
where â = a`, d̂ = B8d` and B =

∏s
i=1 βi.

4.4 Another approach

We now state and prove another formula for Edwards curve isogenies. Let
` = 2s+ 1 be the degree of the isogeny. We can assume the isogeny ψ satisfies
ψ(1, 0) = (1, 0). If not simply compose with the negation map.

Theorem 3 Let Ed be an Edwards curve with subgroup F = {(0, 1), (±αi, βi) :
i = 1 . . . s}. Then an isogeny with kernel F is given by

ψ(x, y)→

(
x

∏s
i=1 y

2 − β2
i

f(y)
, y

∏s
i=1 y

2 − α2
i

g(y)

)
,

where the polynomials f(y) and g(y) are the unique even polynomials of degree
2s satisfying:

f(0) = (−1)s
s∏
i=1

β2
i f(αj) = βj

s∏
i=1

(α2
j − β2

i ),

g(1) =

s∏
i=1

(1− α2
i ), g(βj) = βj

s∏
i=1

(β2
j − α2

i ).

(4)

12



This isogeny is the same as the isogeny given by Theorem 2. The image is
the curve EB8dl . We include Theorem 3, as it shows how to compute an isogeny
(almost) entirely in terms of one variable.

Proof Let ψ : Ed → Ed̂ be the isogeny described above. If we write ψ(x, y) =
(X(x, y), Y (x, y)), then both X and Y are rational functions of x and y. Hitt,
Moloney, and McGuire have shown (see [18],[22]) that over Ed, we can uniquely
write X = p(y) + xq(y) and Y = r(y) + xs(y), for some rational functions
p(y), q(y), r(y), and s(y). We first show that p(y) = 0 and s(y) = 0.

As ψ is a homomorphism, then it follows that for any (x, y) on Ed

ψ(−x, y) =
(
p(y)− xq(y), r(y)− xs(y)

)
= ψ

(
− (x, y)

)
= −ψ(x, y)

=
(
− p(y)− xq(y), r(y) + xs(y)

)
.

So p(y) − xq(y) = −p(y) − xq(y), and also r(y) − xs(y) = r(y) + xs(y), from
which we easily see that p(y) = 0 and s(y) = 0.

Now we use the fact that (±αi, βi) is in the kernel of ψ, so

(0, 1) = ψ(±αi, βi) = (±αiq(βi), r(βi)).

The only other point on Ed̂ with x-coordinate 0 is (0,−1). Since (±αi, βi) +
(0,−1) = (∓αi,−βi), then we have ψ(∓αi,−βi) = ψ(0,−1) = (0,−1). In
summary, the only points mapping to (0, 1) are the points (0, 1) and (±αi, βi),
and the only points mapping to (0,−1) are (0,−1) and (±αi,−βi). This means
that

q(y) =

∏s
i=1(y2 − β2

i )

f(y)
,

for some polynomial f(y).
Similarly, using the identities(x, y) + (1, 0) = (y,−x), and (x, y) + (−1, 0) =

(−y, x), we find that ψ(±βi, αi) = (±1, 0) and ψ(±βi,−αi) = (∓1, 0). Trivially
we also have ψ(±1, 0) = (1, 0). We likewise conclude that

r(y) = y

∏s
i=1(y2 − α2

i )

g(y)
,

for some polynomial g(y).
Evaluating at the points in the kernel, we come up with the equations in (4).

If f and g are of degree 2s, then they are uniquely determined and can be found
by the Lagrange polynomial interpolation formula. It is easy to see that f and
g are even. Write ψ(x, y) = (X,Y ), so then ψ(x,−y) = (X,−Y ). Comparing
both sides of this equation we find f(−y) = f(y) and g(−y) = g(y) for all y, so
both f and g are even functions.

13



The final point to check is that f and g cannot have degree more than 2s.
Suppose that the degree of g were more than 2s. Then there would exist some
ỹ ∈ (K), ỹ 6= 1, βi such that

g(ỹ)− ỹ
s∏
j=1

(ỹ2 − α2
i ) = 0.

Equivalently, the y-coordinate of ψ(x, ỹ) is equal to 1. Then let x̃ =
√

1−ỹ2
1−dŷ2 ∈

K. It follows that (x̃, ỹ) is a point on Ed, and that since ỹ 6= 1, βi then x̃ 6= 0, αi.
Thus ψ(x̃, ỹ) = (γ, 1) on Ed̂, for some γ. But the only point on an Edwards
curve with y-coordinate 1 is (0, 1). This is a contradiction as we have just
found another point in the kernel. So the degree of g is 2s. Likewise, the same
argument applied to f and the points {(1, 0), (−βi,−αi)} being the only points
which map to (1, 0) show the degree of f is 2s, and finishes the proof. 2

4.5 The kernel polynomial

D. Kohel, in his thesis showed how the kernel polynomial of an isogeny can also
be used to explicitly write down the isogeny [23]. This was seen in the section
on Vélu’s formula. We now look at the kernel polynomial for Edwards curves. If
the kernel is {(0, 1), (±α1, β1), . . . , (±αs, βs)}, then one kernel polynomial could
be

g(x) =

s∏
i=1

(x2 − α2
i ),

which has as roots the ±αi. Alternatively we could take

h(y) =

s∏
i=1

(y2 − β2
i ).

By Theorem 2, we can write the isogeny as ψ(x, y) = (X,Y ) with

X =
x

B2

s∏
i=1

x2 − α2
i

1− dα2
ix

2
or X =

x

B2

s∏
i=1

y2 − β2
i

dβ2
i y

2 − 1
,

Y =
y

B2

s∏
i=1

x2 − β2
i

dβ2
i x

2 − 1
or Y =

y

B2

s∏
i=1

y2 − α2
i

1− dα2
i y

2
.

Note that we can compute X solely in terms of x (and not y), and a similar
statement for Y . Writing these in terms of the kernel polynomials, we see

X =
g(1/
√
d)xg(x)

g(1)x2sg(1/
√
dx)

=
xh(y)

h(0)(dy2)sh(1/
√
dy)

,
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Y =
yh(x)

h(0)(dx2)sh(1/
√
dx)

=
g(1/
√
d)yg(y)

g(1)y2sg(1/
√
dy)

.

The codomain is d̂ = d2s+1
∏s
i=1 β

8
i = d2s+1h(0)4 = dg(1)2/g(1/

√
d)2. We

note that if we have an algorithm to evaluate g (or h) efficiently, then we see
we can efficiently compute the isogeny.

5 Isogenies on Huff curves

5.1 Isomorphisms

Suppose Ψ is an isomorphism from Ha,b to some other Huff curve Hâ,b̂. Let φ
be the birational transformation from the curve Ha,b to a Weierstrass curve E :

y2 = x3+(a+b)x2+abx and similarly let φ̂ be the birational transformation from
Hâ,b̂ to the Weierstrass curve Ê. Then it follows that E and Ê are isomorphic.

The only isomorphisms between curves of the form y2 = x3 + Ax2 + Bx have
as a map

I ′(x, y) = (u2x+ r, u3y),

for some u 6= 0. When r = 0, we can compose the maps I ′ ◦ φ to get a map
from Ha,b to y2 = x3 + (a+ b)u2x2 + abu4x. We see that â = u2a and b̂ = u2b.
An easy calculation shows

(φ̂−1 ◦ I ′ ◦ φ)(x, y) = Iu(x, y) =
(x
u
,
y

u

)
.

When r 6= 0, we require the isomorphism I ′ to have a codomain curve of
the form y2 = x3 +Ax2 +Bx. It is easy to check that this only happens when
r = −a or r = −b. When r = −a, the codomain curve is y2 = x3 + (b −
2a)u2x2 + a(a− b)u4x, from which we see we that â = −au2 and b̂ = (b− a)u2.

The composition of these maps is the isomorphism (x, y) →
(
bx−ay
u(b−a) ,

y
u

)
from

Ha,b to H−au2,(b−a)u2 .

By symmetry, when r = −b then â = (a− b)u2 and b̂ = −bu2. The compo-

sition map is Ha,b to H(a−b)u2,−bu2 given by (x, y)→
(
x
u ,

bx−ay
u(b−a)

)
.

We also have (x, y)→ (y, x) which sends Ha,b to Hb,a.

5.2 Huff isogenies

We now look at isogenies for Huff curves. We derive a formula for isogenies on
Huff curves similar to Vélu’s formulae in section 2, just as we did for Edwards
curves. Let F be the desired kernel of an isogeny. We seek a rational function
invariant under translation by the points in F , which maps the point (0, 0)
to itself. We denote the points in F by F = {(0, 0), (αi, βi), (−αi,−βi) : i =
1 . . . s}. Let A =

∏s
i=1 αi and B =

∏s
i=1 βi.
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Theorem 4 Define

ψ(P ) =

xP ∏
Q 6=(0,0)∈F

xP+Q

xQ
, yP

∏
Q6=(0,0)∈F

yP+Q

yQ

 .

Then ψ is an `-isogeny from the curve Ha,b to the curve Hâ,b̂ where â = a`B4

and b̂ = b`A4. Using the addition law, we can write

ψ(x, y) =

(
x

s∏
i=1

x2 − α2
i

α2
i (1− b2α2

ix
2)
, y

s∏
i=1

y2 − β2
i

β2
i (1− a2β2

i y
2)

)
. (5)

The equation (5) is valid for points which are not points at infinity.

Proof It is easy to see that ψ(0, 0) = (0, 0), and that ψ is invariant under
translation by elements of F . Therefore, the set F is contained in the set that
ψ maps to the point (0, 0). Conversely, if ψ(P ) = (0, 0), then either xP = 0 or
xP+Q = 0 for some Q ∈ F . If xP = 0, then P = (0, 0) ∈ F . If xP+Q = 0,
then P +Q = (0, 0), and P = −Q ∈ F . Thus the preimage of (0, 0) under ψ is
exactly the set F.

It is well known that the function u/v has a simple zero at ∞ on an elliptic
curve given by a Weierstrass equation Ea,b : v2 = u3 + (a+ b)u2 + abu. Using
the birational transformation given in section 3.2, this function becomes t =
ay − bx on the Huff curve Ha,b which has a simple zero at the identity point
(0, 0). Similarly, as v has a simple zero at the three points of order 2 on Ea,b,
then the function r = 1

y−x has simple zeroes at the three points of infinity

(1 : 0 : 0), (0 : 1 : 0), and (a : b : 0) on the Huff curve. The function r
has a triple pole at (0, 0), as

r =
1

y − x

= −t−3 (ay − bx)2

xy

= −t−3
(

(a2
y

x
− 2ab+ b2

x

y

)
= −t−3

(
a2
ay2 − 1

bx2 − 1
− 2ab+ b2

bx2 − 1

ay2 − 1

)
.

Similarly, it can be checked that t has a simple zero at (a : b : 0) and simple
poles at (1 : 0 : 0) and (0 : 1 : 0). There are no other zeroes or poles of r
or t.
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We now consider the function x over the Huff curve. Note that

x =
1

a− b

(
t− a

r

)
,

=
1

a− b

(
t− at3 (bx2 − 1)(ay2 − 1)

(b− a+ a2y2 − b2x2)2

)
,

=
1

a− b
t

(
1− at2 (bx2 − 1)(ay2 − 1)

(b− a+ a2y2 − b2x2)2

)
,

and so x has a simple zero at (0, 0). Furthermore,

x− 1

a− b
t = − a

a− b
t3
(

(bx2 − 1)(ay2 − 1)

(b− a+ a2y2 − b2x2)2

)
,

and a more detailed computation yields

x =
1

a− b
t− a

(b− a)3
t3 +O(t5).

Here the notation O(t5) means a function which has at least a fifth order zero
at (0, 0). An analogous calculation shows that y also has a simple zero at (0, 0),
with

y =
1

a− b
t− b

(b− a)3
t3 +O(t5).

For the points at infinity, we use projective coordinates and see that

x =
x

z

=
y − x
z

(
x

y − x

)
= r−1

(
x

y − x

)
,

and so x has simple poles at (1 : 0 : 0) and (a : b : 0). At (0 : 1 : 0)

x =
x

z

=
z

y − x

(
x(y − x)

z2

)
= −r

(
(y − x)2

y(ay − bx)

)
,

so x has a simple zero. Similarly, we can check y has simple poles at (0 : 1 : 0)
and (a : b : 0) and a simple pole at (1 : 0 : 0). These are the only zeroes
and poles of x and y.

If we write the map in (5) as ψ(x, y) = (X,Y ), then

X = x

s∏
i=1

x2 − α2
i

α2
i (1− b2α2

ix
2)
,
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Y = y

s∏
i=1

y2 − β2
i

β2
i (1− a2β2

i y
2)
.

For a fixed i, consider the function x2 − α2
i . It has simple zeroes at ±(αi, βi)

and ±(−αi, 1/aβi). As x has a simple pole at (1 : 0 : 0) and (a : b : 0)
then x2 − α2

i has poles of order two at these same points. Similarly, if we
examine the function 1 − b2α2

ix
2, then we have simple zeroes at ±(1/bαi) and

±(−1/bαi,−1/aβi) and double poles at (1 : 0 : 0) and (a : b : 0). We are
able to compute

x2 − α2
i

α2
i (1− b2α2

ix
2)

= −1 +
1− b2α4

i

α2
i

x2 +O(x4)

= −1 +
1− b2α4

i

α2
i (b− a)2

t2 +O(t4).

So then
X

x
=

s∏
i=1

(
−1 +

1− b2α4
i

α2
i (b− a)2

t2 +O(t4)

)

= (−1)s + (−1)s+1

(
s∑
i=1

1− b2α4
i

α2
i (b− a)2

)
t2 +O(t4).

Therefore,

X =
(−1)s

a− b

(
t− 1

(a− b)2

(
−a+

s∑
i=1

1− a2β4
i

β2
i

)
t3 +O(t5)

)
,

and similarly,

Y =
(−1)s

a− b

(
t− 1

(a− b)2

(
−b+

s∑
i=1

1− b2α4
i

α2
i

)
t3 +O(t5)

)
.

Now we define

Gc,d = X(cY 2 − 1)− Y (dX2 − 1) = (Y −X) +XY (cY − dX).

We first note that

Y −X =
(−1)s

(a− b)3

(
b− a+

s∑
i=1

1− b2α4
i

α2
i

− 1− a2β4
i

β2
i

)
t3 +O(t5),

and so we can see that Gc,d will have a zero of order 3 at (0, 0). A further
computation shows

Gc,d =
(−1)s

(a− b)3

(
b− a+ c− d+

s∑
i=1

1− a2β4
i

β2
i

− 1− b2α4
i

α2
i

)
t3 +O(t5). (6)
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The only possible poles of Gc,d are at the poles of X and Y . From above,
the poles of X are at (1 : 0 : 0), (a : b : 0),±(1/bαi,−βi), and
±(−1/bαi,−1/aβi), all of which are simple. The poles of Y are all simple, and
are located at (0 : 1 : 0), (a : b : 0),±(−αi, 1/aβi), and±((−1/bαi,−1/aβi)).

At (1 : 0 : 0), X has a simple pole, while Y has a simple zero, so Gc,d
will have at worst a simple pole there. The same is true for (0 : 1 : 0). At
(a : b : 0), we see that there will be at most a triple pole for Gc,d. Now, at the
points ±(1/bαi,−βi), we see there is at most a simple pole, and similarly for
±(−αi, 1/aβi). Finally, we note that ±(−1/bαi,−1/aβi) will cause Gc,d to have
at most a triple pole. So the total number of poles (counting multiplicity) is
10s+ 5 = 5`. Thus, the total number of zeroes is at most 5`. By the definition
of X and Y , we know that they are invariant under translation by points in
the kernel F . As Gc,d has at least a triple zero at (0, 0), then there is at least
a triple zero at ±(αi, βi). So (counting multiplicities), we see that Gc,d has at
least 3 + 6s = 3` zeroes.

We see from (6) that the coefficient of t3 in Gc,d is linear in c and d. A
more detailed analysis also shows the coefficient of t5 is linear in c and d as well.
Thus, we may solve this system of equations to make these coefficients zero.
With these values of c and d, then Gc,d has a zero of order at least 7 at (0, 0),
as well as at the ±(αi, βi). Counting multiplicities, we obtain that there are at
least 7 + 14s = 7` zeroes. This is more than the number of poles, which is a
contradiction, unless Gc,d is constant. We easily see Gc,d(0, 0) = 0, and hence
Gc,d is identically zero. This shows the image of ψ is a Huff curve. We’ve found
a rational map which sends Ha,b to another Huff curve and maps (0, 0) to (0, 0).
This is necessarily an isogeny. We do not give the detailed expressions for c and
d, as we can come up with vastly simplified equations for the codomain curve.
We now show how to do this.

Solving for the projective maps on the Huff curve gives us:

X = x

2∏
i

[(
x2 − α2

i z
2
)
β2
i

(
z2 − a2β2

i y
2
)]
,

Y = y

s∏
i

[(
y2 − β2

i z
2
)
α2
i

(
z2 − b2α2

ix
2
)]
,

and

Z = z

s∏
i

[
α2
i

(
z2 − b2α2

ix
2
)
β2
i

(
z2 − a2β2

i y
2
)]
.

From this we see that the points at infinity (1 : 0 : 0) and (0 : 1 : 0)
map to (1 : 0 : 0) and (0 : 1 : 0) respectively. The third point at infinity
(a : b : 0) maps to (a`B4(ab)2s : b`A4(ab)2s : 0), which is equivalent to the
point (a`B4 : b`A4 : 0).

By plugging this into the curve:

X
(
âY 2 − Z2

)
= Y

(
b̂X2 − Z2

)
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we get that:

â

a`B4
=

b̂

b`A4
.

Thus we can conclude that for some constant c we have that â = a`B4c and
b̂ = b`A4c.

Now we observe the image of the point P =
(

1√
b
, 1√

a

)
under this isogeny.

We first calculate the term inside the product for the x-coordinate map:

(1/
√
b)2 − (αi)

2

α2
i

(
1− b2α2

i (1/
√
b)2
) =

1− bα2
i

bα2
i (1− bα2

i

=
1

bα2
i

.

And thus the whole product, and hence the x-coordinate map of the isogeny
becomes:

1√
b`A4

.

Similarly, the y-coordinate map of the isogeny becomes:

1√
a`B4

.

Plugging these values into the codomain curve, and making the substitutions
â = a`B4c and b̂ = b`A4c we get:

1√
b`A4

(c− 1) =
1√
a`B4

(c− 1).

If c 6= 1, we can conclude that
√
b`A4 =

√
a`B4. However, if this were the

case, then the image of the point P =
(

1√
b
, 1√

a

)
is a singular point on the

codomain. This is not the case as can be seen by mapping this point to the
weierstrass model, performing the isogeny and mapping back to the Huff model.
Thus c = 1 so that â = a`B4 and b̂ = b`A4. 2

5.3 Kernel polynomials for Huff curves

We can use kernel polynomials to write the Huff isogeny. Denote the points in
the kernel by {(0, 0), (αi, βi), (−αi,−βi) : i = 1 . . . s}. The kernel polynomials
are

g(x) =

s∏
i=1

(x2 − α2
i )

h(y) =

s∏
i=1

(y2 − β2
i ),
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Then by Theorem 4,

ψ(x, y) =

(
xg(x)

g(0)(−bx)2sg( 1
bx )

,
yh(y)

h(0)(−ay)2sh( 1
ay )

)
.

The codomain curve is Hâ,b̂, where â = a`h(0)2 and b̂ = b`g(0)2. Note again that
this can be efficiently computed if we have an efficient algorithm for computing
g and h.

5.4 More isogenies

We include a formula for 2-isogenies on Huff curves.

Theorem 5 There is a 2-isogeny from the curve Ha,b to the curve H−(
√
a+
√
b)2,−(

√
a−
√
b)2

given by

(x, y)→

(
(bx− ay)

(b− a)2
((bx− ay) +

√
ab(x− y))2

bx2 − ay2
,

(bx− ay)

(b− a)2
((bx− ay)−

√
ab(x− y))2

bx2 − ay2

)
.

Proof The proof is similar to the method used for 2-isogenies for Edwards
curves. The map

φ1(x, y) =
(bx− ay
y − x

,
b− a
y − x

)
,

sends Ha,b to the Weierstrass curve E1 : y2 = x3 + (a + b)x2 + abx. The point
(0, 0) on this curve has order 2, and by Vélu’s formula we have a 2-isogeny

φ2(x, y) =
(x2 + ab

x
, y
x2 − ab
x2

)
,

to the curve E2 : y2 = x3 + (a + b)x2 − 4abx− 4ab(a + b). In order to map E2

back to a Huff curve, we first use a linear translation to get it in the right form:

φ3(x, y) = (x+ a+ b, y).

The image of this map is the curve E3 : y2 = x3 − 2(a + b)x2 + (a − b)2x.
The inverse map of φ1 requires a curve in the form y2 = x3 + (c + d)x2 + cdx.
Equating this with E3, we need c + d = −2(a + b), and cd = (a − b)2. Solving
this system, we get c = −(

√
a+
√
b)2 and d = −(

√
a−
√
b)2. The map

φ4(x, y) =
(x+ c

y
,
x+ d

y

)
=
(x− (

√
a+
√
b)2

y
,
x− (

√
a−
√
b)2

y

)
,

takes E3 to the Huff curve Hc,d. Composing the maps φ1, φ2, φ3, φ4 leads to the
formulas given in the statement of the theorem. We omit the algebraic details.
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We are also able to give another explicit formula for odd degree isogenies for
Huff curves.

Theorem 6 Let Ha,b be an elliptic curve given by the Huff model x(ay2− 1) =
y(bx2−1). Let the kernel of the isogeny be {(0, 0), (α1, β1), (−α1,−β1), . . . , (αs, βs), (−αs,−βs)}.
Then there is a (2s+ 1)-isogeny Ψ is given by

ψ(x, y) =

(
1

b2s
x

s∏
i=1

(x− αi/βiy)(x+ aαiβiy)

α4
i (x− aβi/bαiy)(x+ 1/bαiβiy)

, y

s∏
i=1

(x− αi/βiy)(x+ 1/bαiβiy)

(x− aβi/bαiy)(x+ aαiβiy)

)
.

The proof is similar to that of Theorem 3. This isogeny returns the same values
as the Huff isogeny formula given by Theorem 4 in section 5.2.

6 Computation

There has been much interest in computing isogenies efficiently, see [5], [6],
[10], or [27] for example. The models for isogenies of elliptic curves in the past
have only used the Weierstrass equation. With the Edwards and Huff isogeny
formulas presented in this paper, we now have an alternative to previous work.
In this section, we briefly examine the computational cost of computing Edwards
and Huff isogenies, and compare it to known results for Weierstrass isogenies.
We emphasize that we are only doing a quick analysis – a serious study will be
the focus of future work.

For Edwards curves, we can compute an isogeny with kernel {±αi, βi}∪(0, 1)
by

ψ(x, y) =

(
x

s∏
i=1

x2 − α2
i /β

2
i y

2

1− d2α2
iβ

2
i x

2y2
, y

s∏
i=1

y2 − α2
i /β

2
i x

2

1− d2α2
iβ

2
i x

2y2

)
.

Let M and S denote the cost of a multiplication and squaring in K respectively.
Let C denote multiplication by a constant in K. If constants are carefully
chosen, the cost of the multiplications denoted by C could be significantly less
than those in M , however, in the general case, we should regard C and M
as equal. We ignore addition, as the cost of addition is usually much less than
squaring and multiplication. We first compute x2 and y2, from which we deduce
dx2y2 = x2 + y2 − 1, at a cost of 2S. For each i, we then compute x2 −
α2
i /β

2
i y

2, y2−α2
i /β

2
i x

2, and 1−dα2
iβ

2
i (dx2y2). This requires (3s)C. Computing

x
∏s
i=1(x2−α2

i /β
2
i y

2), y
∏s
i=1(y2−α2

i /β
2
i x

2), and
∏s
i=1(1−d2α2

i /β
2
i x

2y2) costs
(2 + 3(s− 1))M . In affine coordinates, we must invert

∏s
i=1(1− d2α2

i /β
2
i x

2y2),
and perform 2 more multiplications M . Thus, the total affine cost is (3s+1)M+
2S + 3sC + 1I, where I is the cost of an inversion.
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To avoid inversions, which can be costly, we look at using projective coordi-
nates. The isogeny is

ψ(x, y, z) =

(
xz

s∏
i=1

(x2−α2
i /β

2
i y

2) : yz

s∏
i=1

(y2−α2
i /β

2
i x

2) :

s∏
i=1

(z4−d2α2
i /β

2
i x

2y2)

)
.

We can see we must also compute z4, and xz and yz at a cost of 2M + 2S. The
total cost in the projective case is (3s+ 3)M + 4S + 3sC.

We do not claim these formulas are optimal. They only provide an upper
bound for the cost to compute an Edwards isogeny. For specific values of s, it is
possible to do better. For example, using projective coordinates we have found
a way to compute an Edwards 3-isogeny in 5M + 4S + 3C, and a 5-isogeny in
6M + 6S + 5C. For comparison, an optimized 3-isogeny is given in [11] which
costs 3M + 3S + 1C, and an optimized 5-isogeny is given in [24] which costs
8M + 5S + 7C. It is more difficult to compute the exact cost of computing an
isogeny on Weierstrass curves. The best algorithms in [5] are O(lM(l)), where
l = 2s + 1 is the degree of the isogeny, and M(n) is the cost to multiply two
polynomials of degree n together. A naive algorithm has M(n) = n2, whereas
if fast Fourier transforms are used then one can take M(n) = n log n.

For Huff curves, we use the formula

ψ(x, y) =

(
x

s∏
i=1

x2 − α2
i

α2
i (1− b2α2

ix
2)
, y

s∏
i=1

y2 − β2
i

β2
i (1− a2β2

i y
2)

)
.

A similar analysis shows we can compute ψ with (4s− 2)M + 2S + (2s)C + 2I
in the affine case, and (4s+3)M +3S+(4s)C in the projective case. A possible
reason the Huff isogeny might not be as efficient as the Edwards isogeny lies in
the denominators. In the Edwards case, the same denominator is used for both
the x and y-coordinates, while for Huff isogenies, different denominators have
to be calculated.

7 Conclusion

In this paper we have found isogeny formulas for Edwards and Huff curves,
similar to Vélu’s formulas for Weierstrass curves. It is interesting that these
formulas are “multiplicative”, compared to the “additive” Vélu formula. The
new isogeny formulas also yield easier to write down rational maps than Vélu’s
formula.

There is much potential for these isogeny formulas to be used in applications.
Many cryptographic results appear in the literature for Weierstrass isogenies,
and it is possible that Edwards (or Huff) isogenies could improve results, or be
more efficient. This is similar to how using the Edwards addition law speeds
up point multiplication on elliptic curves. Such possibilities include the SEA
algorithm [29], pairings [6], or the Doche-Icart-Kohel technique [11].

We also leave it as future work to optimize the computations in section 6.
Our preliminary operation counts show the isogeny formulas are competitive
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with other work. Another research topic could be finding similar isogeny for-
mulas for other models of curves, such as Hessian curves, Jacobi quartics, or
Jacobi intersections.

References

[1] O. Ahmadi, and R. Granger. On isogeny classes of Edwards curves over
finite fields, Available at http://eprint.iacr.org/2011/135.

[2] D. Bernstein, P. Birkner, M. Joye, T. Lange, C. Peters. Twisted Ed-
wards curves, in Progress in cryptology—AFRICACRYPT 2008 proceed-
ings, edited by S. Vaudenay, Lecture Notes in Computer Science 5023,
Springer, pp. 389–405 (2008).

[3] D. Bernstein, T. Lange, Faster addition and doubling on elliptic curves,
in Advances in cryptology—ASIACRYPT 2007, 13th international confer-
ence on the theory and application of cryptology and information security,
Kuching, Malaysia, December 2–6, 2007, proceedings, edited by Kaoru
Kurosawa. Lecture Notes in Computer Science 4833, Springer, pp. 29-50
(2007).

[4] G. Bisson, and A. Sutherland, Computing the Endomorphism Ring of an
Ordinary Elliptic Curve over a Finite Field, Journal of Number Theory,
2009.

[5] A. Bostan, F. Morain, B. Salvy and E. Schost, Fast algorithms for com-
puting isogenies between elliptic curves, Math. Comp. 77, pp. 1755–1778,
(2008).

[6] R. Broker, D. Charles, and K. Lauter. Evaluating large degree isogenies
and applications to pairing based cryptography. In Pairing 08: Proceedings
of the 2nd international conference on Pairing-Based Cryptography, pages
100–112, Berlin, Heidelberg, 2008. Springer-Verlag.

[7] R. Broker, K. Lauter, and A. Sutherland, Modular polynomials via isogeny
volcanoes, to appear in Mathematics of Computation.

[8] D. Charles, E. Goren, and K. Lauter, Cryptographic hash functions from
expander graphs, J. Cryptology, 22 1 (2009), pp. 93–113.

[9] H. Debiao, C. Jianhua, and H. Jin, A Random Number Generator Based on
Isogenies Operations, Available at http://eprint.iacr.org/2010/094,
2010.

[10] L. De Feo. Algorithmes Rapides pour les Tours de Corps Finis et les Isoge-
nies, PhD thesis. Ecole Polytechnique X, 2010.

24



[11] C. Doche, T. Icart, and D. Kohel, Efficient Scalar Multiplication by
Isogeny Decompositions. appeared at PKC 2006, part of LNCS (Lecture
Series in Computer Science) 3958. Springer Verlag. pp. 285–352. 2006.
http://web.science.mq.edu.au/ doche/isogeny.pdf.

[12] H. Edwards, A normal form for elliptic curves, Bulletin of the American
Mathematical Society 44 , pp. 393–422 (2007).

[13] N. Elkies, Elliptic and modular curves over finite fields and related compu-
tational issues, In D.A. Buell and J.T. Teitelbaum, editors, Computational
perspectives on number theory: proceedings of a conference in honor of
AOL Atkin, pp. 21–76 (1997).

[14] R. Farashahi. On the Number of Distinct Legendre, Jacobi, Hessian and
Edwards Curves, to appear in Des. Codes Cryptography, 2011.

[15] R. Farashahi, I. Shparlinski. On the number of distinct elliptic curves in
some families. Des. Codes Cryptography, 54(1):pp. 83-99, (2010).

[16] R. Feng, and H. Wu, Elliptic curves in Huff’s model, Available at http:

//eprint.iacr.org/2010/390.pdf, 2010.

[17] M. Fouquet, and F. Morain, Isogeny Volcanoes and the SEA Algorithm. In
Proceedings of the 5th International Symposium on Algorithmic Number
Theory (ANTS-V), Claus Fieker and David R. Kohel (Eds.). Springer-
Verlag, London, UK, 276-291, 2002.

[18] L. Hitt, G. Mcguire, and R. Moloney, Division polynomials for twisted
Edwards curves, Available at http://arxiv.org/PS_cache/arxiv/pdf/

0907/0907.4347v1.pdf, 2008.

[19] G. Huff, Diophantine problems in geometry and elliptic ternary forms. Duke
Math. J., 15:443-453, 1948.

[20] D. Jao, S. D. Miller, and R. Venkatesan. Do all elliptic curves of the same
order have the same difficulty of discrete log? In Bimal Roy, editor, Ad-
vances in Cryptology ASIACRYPT 2005, volume 3788 of Lecture Notes in
Computer Science, pages 2140, 2005. 11th International Conference on the
Theory and Application of Cryptology and Information Security, Chennai,
India, December 4-8, 2005.

[21] M. Joye, M. Tibouchi, and D. Vergnaud, Huff’s model for elliptic curves,
In 9th Algorithmic Number Theory Symposium (ANTS-IX), Springer, pp.
234–250, 2010.

[22] G. McGuire, and R. Moloney, Two Kinds of Division Polynomials For
Twisted Edwards Curves, Available at http://arxiv.org/PS_cache/

arxiv/pdf/0907/0907.4347v1.pdf, 2010.

25



[23] D. Kohel, Endomorphism Rings of Elliptic Curves over Finite Fields, PhD
thesis, University of California at Berkeley, (1996).

[24] D. Moody, Using 5-isogenies to quintuple points on elliptic curves. Inf.
Process. Lett. 111, 7 (March 2011), 314-317.

[25] D. Moody, and H. Wu, Fq-Isomorphism classes of Edwards and twisted
Edwards curves, Available at http://eprint.iacr.org/2011/206, 2011.

[26] A. Rostovtsev and A. Stolbunov, Public-key cryptosystem based
on isogenies, Cryptology ePrint Archive, Report 2006/145, 2006.
http://eprint.iacr.org/.

[27] D. Shumow, Isogenies of Elliptic Curves: A Computational Approach, Au-
gust 2009.

[28] J. Silverman, The arithmetic of elliptic curves, Springer-Verlag, 1986.

[29] R. Schoof, Elliptic curves over finite fields and the computation of square
roots mod p, Math. Comp., 44, pp. 483–494 (1985).

[30] A. Stolbunov, Constructing public-key cryptographic schemes based on
class group action on a set of isogenous elliptic curves. Adv. Math. Com-
mun., 4(2):215235, 2010.

[31] A. Sutherland, Computing Hilbert class polynomials with the Chinese Re-
mainder Theorem, Math. Comp., Vol. 80, pp.501-538, (2011).

[32] E. Teske, An Elliptic curve trapdoor system, J. Cryptology, 19(1):115133,
2006.
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